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A concise but thorough introduction to the
observational data and theoretical concepts
underlying modern astronomy, Astrophysics in a
Nutshell is designed for advanced undergraduate
science majors taking a one-semester course.
This well-balanced and up-to-date textbook cov-
ers the essentials of modern astrophysics—from
stars to cosmology—emphasizing the common,
familiar physical principles that govern astro-
nomical phenomena, and the interplay between
theory and observation.

In addition to traditional topics such as stellar
remnants, galaxies, and the interstellar medium,
Astrophysics in a Nutshell introduces subjects at
the forefront of modern research, including
black holes, dark matter, gravitational lensing,
and dark energy, all updated with some of the
latest observational results. To aid physical

understanding, mathematical derivations are
kept as simple, short, and clear as possible, and
order-of-magnitude dimensional
analysis, and scaling arguments are frequently
used. These no-nonsense, “back-of-the-enve-
lope” calculations train students to think like
physicists. The book is amply illustrated with
simple, clear figures and each chapter ends with
a set of problems.

In addition to serving as a course textbook,
Astrophysics in a Nutshell is an ideal review for a
qualifying exam and a handy reference for teach-
ers and researchers.
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physics textbook for science majors
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- Uses simple, short, and clear derivations of
physical results

. Trains students in the essential skills of
order-of-magnitude analysis

«Includes teaching problems with each
chapter

“Dan Maoz’s Astrophysics in a Nutshell is perfect
for an advanced astrophysics course for physi-
cal science majors. It covers modern topics
from stars to galaxies and cosmology. I've
already begun using problems from the book
to test our first-year graduate students.”

—John Huchra, Harvard University

“Astrophysics in a Nutshell is just that—a no-
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To Orit, Lia and Yonatan—

the three bright stars in my sky; and to my parents



Preface

This textbook is based on the one-semester course “Introduction to Astrophysics,” taken
by third-year physics students at Tel-Aviv University, which I taught several times in the
years 2000-2005. My objective in writing this book is to provide an introductory astronomy
text that is suited for university students majoring in physical science fields (physics,
astronomy, chemistry, engineering, etc.), rather than for a wider audience, for which many
astronomy textbooks already exist. I have tried to cover a large and representative fraction
of the main elements of modern astrophysics, including some topics at the forefront of
current research. At the same time, I have made an effort to keep this book concise.

I covered this material in approximately forty 45-minute lectures. The text assumes a
level of math and physics expected from intermediate-to-advanced undergraduate science
majors, namely, familiarity with calculus and differential equations, classical and quantum
mechanics, special relativity, waves, statistical mechanics, and thermodynamics. However,
[ have made an effort to avoid long mathematical derivations, or complicated physical
arguments that might mask simple realities. Thus, throughout the text, I use devices
such as scaling arguments and order-of-magnitude estimates to arrive at the important
basic results. Where relevant, I then state the results of more thorough calculations that
involve, e.g., taking into account secondary processes that I have ignored, or full solutions
of integrals, or of differential equations.

Undergraduates are often taken aback by their first encounter with this order-of-
magnitude approach. Of course, full and accurate calculations are as indispensable in
astrophysics as in any other branch of physics (e.g., an omitted factor of # may not be
important for understanding the underlying physics of some phenomenon, but it can be
very important for comparing a theoretical calculation to the results of an experiment).
However, most physicists (regardless of subdiscipline), when faced with a new problem,
will first carry out a rough, “back-of-the-envelope” analysis that can lead to some basic intu-
ition about the processes and the numbers involved. Thus, the approach we will follow
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here is actually valuable and widely used, and the student is well advised to attempt to
become proficient at it. With this objective in mind, some derivations and some topics
are left as problems at the end of each chapter (usually including a generous amount
of guidance), and solving most or all of the problems is highly recommended in order
to get the most out of this book. I have not provided full solutions to the problems, to
counter the temptation to peek. Instead, at the end of some problems I have provided
short answers that permit the reader to check the correctness of the solution, although
not in cases where the answer would give away the solution too easily (physical science
students are notoriously competent at “reverse engineering” a solution—not necessarily
correct—to an answer!).

There is much that does not appear in this book. I have excluded almost all descriptions
of the historical developments of the various topics, and have, in general, presented them
directly as they are understood today. There is almost no attribution of results to the
many scientists whose often-heroic work has led to this understanding, a choice that
certainly does injustice to many individuals, past and living. Furthermore, not all topics
in astrophysics are equally amenable to the type of exposition this book follows, and I
naturally have my personal biases about what is most interesting and important. As a
result, the coverage of the different subjects is intentionally uneven: some are explored to
considerable depth, while others are presented only descriptively, given brief mention, or
completely omitted. Similarly, in some cases I develop from “first principles” the physics
required to describe a problem, but in other cases I begin by simply stating the physical
result, either because I expect the reader is already familiar enough with it, or because
developing it would take too long. I believe that all these choices are essential to keep
the book concise, focused, and within the scope of a one-term course. No doubt, many
people will disagree with the particular choices I have made, but hopefully will agree that
all that has been omitted here can be covered later by more advanced courses (and the
reader should be aware that proper attribution of results is the strict rule in the research
literature).

Astronomers use some strange units, in some cases for no reason other than tradition. I
generally use cgs units, but also make frequent use of some other units that are common in
astronomy, e.g., angstroms, kilometers, parsecs, light-years, years, solar masses, and solar
luminosities. However, I have completely avoided using or mentioning “magnitudes,” the
peculiar logarithmic units used by astronomers to quantify flux. Although magnitudes are
widely used in the field, they are not required for explaining anything in this book, and
might only cloud the real issues. Again, students continuing to more advanced courses
and to research can easily deal with magnitudes at that stage.

A note on equality symbols and their relatives. I use an “=" sign, in addition to cases
of strict mathematical equality, for numerical results that are accurate to better than ten
percent. Indeed, throughout the text I use constants and unit transformations with only
two significant digits (they are also listed in this form in “Constants and Units,” in the hope
that the student will memorize the most commonly used among them after a while ), except
in a few places where more digits are essential. An “~” sign in a mathematical relation (i.e.,
when mathematical symbols, rather than numbers, appear on both sides) means some
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approximation has been made, and in a numerical relation it means an accuracy somewhat
worse than ten percent. A “ox” sign means strict proportionality between the two sides. A
“~” is used in two senses. In a mathematical relation it means an approximate functional
dependence. For example, if y = ax%?, I may write y ~ x2. In numerical relations, I use
“~” to indicate order-of-magnitude accuracy.

This book has benefitted immeasurably from the input of the following colleagues, to
whom I am grateful for providing content, comments, insights, ideas, and many correc-
tions: T. Alexander, R. Barkana, M. Bartelmann, J.-P. Beaulieu, D. Bennett, D. Bram, D.
Champion, M. Dominik, H. Falcke, A. Gal-Yam, A. Ghez, O. Gnat, A. Gould, B. Griswold,
Y. Hoffman, S. Jha, M. Kamionkowski, S. Kaspi, V. Kaspi, A. Laor, A. Levinson, J. R. Lu,
J. Maos, T. Mazeh, J. Peacock, D. Poznanski, P. Saha, D. Spergel, A. Sternberg, R. Thomp-
son, R. Webbink, L. R. Williams, and S. Zucker. The remaining errors are, of course, all
my own. Orit Bergman patiently produced most of the figures—one more of the many
things she has granted me, and for which I am forever thankful.

D.M.
Tel-Aviv, 2006
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Gravitational constant G=67x108ergcm g2
Speed of light £ =30 % 10" cm g
Planck’s constant h=066x10%ergs

h=h/2r =1.05x 107 erg s

Boltzmann’s constant k=14 x10"1erg K7}
=8.6x 10 eV K™!

Stefan-Boltzmann constant oc=57x10" ergem 2s 1 K™*
Radiation constant a=40/c=7.6x10"" ergcm3K™*
Proton mass m,=17x10"%*g
Electron mass m,=91x10"2g
Electron charge e=48x 10"% esu
Electron volt 1eV=1.6 x 1072 erg
Thomson cross section or = 6.7 x 107% cm?
Wien’s law Amax = 2900 A 10* K/T
Wmax = 2.4 eV T/10* K
Angstrom 1A=10"%cm
Solar mass My =20x10"¢g
Solar luminosity Lo =38 x 108 ergs~!

Solar radius ro = 7.0 x 101 cm
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Solar distance
Jupiter mass
Jupiter radius
Jupiter distance
Earth mass
Earth radius
Moon mass
Moon radius
Moon distance
Astronomical unit
Parsec

Year

do =1AU =15 x 108 cm
Mr=19%10%g
rp=7.1x 10" cm

dj =5AU =75 x 108 cm
Mg = 6.0 x 107 g

re = 6.4 x 108 cm

Mpoon = 7.4 x 105 g

Tmoon = 1.7 x 108 cm

Grmoon = 3.8 x 101° cm
1AU =15 x 10" cm
1pc=31x108cm =331y

lyr=3.15x10"s
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.I Introduction

Astrophysics is the branch of physics that studies, loosely speaking, phenomena on
large scales—the Sun, the planets, stars, galaxies, and the Universe as a whole. But this
definition is clearly incomplete; much of astronomy’ also deals, e.g., with phenomena at
the atomic and nuclear levels. We could attempt to define astrophysics as the physics of
distant objects and phenomena, but astrophysics also includes the formation of the Earth,
and the effects of astronomical events on the emergence and evolution of life on Earth.
This semantic difficulty perhaps simply reflects the huge variety of physical phenomena
encompassed by astrophysics. Indeed, as we will see, practically all the subjects encoun-
tered in a standard undergraduate physical science curriculum—classical mechanics,
electromagnetism, thermodynamics, quantum mechanics, statistical mechanics, relativ-
ity, and chemistry, to name just some—play a prominent role in astronomical phenomena.
Seeing all of them in action is one of the exciting aspects of studying astrophyics.

Like other branches of physics, astronomy involves an interplay between experiment and
theory. Theoretical astrophysics is carried out with the same tools and approaches used by
other theoretical branches of physics. Experimental astrophysics, however, is somewhat
different from other experimental disciplines, in the sense that astronomers cannot carry
out controlled experiments,? but can only perform observations of the various phenomena
provided by nature. With this in mind, there is little difference, in practice, between the
design and the execution of an experiment in some field of physics, on the one hand, and
the design and the execution of an astronomical observation, on the other. There is certainly
no particular distinction between the methods of data analysis in either case. But, since
everything we discuss in this book will ultimately be based on observations, let us begin
with a brief overview of how observations are used to make astrophysical measurements.

1'We will use the words “astrophysics” and “astronomy” interchangeably, as they mean the same thing
nowadays. For example, the four leading journals in which astrophysics research is published are named The
Astrophysical Journal, The Astronomical Journal, Astronomy and Astrophysics, and Monthly Notices of the Royal
Astronomical Society, but their subject content is the same.

2 An exception is the field of laboratory astrophysics, in which some particular properties of astronomical
conditions are simulated in the lab.
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Figure 1.1 The various spectral regions of electromagnetic radiation, their com-
mon astronomical nomenclature, and their approximate borders in terms of wave-
length, frequency, energy, and temperature. Temperature is here associated with
photon energy E via the relation E = kT, where k is Boltzmann'’s constant.

1.1 Observational Techniques

With several exceptions, astronomical phenomena are almost always observed by detect-
ing and measuring electromagnetic (EM) radiation from distant sources. (The exceptions
are in the fields of cosmic ray astronomy, neutrino astronomy, and gravitational wave
astronomy.) Figure 1.1 shows the various, roughly defined, regions of the EM spectrum.
To record and characterize EM radiation, one needs, at least, a camera that will focus
the approximately plane EM waves arriving from a distant source and a detector at the
focal plane of the camera, which will record the signal. A “telescope” is just another
name for a camera that is specialized for viewing distant objects. The most basic such
camera—detector combination is the human eye, which consists (among other things) of
a lens (the camera) that focuses images on the retina (the detector). Light-sensitive cells
on the retina then translate the light intensity of the images into nerve signals that are
transmitted to the brain. Figure 1.2 sketches the optical principles of the eye and of two
telescope configurations.

Until the introduction of telescope use to astronomy by Galileo in 1609, observational
astronomy was carried out solely using human eyes. However, the eye as an astronomical
tool has several disadvantages. The aperture of a dark-adapted pupil is <1 cm in diameter,
providing limited light-gathering area and limited angular resolution. The light-gathering
capability of a camera is set by the area of its aperture (e.g., of the objective lens, or of the
primary mirror in a reflecting telescope). The larger the aperture, the more photons, per
unit time, can be detected, and hence fainter sources of light can be observed. For example,
the largest visible-light telescopes in operation today have 10-meter primary mirrors, i.e.,
more than a million times the light gathering area of a human eye.
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Figure 1.2 Optical sketches of three different examples of camera-detector combinations.
Left: Human eye, shown with parallel rays from two distant sources, one source on the optical
axis of the lens and one at an angle to the optical axis. The lens, which serves as the camera in
this case, focuses the light onto the retina (the detector), on which two point images are formed.
Center: A reflecting telecope with a detector at its prime focus. Plotted are parallel rays from a
distant source on the optical axis of the telescope. The concave mirror focuses the rays onto the
detector at the mirror’s focal plane, where a point image is formed. Right: Reflecting telescope,
but with a secondary, convex, mirror, which folds the beam back down and through a hole in
the primary concave mirror, to form an image on the detector at the so-called Cassegrain focus.

The angular resolution of a camera or a telescope is the smallest angle on the sky
between two sources of light that can be discerned as separate sources with that camera.
From wave optics, a plane wave of wavelength A passing through a circular aperture of
diameter D, when focused onto a detector, will produce a diffraction pattern of concentric
rings, centered on the position expected from geometrical optics, with a central spot having
an angular radius (in radians) of

6 =122 1.1
=122 (1.1)

Consider, for example, the image of a field of stars obtained through some camera, and
having also a bandpass filter that lets through light only within a narrow range of wave-
lengths. The image will consist of a set of such diffraction patterns, one at the position
of each star (see Fig. 1.3). Actually seeing these diffraction patterns requires that blurring
of the image not be introduced, either by imperfectly built optics or by other elements,
e.g., Earth’s atmosphere. The central spots from the diffraction patterns of two adjacent
sources on the sky will overlap, and will therefore be hard to distinguish from each other,
when their angular separation is less than about A/D. Similarly, a source of light with an
intrinsic angular size smaller than this diffraction limit will produce an image that is unre-
solved, i.e., indistinguishable from the image produced by a point source of zero angular
extent. Thus, in principle, a 10-meter telescope working at the same visual wavelengths as
the eye can have an angular resolution that is 1000 times better than that of the eye.
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Figure 1.3 Simulated diffraction-limited image of a field of stars, with the characteristic diffraction
pattern due to the telescope’s finite circular aperture at the position of every star. Pairs of stars separated

on the sky by an angle #< A/D (e.g., on the right-hand side of the image) are hard to distinguish from
single stars. Real conditions are always worse than the diffraction limit, due to, e.g., imperfect optics
and atmospheric blurring.

In practice, it is difficult to achieve diffraction-limited performance with ground-based
optical telescopes, due to the constantly changing, blurring effect of the atmosphere. (The
optical wavelength range of EM radiation is roughly defined as 0.32-1 um.) However,
observations with angular resolutions at the diffraction limit are routine in radio and
infrared astronomy, and much progress in this field has been achieved recently in the
optical range as well. Angular resolution is important not only for discerning the fine
details of astronomical sources (e.g., seeing the moons and surface features of Jupiter, the
constituents of a star-forming region, or subtle details in a galaxy), but also for detecting
faint unresolved sources against the background of emission from the Earth’s atmosphere,
i.e., the “sky.” The night sky shines due to scattered light from the stars, from the Moon,
if it is up, and from artificial light sources, but also due to fluorescence of atoms and
molecules in the atmosphere. The better the angular resolution of a telescope, the smaller
the solid angle over which the light from, say, a star, will be spread out, and hence the higher
the contrast of that star’s image over the statistical fluctuations of the sky background (see
Fig. 1.4). A high sky background combined with limited angular resolution are among the
reasons why it is difficult to see stars during daytime.

A third limitation of the human eye is its fixed integration time, of about 1/30 second.
In astronomical observations, faint signals can be collected on a detector during arbi-
trarily long exposures (sometimes accumulating to months), permitting the detection of
extremely faint sources. Another shortcoming of the human eye is that it is sensitive only
to a narrow visual range of wavelengths of EM radiation (about 0.4-0.7 um, i.e., within the
optical range defined above), while astronomical information exists in all regions of the EM
spectrum, from radio, through infrared, optical, ultraviolet, X-ray, and gamma-ray bands.
Finally, a detector other than the eye allows keeping an objective record of the observation,



Introduction | 5

UL RN NN RN RN RRLRRRRRRRRRNY)

— star -

T N g
—

5} = i

e L i
o

a, - ]

0 L B

= sky level ]

o i

(&) B o

Ir high angular low angular ]

[ resolution resolution ]

O —IIIIlIIIIIIIlIILIIIIIIIlIIIIII!lIIIIIIIIJIIIIIIiIHliIIIIIIIIIIIIIIIllIIIIIIIIIIlIII]IIJIlIIIIIIIllIEIIIiII|IIIIIIIllllllIIIllIIIIIIIIIIIlIIIlIlIIIII_

Pixel

Figure 1.4 Cuts through the positions of a star in two different astronomical images,
illustrating the effect of angular resolution on the detectability of faint sources on a high
background. The vertical axis shows the counts registered in every pixel along the cut, as a
result of the light intensity falling on that pixel. On the left, the narrow profile of the stellar
image stands out clearly above the Poisson fluctuations in the sky background, the mean
level of which is indicated by the dashed line. On the right, the counts from the same star are
spread out in a profile that is twice as wide, and hence the contrast above the background
noise is lower.

which can then be examined, analyzed, and disseminated among other researchers. Astro-
nomical data are almost always saved in some digital format, in which they are most readily
later processed using computers. All telescopes used nowadays for professional astron-
omy are equipped with detectors that record the data (whether an image of a section of
sky, or otherwise—see below). The popular perception of astronomers peering through
the eyepieces of large telescopes is a fiction.

The type of detector that is used in optical, near-ultraviolet, and X-ray astronomy is
almost always a charge-coupled device (CCD), the same type of detector that is found in
commercially available digital cameras. A CCD is a slab of silicon that is divided into
numerous pixels by a combination of insulating buffers that are etched into the slab and
the application of selected voltage differences along its area. Photons reaching the CCD
liberate photoelectrons via the photoelectric effect. The photoelectrons accumulated in every
pixel during an exposure period are then read out and amplified, and the measurement of
the resulting current is proportional to the number of photons that reached the pixel. This
allows forming a digital image of the region of the sky that was observed (see Fig. 1.5).

So far, we have discussed astronomical observations only in terms of producing an image
of a section of sky by focusing it onto a detector. This technique is called imaging. However,
an assortment of other measurements can be made. Every one of the parameters that
characterize an EM wave can carry useful astronomical information. Different techniques
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Figure 1.5 Schematic view (highly simplified) of a CCD detector. On the left, a
photon is absorbed by the silicon in a particular pixel, releasing an electron, which
is stored in the pixel until the CCD is read out. On the right are shown other pho-
toelectrons that were previously liberated and stored in several pixels on which,
e.g., the image of a star has been focused. At the end of the exposure, the accu-
mulated charge is transferred horizontally from pixel to pixel by manipulating the
voltages applied to the pixels, until it is read out on the right-hand side (arrows) and
amplified.

have been designed to measure each of these parameters. To see how, consider a plane-
parallel, monochromatic (i.e., having a single frequency), EM wave, with electric field
vector described by

E = éE(t)cos 2mvt —k - r + ¢). (1.2)

The unit vector é gives the direction of polarization of the electric field, E(t) is the field’s
time-dependent (apart from the sinusoidal variation) amplitude, v is the frequency, and
k is the wave vector, having the direction of the wave propagation, and magnitude k| =
2m /M. The wavelength A and the frequency v are related by the speed of light, ¢, through
v = ¢/A. The phase shift of the wave is ¢.

Imaging involves determining the direction, on the sky, to a source of plane-parallel
waves, and therefore implies a measurement of the direction of k. From an image, one
can also measure the strength of the signal produced by a source (e.g., in a photon-
counting device, by counting the total number of photons collected from the source over an
integration time). As discussed in more detail in chapter 2, the photon flux is related to the
intensity, which is the time-averaged electric-field amplitude squared, (E?(t)). Measuring
the photon flux from a source is called photometry. In time-resolved photometry, one can
perform repeated photometric measurements as a function of time, and thus measure the
long-term time dependence of (E?).

The wavelength of the light, A (or equivalently, the frequency, v), can be determined
in several ways. A bandpass filter before the detector (or in the “receiver” in radio astron-
omy) will allow only EM radiation in a particular range of wavelengths to reach the detec-
tor, while blocking all others. Alternatively, the light can be reflected off, or transmitted
through, a dispersing element, such as a prism or a diffraction grating, before reaching
the detector. Light of different wavelengths will be deflected by different angles from the
original beam, and hence will land on the detector at different positions. A single source
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Figure 1.6 Schematic example of a spectrograph. Light from a distant point source converges at the
Cassegrain focus of the telecope at the left. The beam is then allowed to diverge again and reaches a
collimator lens sharing the same focus as the telecope, so that a parallel beam of light emerges. The
beam is then transmitted through a dispersive element, e.g., a transmission grating, which deflects
light of different wavelengths by different angles, in proportion to the wavelength. The paths of
rays for two particular wavelengths, A1 and %3, are shown. A camera lens refocuses the light onto
a detector at the camera’s focal plane. The light from the source, rather than being imaged into a
point, has been spread into a spectrum (gray vertical strip).

of light will thus be spread into a spectrum, with the signal at each position along the
spectrum proportional to the intensity at a different wavelength. This technique is called
spectroscopy, and an example of a telescope—spectrograph combination is illustrated in
Fig. 1.6.

The phase shift ¢ of the light wave arriving at the detector can reveal information on the
precise direction to the source and on effects, such as scattering, that the wave underwent
during its path from the source to the detector. The phase can be measured by combining
the EM waves received from the same source by several different telescopes and forming an
interference pattern. This is called interferometry. In interferometry, the baseline distance
B between the two most widely spaced telescopes replaces the aperture in determining the
angular resolution, A/B. In radio astronomy, the signals from radio telescopes spread over
the globe, and even in space, are often combined, providing baselines of order 10* km,
and very high angular resolutions.

Finally, the amount of polarization (unpolarized, i.e., having random polarization direc-
tion, or polarized by a fraction between 0 and 100%), its type (linear, circular), and the
orientation on the sky of the polarization vector & can be determined. For example, in
optical astronomy this can be achieved by placing polarizing filters in the light beam,
allowing only a particular polarization component to reach the detector. Measurement of
the polarization properties of a source is called polarimetry.

Ideally, one would like always to be able to characterize all of the parameters of the EM
waves from a source, but this is rarely feasible in practice. Nevertheless, it is often possible
to measure several characteristics simultaneously, and these techniques are then referred
to by the appropriate names, e.g., spectro-photo-polarimetry, in which both the intensity
and the polarization of light from a source are measured as a function of wavelength.
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In the coming chapters, we study some of the main topics with which astrophysics deals,
generally progressing from the near to the far. Most of the volume of this book is dedicated

to the theoretical understanding of astronomical phenomena. However, it is important to

remember that the discovery and quantification of those phenomena are the products of

observations, using the techniques that we have just briefly reviewed.

Problems

. Calculate the best angular resolution that can, in principle, be achieved with the human

eye. Assume a pupil diameter of 0.5 cm and the wavelength of green light, ~0.5 um.
Express your answer in arcminutes, where an arcminute is 1/60 of a degree. (In
practice, the human eye does not achieve diffraction-limited performance, because
of imperfections in the eye’s optics and the coarse sampling of the retina by the
light-sensitive rod and cone cells that line it.)

. What is the angular resolution, in arcseconds (1/3600 of a degree), of the Hubble

Space Telescope (with an aperture diameter of 2.4 m) at a wavelength of 0.5 um?
What is the angular resolution, expressed as a fraction of an arcsecond, of the Very
Long Baseline Interferometer (VLBI)? VLBI is an network of radio telescopes (wave-
lengths ~1-100 cm), spread over the globe, that combine their signals to form one
large interferometer.

From the table of Constants and Units, find the distances and physical sizes of the
Sun, Jupiter, and a Sun-like star 10 light years away. Calculate their angular sizes, and
compare to the angular resolutions you found above.

2. A CCD detector at the focal plane of a 1-m-diameter telescope records the image of
a certain star. Due to the blurring effect of the atmosphere (this is called “seeing” by
astronomers) the light from the star is spread over a circular area of radius R pixels. The
total number of photoelectrons over this area, accumulated during the exposure, and
due to the light of the star, is Ny, Light from the sky produces ng\, photoelectrons per
pixel in the same exposure.

d.

Calculate the signal-to-noise ratio (S/N) of the photometric measurement of the star,
i.e., the ratio of the counts from the star to the uncertainty in this measurement.
Assume Poisson statistics, i.e., that the “noise” is the square root of the total counts,
from all sources.

. The same star is observed with the same exposure time, but with a 10-m-diameter

telescope. This larger telescope naturally has a larger light gathering area, but also is
at a site with a more stable atmosphere, and therefore has 3 times better “seeing”
(i.e., the light from the stars is spread over an area of radius R/3). Find the S/N in
this case.

Assuming that the star and the sky are not variable (i.e., photons arrive from them at
a constant rate), find the functional dependence of S/N on exposure time, t, in two
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limiting cases: the counts from the star are much greater than the counts from the
sky in the “seeing disk”; and vice versa.

Answer: S/N o t'/2 in both cases.

. Based on the results of (c), by what factor does the exposure time with the 1-m
telescope need to be increased to reach the S/N obtained with the 10-m telescope,
for each of the two limiting cases?

Answer: By a factor 100 in the first case, and 1000 in the second case.



2 Stars: Basic Observations

In this chapter we examine some of the basic observed properties of stars—their spectra,
temperatures, emitted power, and masses—and the relations between those properties.
In chapter 3, we proceed to a physical understanding of these observations.

2.1 Review of Blackbody Radiation

To a very rough, but quite useful, approximation, stars shine with the spectrum of a black-
body. The degree of similarity (but also the differences) between stellar and blackbody
spectra can be seen in Fig. 2.1. Let us review the various descriptions and properties
of blackbody radiation (which is often also called thermal radiation, or radiation having
a Planck spectrum). A blackbody spectrum emerges from a system in which matter and
radiation are in thermodynamic equilibrium. A fundamental result of quantum mechanics
(and one that marked the beginning of the quantum era in 1900) is the exact functional
form of this spectrum, which can be expressed in a number of ways.
The energy density of blackbody radiation, per frequency interval, is

8mv? hv
o3 e/kT _71°

Wy =

(2.1)

where v is the frequency, c is the speed of light, h is Planck’s constant, k is Boltzmann’s
constant, and T is the temperature in degrees Kelvin. Clearly, the first term has units
of [time]/[length]® and the second term has units of energy. In cgs units, u, is given in
erg cm > Hz L.

Next, let us consider the flow of blackbody energy radiation (i.e., photons moving at
speed c), in a particular direction inside a blackbody radiator. To obtain this so-called
intensity, we take the derivative with respect to solid angle of the energy density and
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Figure 2.1 Flux per wavelength interval emitted by different types of stars, at their “surfaces,”
compared to blackbody curves of various temperatures. Each blackbody’s temperature is
chosen to match the total power (integrated over all wavelengths) under the the corresponding
stellar spectrum. The wavelength range shown is from the ultraviolet (1000 A=0.1 um),
through the optical range (3200-10,000 A), and to the mid-infrared (10° A =10 pum). Data
credit: R. Kurucz.

multiply by ¢ (since multiplying a density by a velocity gives a flux, i.e., the amount passing
through a unit area per unit time):

(2.2)

where dQ2 is the solid angle element. (For example, in spherical coordinates, dQ2 =
sin 8dfd¢.) Blackbody radiation is isotropic (i.e., the same in all directions), and hence the
energy density per unit solid angle is

du, Wy
dQ  4m

(2.3)

(since the solid angle of a full sphere is 47 steradians). The intensity of blackbody radiation
is therefore

[ f 2 1
YT T T T

1l

B,. (2.4)

In cgs, one can see the units now are erg s™' cm™? Hz ! steradian™!. We have kept the
product of units, s~ Hz ™!, even though they formally cancel out, to recall their different
physical origins: one is the time interval over which we are measuring the amount of
energy that flows through a unit area; and the other is the photon frequency interval over
which we bin the spectral distribution. I, of a blackbody is often designated B,.
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Figure 2.2 Illustration of the net flux emerging through surface of a blackbody,
due to a beam with intensity I, emerging at an angle 6 to the perpendicular.

Now, let us find the net flow of energy that emerges from a unit area (small enough
so that it can be presumed to be flat) on the outer surface of a blackbody (see Fig. 2.2).
This is obtained by integrating I, over solid angle on the half-sphere facing outward, with
each I, weighted by the cosine of the angle between the intensity and the perpendicular
to the area. This flux, which is generally what one actually observes from stars and other
astronomical sources, is thus

w2 1 e 21 hy3 1

ﬂ - » i cosAdS) = IUZJT-Z- s g oy 25 Zuu = c2  ehv/kT _1°

(2.5)

The cgs units of this flux per frequency interval will thus be erg s™! cm=2 Hz™!.
The total power (i.e., the energy per unit time) radiated by a spherical, isotropically
emitting, star of radius r, is usually called its luminosity, and is just

L, = f,(r.)4n 72, (2.6)

with cgs units of erg s! Hz~!. Similarly, the flux that an observer at a distance d from the
star will measure will be

L,

fold) = Ind?

r2
=fulr) - (2.7)

It is often of interest to consider the above quantities integrated over all photon frequen-
cies, and designated by

u:f i, 1:[ 1., fzf £, L:[ Lodv. 2.8)
0 ] 0 0

A case in point is the useful Stefan-Boltzmann law, which relates the total energy density
or flux of a blackbody to its temperature:

u=aT?, (2.9)
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and
f= ZaT‘* —oT* (2.10)
8’k
=—  =76x%x10"" erg cm3K™*,
4 15¢3h3 &

o= 2“ =57x10" ergs ' cm 2K %
(Here and throughout this book, numbers are rounded off to two significant digits, except
in some obvious cases where higher accuracies are warranted.)

Rather than considering energy density, intensity, flux, and luminosity per photon
frequency interval, we can also look at these quantities per photon wavelength interval,
where the wavelength is A = ¢/v. To make the transformation, we recall that the energy
in an interval must be the same, whether we measure it in wavelength or frequency, so,

B,d) = B,dv, (2.11)
and hence
dv I 2hc? 1
B)L - Bu ﬁ == BUF — A,S ehc/AkT — 1 (212)

1 2 1 1

Here the units are erg s~ cm™* cm™' steradian™', where we have separated the two
length units (cm™? and em™), since one is the unit area through which the radiation flux
is passing, and the other is the wavelength interval over which we bin the radiation energy.
Non-cgs units for the wavelength interval are common in astronomy. For example, flux
per wavelength interval at visual wavelengths is often given in units of erg s~ cm=2 A1,
An A (called “angstrom”) is 10~ cm.

The wavelength or frequency of the peak of a blackbody spectrum can be found by taking

its derivative and equating to zero:

dB,

-~ =0, (2.13)
or

dB,

H = 0, (2'14)

which lead to the two forms of Wien’s law:

Amax I = 0.29 cm K (2.15)

and

homax = 2.8 kT. (2.16)
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For example, the nearest star—the Sun—which radiates approximately like a blackbody at
T = 5800 K, hasa peakin B; at 5000 A, which is the wavelength of green light, in the middle
of the visual regime. In fact, the eyesight of most animals on Earth apparently evolved to
have the most sensitivity in the wavelength range within which the Sun emits the most
energy. (No less important, this wavelength range also coincides with the transmission
range of water vapor in the atmosphere.) Note that the frequency vyax where B, peaks is not
the same as the frequency v = ¢/Amax at which B, peaks. The two spectral distributions are
different, because a constant frequency interval dv corresponds to a changing wavelength
interval

Z—i dv = Zdv (2.17)

air = %)

that grows with wavelength (and falls with frequency).

Figure 2.1 shows blackbody spectral distributions for a variety of temperatures. The
following features are important to note. First, the functions described above (u,, B;, etc.)
are determined uniquely by one parameter, the temperature. Second, far from their peak
frequencies or wavelengths, the Planck blackbody spectra assume two simple forms, as
can be easily verified by taking the appropriate limits in Egs. 2.4 and 2.12. At frequencies
v much lower than the peak (i.e., at photon energies hv « kT),

2 2
B, ~ Cizkir (2.18)
or
B, ~ 2ckTr™*. (2.19)

This is called the Rayleigh-Jeans side of the thermal spectrum. At frequencies much higher
than the peak (photon energies hv > kT) the blackbody spectrum falls off exponentially
with frequency as

B, ~ ¢~ (W/kT), (2.20)
or with decreasing wavelength as
B, ~ ¢~ (he/AkT) (2.21)

This is called the Wien tail of the distribution.

2.2 Measurement of Stellar Parameters

2.2.1 Distance

Distances to the nearest stars can be measured via trigonometric parallax. With current
technology, about 100,000 stars have had their distances measured in this way. The motion
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Figure 2.3 Schematic view of the apparent parallax motion of a nearby star, situated
in the direction above the ecliptic plane, due to the Earth’s circular orbit around the
Sun.

of the Earth around the Sun produces an apparent movement on the sky of nearby stars,
relative to more distant stars. Stars in the direction perpendicular to the plane of the
Earth’s orbit (called the ecliptic plane) will trace a circle on the sky in the course of a year
(see Fig. 2.3), whereas stars in the directions of the ecliptic plane will trace on the sky a
line segment that doubles back on itself. In other directions, stars will trace out an ellipse.
The angular size of the semi-major axis of the ellipse will obviously be

(2.22)

with dg the Earth—-Sun distance and d the distance to the star. (The subscript © marks
properties of the Sun—distance, mass, radius, etc.). The distance d,, which is also referred
to as 1 astronomical unit (AU), is about 1.5 x 10® km. Parallax is actually used to define
another unit of length, a parsec (pc). One pcis defined as the distance for which the parallax
is 1 arcsecond (i.e., 1/3600 of a degree of arc, or 7/(180 x 3600) radian). Thus,

1pc=21x10°AU = 3.1 x 10¥cm = 3.3 ly, (2.23)

where we have also expressed a parsec in light years (ly), the distance light travels in
vacuum during a year. A light year is

11y = 365.25 x 24 x 3600 x ¢ = 3.15 x 10" s x 3 x 10"° cm s, (2.24)

[t is convenient to remember that the number of seconds in a year is (by pure coincidence)
close to = x 107. The few nearest stars to the Solar System have distances of about 1 pc.
Most of the stars visible to the naked eye are closer than 100 pc. At larger distances,
convenient units are the kiloparsec (kpc; 10° pc), megaparsec (Mpc; 10° pc), and gigaparsec
(Gpc; 10% pe).
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Apart from the apparent motion of stars due to parallax, stars have real motions relative
to each other, and hence relative to the Sun. Over human timescales, these real relative
motions will generally appear on the sky to have constant velocity and direction. In practice,
therefore, the parallax motion of nearby stars will often be superimposed on a linear proper
motion, producing a curly or wavy trajectory on the sky.

2.2.2 Stellar Temperatures and Stellar Types

As we will see later on, the volume of every star has a range of temperatures, from millions
of degrees Kelvin in its core to only thousands in the outer regions. However, the emitted
spectrum of a star is largely determined by the temperature in the outermost “surface,” or,
more correctly, in its photosphere. The photosphere can be roughly defined as the region
from which photons are able to escape a star without further absorption or scattering (see
Fig. 2.4). As we will see, the scattering and absorption probabilities can have a strong
dependence on the wavelength of the photon, and therefore the depth of the base of the
photosphere can be wavelength dependent.

Material at the base of the photosphere emits approximately a Planck spectrum, which
is then somewhat modified by the cooler, partly transparent, gas above it. By examining
the emerging spectrum, one can then define various temperatures. The color temperature
is the temperature of the Planck function with shape most closely matching the observed
spectrum. For example, if we could identify the position of the peak of the spectrum, we
could use Wien's law to set the temperature. In practice, the peak will often be outside
the wavelength range for which we have data, and furthermore it is a broad feature that
is hard to identify, especially given the modifications by cold absorbing gas above the last
scattering surface.

A more practical variant is to measure the ratio of fluxes at two different wavelengths,
fi(r1)/fa(r2), and to find the temperature of the blackbody that gives such a ratio. Such
a ratio is, in effect, what one always means by color. For example, when we say that the
light from an object (whether intrinsic or reflected) appears, say, “red,” we mean that we
are detecting a larger ratio of red photons to blue photons than we would from an object
that we would call “white.” Color temperature can, of course, also be found by fitting
the Planck spectrum to measurements at more than two wavelengths. Note that a color
temperature cannot be found if all the measurements are well on the Rayleigh-Jeans (i.e.,
low-energy) side of the distribution. On that side the Planck spectrum has the same shape
for all temperatures (f; o« A~* or f, o v?), and hence the ratio of fluxes at two wavelengths
or frequencies will be the same, irrespective of temperature. In such a case we can only
deduce that all our measurements are on the Rayleigh-Jeans side of a Planck spectrum,
and we can set a lower limit on the temperature of the spectrum (see Problem 2).

Another kind of temperature can be associated with the photosphere of a star, by exam-
ining the absorption features at discrete wavelengths in the stellar spectrum. These absorp-
tions are induced by atoms and molecules in the cooler, less dense, gas above the surface
of last scattering. Photons with energies equal to those of individual quantum energy
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Figure 2.4 A photon inside a star is scattered many times until it reaches a radius
from which it can escape. The last scattering surface defines the base of the pho-
tosphere of the star.

transitions of those atoms and molecules will be preferentially absorbed, and therefore
depleted, from the light emerging from the photosphere of the star in the direction of a
distant observer. The same atom or molecule, which will be excited to a higher energy
level by absorbing a photon, can eventually decay radiatively and reemit a photon of the
same energy. However, the reemitted photon will have a random direction, which will
generally be different from the original direction toward the observer. Furthermore, the
atom can undergo collisional deexcitation, in which it transfers its excitation energy to the
other particles in the gas.

The wavelengths and strengths of the main absorption features, or absorption lines as
they are often called, are primarily dependent on the level of ionization and excitation of
the gas. The form of the absorption spectrum therefore reflects mainly the temperature
of the photosphere, and only slightly the photosphere’s chemical composition, which is
actually similar in most stars.

Itis of particular relevance to recall the quantum structure of the hydrogen atom. Hydro-
gen is the simplest atom, and it is therefore useful for understanding how stellar absorp-
tion spectra are produced. Furthermore, most stars are composed primarily of hydrogen;
92% of the atoms, or 75% of the mass, is hydrogen. Almost all of the rest is helium,
and the heavier elements contribute only trace amounts. In fact, this elemental makeup
is typical of almost all astronomical objects and environments, other than rocky planets
like the Earth and some special types of stars. The heavier elements, despite their low
abundances in stars, still play important physical and observational roles, as we will see
later on.

The nth energy level of the hydrogen atom (n = 1 is the ground state) is given by the
Bohr formula,

e*m, 1
th nZ

1
E, = = -136eV—, (2.25)

where e is the electron charge in cgs units (e.s.u.), m, is the electron mass, and % is
Planck’s constant divided by 2. As one goes to higher n, the energy levels become more
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Figure 2.5 Energy levels of the hydrogen atom. Arrows indicate excitation from
the ground state (n = 1) to the first excited energy level (n = 2), and deexcitation
back to the ground state. Such excitation and deexcitation could be caused by, e.g.,
absorption by the atom of a Lyman-« photon, and subsequent spontaneous emission
of a Lyman-« photon.

and more crowded (see Fig. 2.5). When n — o0, 13.6 eV above the ground state, we reach
the “continuum” where E, = 0 and the electron is free, i.e., the atom is ionized. Thus,
absorption of an energy quantum of 13.6 eV, or more, can ionize a hydrogen atom that is
in its ground state. The energy difference between two levels is

1 1
Ep o = 13.6€V (n—% - Z%) . (2.26)
The wavelength! of a photon emitted or absorbed in a radiative transition between two
levels will be

he 911.5 A
Epn 1/n2—1/nd’

(2.27)

A"’h.'lz =

A glass tube in the laboratory filled with atomic hydrogen at low pressure, when excited
by an electrical discharge, will radiate photons at the discrete wavelengths corresponding
to all of these electronic energy transitions. Such a photon spectrum is often called an
emission-line spectrum, and is distinct from the thermal (i.e., blackbody) spectrum emitted
by dense matter.

It is customary to group the different energy transitions of atomic hydrogen by a name
identifying the lower energy level involved in the transition, combined with a Greek letter

! As customary in the astronomical research literature, wavelengths of atomic transitions are cited to four
significant digits, as measured in air at standard temperature and pressure. Since the speed of light is smaller
in air than in vacuum, the wavelengths in vacuum are longer by a factor equal to the index of refraction of air,
1.00028 for optical light.
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that indicates the upper level of the transition. Thus, the Lyman series consists of all
transitions to the n = 1 ground level:

Lyo:2 <> 1,1216 A
LyB:3 < 1,1025 A
Lyy : 4 < 1,972 A
etc.,

up until the Lyman continuum,
Ly, : 00 <> 1,<911.5 A.

Similarly, the Balmer series includes all transitions between the n = 2 state and higher
states:

Ha : 3 < 2,6563 A

HB : 4 < 2,4861 A

Hy :5 < 2,4340 A

etc.,

up until the Balmer continuum,
Baon : 00 < 2, <3646 A.

In the same way, the Paschen series, Brackett series, and Pfund series designate tran-
sitions where n=3, n=4, and n=>5, respectively, are the lower levels. The photon wave-
lengths of the Lyman series are in the ultraviolet (UV) region of the electromagnetic
spectrum, and the Paschen, and higher, series occur at infrared (IR), and longer, wave-
lengths. The Balmer series is of particular interest to us here, as it occurs in the optical
region of the spectrum, where Earth’s atmosphere has a transmission window. The atmo-
sphere is almost completely opaque to photons of wavelengths shorter than 23100 A,
from ultraviolet through X-rays and y-rays. At the infrared wavelengths longer than
10,000 A (1 um), there are only a few transmission “troughs,” until one gets to millimeter
(called microwave) wavelengths and longer, where the atmosphere is again transparent to
radio-frequency electromagnetic radiation.

Early in the 20th century, before stellar physics was understood, stars were classified
into a series of spectral types according to the types and strengths of the absorption lines
appearing in their optical spectra. Figure 2.6 shows examples covering the range of spectral
properties of most stars. Let us begin with A-type stars, the third from the top in the
sequence shown (the meanings of the “5” and of the “V” after the “A” are explained below,
and at the end of this chapter, respectively). Absorption in the hydrogen Balmer series is
the most conspicuous feature in A-star spectra, starting with He at 6563 A, proceeding up
the series to shorter wavelengths, and to the sharp drop at the wavelength of the Balmer
continuum at 3646 A. Moving up in the figure to B-type stars, the hydrogen lines become
weaker, and some other lines, due to absorption by helium, appear. At the top of the
sequence, O stars have only very weak hydrogen Balmer lines, and some additional weak
lines due to singly ionized helium. Working back down along the sequence, in the so-called
F-type stars, the Balmer lines are again weaker than in A stars, but additional lines appear,
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Figure 2.6 Zoom-in on the optical wavelength region of the stellar spectra shown in Fig. 2.1.
The curves are labeled with their spectral types, in addition to the corresponding blackbody
temperatures, which constitute the effective temperatures of the stars. Note the various labeled
absorption features that appear and disappear as one goes from one spectral type to another.
Data credit: R. Kurucz.

and are due to transitions in neutral and singly ionized light metals, mainly calcium,
magnesium, and sodium. Progressing to G stars, the Balmer lines weaken further, while
the absorptions due to metals become stronger. This trend continues in K stars where, in
addition, molecular “bands” begin to appear. Such bands are actually numerous adjacent
absorptions due to individual rotational, vibrational, and electronic quantum transitions
of particular molecules, which have merged into broad absorption troughs. Finally, in M
stars, at the bottom of the sequence, the molecular bands, notably due to TiO (titanium
oxide), become prominent. The absorption bands seen in the M-star spectrum between
6600 and 8600 A are mainly due to this molecule.

The names assigned to the different spectral types have a historical origin and no physical
significance. However, the order in which they appear in Fig. 2.6 is one of temperature,
with the hottest stars at the top and the coolest at the bottom. This is apparent at once by
considering the colors of the stars. The O and B stars are clearly blue, with their spectra
rising toward the shorter UV wavelengths of the peak of the blackbody spectrum. The
A, F, and G stars become progressively “whiter.” The K and M stars are clearly red, with
their peak emission shifted to the infrared. The optical wavelength range shown probes
the beginning of the Wien tail of the Planck function approximating these red stars.

Once the stars are ordered by temperature, the different absorption-line spectra can be
understood as arising simply from the differences in the temperatures of the photospheres.
In the cooler stars, the hydrogen atoms, which make up most of the cool gas above
the last scattering surface, are almost all in their ground states. Among the photons in
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the emerging beam, only Lyman-series photons, in the UV range, can therefore be ab-
sorbed out by the hydrogen atoms, while optical photons emerge through the photosphere
unhindered by the hydrogen. The metal atoms, though they exist only in trace amounts,
do have energy-level transitions corresponding to optical-wavelength photons, and hence
these atoms have high probabilities for absorbing photons. Thus, they leave a strong
imprint on the spectrum, despite their rarity compared with hydrogen.

Going to warmer stars, frequent collisions between atoms in the photosphere cause a
nonnegligible fraction of the hydrogen atoms at any given time to be in the first excited
(n = 2) energy state. Now the optical photons with the Balmer-transition energies can be
absorbed out of the energing light by the hydrogen atoms, thereby exciting the hydrogen
atoms to higher levels, or ionizing them when the photon wavelengths are less than 3646 A.
In the hottest stars, the temperature in the photosphere is high enough that almost all of
the hydrogen is ionized (as are the metal atoms). The photosphere then becomes trans-
parent again to photons with the energies of the Balmer transitions, which have a low
probability of being absorbed. Models of stellar atmospheres can be calculated, taking
into account the detailed atomic physics and the passage of radiation through the gas, for
a range of physical conditions, specifically the temperature. (In fact, the stellar spectra
shown in Figs. 2.1 and 2.6 are theoretical models calculated by Kurucz.) Such theoretically
calculated absorption spectra can be compared to the actual spectrum of a given stellar
type, and thus the photospheric temperature can be accurately determined.

Generations of astronomy students have memorized the names of the stellar spectral
types, ordered by decreasing temperature, with the mnemonic: “Oh Be A Fine Girl/Guy,
Kiss Me!” There is a continuous transition in spectral properties between types, and
astronomers quantify this by assigning, after the letter, a number between 0 and 9, with a
larger number indicating a lower temperature. The Sun is a G2 star, and its spectrum is
largely indistinguishable from that of any other normal star of this type. As we will see, all
of the main physical properties (mass, radius, luminosity) of the stars sharing a common
spectral classification are the same. For completeness, we note that the spectral sequence
extends beyond M stars to two cooler classes, labeled L and T. Strictly speaking, members
of these classes are not stars but brown dwarfs, objects intermediate between stars and
giant planets in their properties. We return to brown dwarfs in section 4.2.3.4.

2.2.3 Luminosity and Radius

For a star with known distance and measured flux, the luminosity is

L= f4nd*. (2.28)
This luminosity, integrated over all wavelengths, is called the bolometric luminosity. If the
temperature of the stellar photosphere is known, one can then derive the stellar radius,
r., from

L=4nrioT*. (2.29)

Alternatively, if L and r, are known and one determines a temperature from this relation,
then this temperature is called the effective temperature, Tr. The radius of the Sun is
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ro = 7.0 x 10'° cm. As will be explained in more detail in section 2.2.4, below, stars that
are members of a particular type of binary system, called double-lined spectroscopic eclipsing
binaries, can have their radii measured. Of order 100 stars currently have such radius
measurements, which are accurate to a few percent or better. The radii of a few other nearby
stars have been measured, in some cases to better than 1% accuracy, using interferometric
observations.

2.2.4 Binary Systems and Measurements of Mass

A direct measurement of stellar mass is generally possible only in certain binary (i.e.,
double) or multiple star systems. A significant fraction of all stars are members of binary
systems. (The Sun is likely an example of a single star.) Observationally, binary systems
are classified into various types. Visual binaries are pairs of stars in which both members
are resolved individually, and may be seen orbiting their common center of mass. In most
cases, the separation between the members is so large that the orbital period is very long
by human timescales. In astrometric binaries, one observes the minute periodic motion
on the sky of one member, as it orbits the system’s common center of mass, even if the
companion is too faint to be seen. In eclipsing binaries, the orbital plane of a pair (which,
in general, is spatially unresolved) is inclined enough (i.e., close enough to edge-on) to
our line of sight that each of the members periodically eclipses the other. The presence
of a binary will then be revealed if the light from the system is monitored as a function
of time. During each orbital period, the brightness of the system will undergo two “dips”
(see Fig. 2.7), each corresponding to the eclipse of one star by the other. The depth of the
dips will depend on the relative sizes and luminosities of the two stars.

A spectroscopic binary is a spatially unresolved pair that is revealed as a binary by its
spectrum. For example, the observed photospheric absorption spectrum may be the super-
position of the spectra of two different types of stars. Alternatively, even if the members
are of the same type, their orbital velocities, v, may cause large enough Doppler shifts,
AXL/L = v/c, in the wavelengths of absorption, to produce distinct lines, with shifts that
oscillate periodically during each orbit (see Fig. 2.8). Sometimes, one of the members
may be too faint, or devoid of strong absorption lines, to be detectable in the combined
spectrum, but its presence will still be revealed by the periodically changing Doppler shifts
of the brighter star. In fact, this is the very method by which planets orbiting other stars
have been discovered in recent years (see below).

To see how binaries sometimes allow stellar mass determination, let us review some
aspects of the Keplerian two-body problem, in which two masses orbit their common
center of mass in elliptical trajectories. For simplicity, let us consider only circular orbits.
The center of mass of two spherical masses is at the point between them where

rnM; =nM,, (2.30)

with M; and M, being the masses and r; and r, their respective distances to the center of
mass (see Fig. 2.9, left). Thus, if a = r; + r; is the separation between the masses,

M
n= ﬁj(“ — ) (2.31)
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Figure 2.7 Schematic view of an eclipsing binary system (left), and its total brightness as a function
of time (right). Numbers indicate the corresponding points on the orbit and in the so-called “light
curve.”
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Figure 2.8 Schematic example of the spectrum of a double-lined spectroscopic
binary. Each of the absorption lines in the spectrum appears twice, Doppler-shifted
to longer and shorter wavelengths, respectively, as a result of the orbital motion
of the binary members about their center of mass. During the orbital period, each
absorption line oscillates back and forth about the restframe wavelength 1¢.

ry r

Figure 2.9 Lefi: A binary system, viewed pole-on, with its members in circular
orbits with physical radii r; and r; around their common center of mass. Right:
The appearance of the system when viewed as a visual binary, with the orbital
plane inclined by an angle i to the line of sight, and orbital radii subtending angles
on the sky 61 and 6;. The circular orbits now appear as ellipses, with minor axes
foreshortened by cos i.

or
M
ne M, (2.32)
M, + M;
and
M
n=-—a. (2.33)
M+ M,
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Each of the masses is subject to the mutual gravitational attraction, and as a result orbits

the center of mass with an angular frequency w. The equation of motion for the first mass

is then

GM 1M,
a2

M’ = , (2.34)

with G the gravitational constant. After substitution of r; from Eq. 2.32, this becomes
Kepler’s law:

w = ——7.
a3

(2.35)

A simple example in which Kepler’s law can be used to determine a stellar mass is in the
case of the Sun. The mass of the Earth is negligible compared to the Sun, so
w'a®  4n’a’

M., ~ = ,
2 G 2G

(2.36)

where 1 = 27 /w is the orbital period, i.e., 1 year. In cgs units the mass of the Sun is then

4 x 72(1.5 x 10" cm)?
M@ =
(3.15 x 107 5)2 x 6.7 x 1078 erg cm g2

=2.0x10¥g. (2.37)

In a visual binary, we can measure directly on the sky the angular separations 6; and 6,
between each star and the common center of mass that they orbit. The perpendicular to
the plane of the orbit will generally be inclined to our line of sight by some angle i, and
as a result the circular orbits will appear projected on the sky as ellipses. If we can follow
a good part of an entire orbit, this will not constitute a problem, as the semi-major axes
of the ellipses will correspond to the angular radii of the deprojected circular orbits (see
Fig. 2.9, right). Since both stars are at the same distance d from us, the ratio of the angles
gives the ratio of the stellar masses:

6d rn M

_ = — ==, 2.38
gzd [®) M1 ( )

Given the distance (which allows deriving the physical separation a) and the observed
period, Kepler’s law yields M; + M;. Together with Eq. 2.38, we can solve for M; and M,
individually.

In spectroscopic binaries, we cannot measure directly the separations a, r;, and r,.
Instead, we can use the amplitudes of the oscillations in line-of-sight velocities deduced
from the Doppler shifts. Because the perpendicular to the orbital plane is inclined to the
line of sight by an angle i (see Fig. 2.10), the Doppler velocity amplitudes we measure will
be related to the true orbital velocity amplitudes by

[Viobs| = |va]sini, |vaobs| = |v2] sini. (2.39)

But since

2 21
nl=—— Inl=——7, (2.40)
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Figure 2.10 Lefi: A spectroscopic binary system with circular orbits and with orbital plane inclined
byan angle i to the line of sight. Right: Observed velocity of each of the components, as deduced from
the Doppler shift of its spectral features, as a function of time. Negative velocities are approaching
and positive are receding. Numbers indicate the corresponding points on the orbits and in the
so-called radial-velocity curve.

then

IVlobs| _ r_I _ %

. (2.41)
[vaobs| T2 M

Replacing, in Kepler’s law, a with r; + r,, and using Egs. 2.39 and 2.40 to express r; and r,,

we obtain

T(Ivlobsl + ]V20b5|)3
2n G

We see that in spectroscopic binaries the inclination of the orbits is an additional

(M1 + My)sin’® i = (2.42)

unknown variable that enters the mass determination. In such systems, we will there-
fore be able to determine the stellar masses only up to a factor sin’ i. An exception to this
is the case of eclipsing spectroscopic binaries. There, the fact that the members of a pair
eclipse each other implies i must be close to 90°, and the individual masses can therefore
be found. Indeed, in such systems, one can use the detailed shape of the light curve of the
eclipse (e.g., Fig. 2.7), combined with the known relative velocity of the two stars as they
pass one in front of the other, to deduce the physical radii of the two stars (see Problem 5),
as well as the precise value of i.

In many spectroscopic binaries, the spectrum of only one star is detected, due to the
faintness of the secondary object, M,. The presence of a companion is deduced solely from
the periodic velocity oscillations in the spectral lines of one star, say, M;. In this case, we
can use Eq. 2.41 to express the unmeasured |vyops/, giving

| viobs|} (1 + M1/M;)?

M M,)sin’i = 2.43
(M1 + M) sin” 1 e (2.43)
or
M23 .3 TlvlobsP
. . — Z\Vighel 2.44
M+ M2 T T2nG =4

and there is now only one equation for three unknowns, M;, M;, and sin i.
An important case is when M, < M;, where Eq. 2.44 simplifies to

Mzsini%( ‘ )1/3|v10b5| M3, (2.45)
27G 4
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Figure 2.11 Observed radial velocity curve (i.e., line-of-sight velocity vs. time) for the nearby
(250 pc) star HD209458, revealing the presence of a planetary companion that causes the
star to orbit around the common center of mass. Using Eq. 2.45, and assuming the
parent star has a mass M1 = 1.1Mg (based on its observed spectral type), the amplitude
(86 m s~ 1) and period (3.5 days) of the observed velocity oscillations indicate a planet mass
M, = 0.7M;/ sini, where M is one Jupiter mass. The orbital radius is 0.05 AU. In this par-
ticular system, a periodic 1.5% amplitude eclipse of the star’s flux has also been detected,
due to the transit of the planet across the face of the star, indicating sin i ~ 1. Data credit:
T. Mazeh et al. 1999, Astrophys. J., 532, L55.

This case applies to searches for extrasolar planets, by means of the small wobble a planet
induces on its parent star. The parent star’s mass, M;, needs to be estimated by some
other means, normally by identifying its spectral type. We can calculate from Eq. 2.45
the expected amplitude of the velocity oscillations of, say, a 1M, star that is orbited by a
Jupiter-mass (1072 M) planet at a radius of 1 AU:

ol ~ Mysimi ;2 ()™
1% o Ssint
lobs 2 1 ITC

3.15 x 107 R
2w x 6.7 x 1078 cgs

=31ms !, (2.46)

=107 x2x 102 g x (2 x 10¥ g3 (

where we have assumed sin i &~ 1. (Here and henceforth, we abbreviate with “cgs” the units

of the gravitational constant G, erg cm gr—2

.) Such a velocity produces a tiny Doppler shift
in the star’s spectral lines, of AA/A = v/c = 1077. Nevertheless, sensitive spectroscopic
techniques have been developed for this purpose, and hundreds of extrasolar planets have
been discovered, and their masses determined (in most cases to an unknown factor sin i)
in this way. Figure 2.11 shows an example. These extrasolar planets indeed have masses of
order that of Jupiter, but are sometimes in orbits with periods of just a few days, indicating

orbital radii of a few hundredths of an AU.
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In reality, many binary systems are in elliptical, rather than circular orbits. Two addi-
tional parameters are then required to describe the problem—the eccentricity of the orbit
and the orientation angle of the ellipse in the orbital plane, as viewed from our vantage
point. However, these parameters can be determined from the data (e.g., from the shape
of the orbit on the sky, or from the functional form of the radial-velocity curve of each
component, or from asymmetries in the timing and duration of primary and secondary
eclipses). The essential possibilities and limitations of stellar mass determination we have
found above for various types of binaries, assuming circular orbits, hold also for binaries
with elliptical orbits.

2.3 The Hertzsprung-Russell Diagram

A crucial step toward understanding stellar physics was taken in 1911 independently
by two astronomers, Hertzsprung and Russell, who placed measurements of stars on a
logarithmic plot with axes of luminosity and effective surface temperature.? Figure 2.12
shows an example of such an H-R diagram. Note that temperature is traditionally shown
growing to the left on such a plot. Almost all known stars are concentrated in several
well-defined loci on such a diagram. About 80-90% of all stars (depending on what stellar
environment one looks at) lie in a narrow diagonal strip called the main sequence, which
corresponds very roughly toarelation L ~ T§. Since the luminosity of a spherical blackbody
radiator is

L=4nric Ty, (2.47)

this immediately implies that hotter stars are bigger, with r, ~ TZ. The Sun is a main
sequence star. Since the coolest stars have about half the surface temperature of the Sun
and the hottest stars have about 5 times the solar temperature, the radii of main-sequence
stars are in the range of about 1/4 to 25 times the solar radius.

Two other stellar loci are apparent on the H-R diagram. There is a concentration of points
corresponding to stars that are cool (i.e., red) yet with luminosities orders of magnitudes
higher than those of main sequence stars. Clearly, these must be objects with large surface
areas, with radii of order 100 times the solar radius, i.e., ~108 km, or about 1 AU. Accord-
ingly, such stars are named red giants. In the lower left part of the diagram there is another
sequence of points, corresponding to stars that are quite hot (i.e., white to blue), yet with
luminosities that are orders of magnitude smaller than those of main sequence stars with
such temperatures. These must be stars with much smaller radii, of order 10* km (i.e., of
the order of the Earth’s radius, 6400 km), and they are therefore labeled white dwarfs.

In terms of physical meaning, it was originally speculated (incorrectly) that the main
sequence is a cooling sequence, in which stars are born hot and then move along the
sequence as they cool. (This led to the confusing terminology, sometimes still used today,

2 Historically, what was first plotted was the fluxes from stars that are in a cluster, and hence all at the same
distance, and their colors.



28 | Chapter 2

106 - % T~ .
— ® e o ° T~ — * o e, °
© 104 L e =" . .
— %o, ® ~ -
- -~ <
2 102 L =~ J}:: $3 S
R e’ *® glants
o
g 1 L
§ - sequence
— 10'2 — ~~ ~
g,
- h - S
104 - white dwarfs ™~ _
Il 1 | | >
40000 20000 10000 5000 2500

Temperature [K]

Figure 2.12 Schematic example of an H-R diagram, showing stellar luminosity
vs. effective surface temperature. Note that the axes are logarithmic and that the
temperature grows to the left. The dashed lines show the luminosity temperature
relation, L = 4w rio TE' , for objects of constant radius. The three lines correspond,
from top to bottom, to ry = 100rg, e, and 0.01rg.

of “early-type” stars for O and B spectral types and “late-type” stars for FGKM. Main-
sequence stars are sometimes also called dwarfs, to distinguish them from giant stars, a
potential source for additional confusion.) However, as mass measurements for stars that
are members of binaries became available, it became clear that the main sequence is a mass
sequence, with high-mass stars at high luminosities and high effective temperatures, and
low-mass stars at low luminosities and low effective temperatures. The range of masses on
the main sequence is between ~0.1 and ~100M. The luminosity as a function of mass
goes as L ~ M“, with o & 3 for stars more massive than the Sun and @ = 5 for the less
massive stars. Red giants, despite their large luminosities, turn out to have masses usually
in the range 1-2M. White dwarfs generally have masses similar to that of the Sun, or
lower, and are never more massive than 1.4M.

As we will see, a star spends most of its lifetime at the same location on the main
sequence. This is the period during which nuclear hydrogen burning takes place in the
stellar core. The processes that occur, once most of the hydrogen in the core has been
synthesized into helium, lead to a large, but short-lived, increase in luminosity and an
expansion of the star’s outer layers, which is observed as the giant-star phase of stellar
evolution. Stars that begin their lives with less than about 8 M, eventually shed their
outer layers and become white dwarfs—compact remnants of the original stellar core.
White dwarfs are devoid of energy-producing nuclear reactions, and slowly radiate away
their fossil heat. Stars more massive than about 8 M, after passing through the giant
stage (where they are called red or blue supergiants because of their large luminosities—
these are the stars near the top edge of the H-R diagram)—undergo a runaway process
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of gravitational core collapse that ends (at least in some cases) in a supernova explosion.
The stellar remnants in these cases are neutron stars and black holes. Compared to white
dwarfs, neutron stars are even hotter (by an order of magnitude) and more compact (by
three orders of magnitude in radius), and hence less luminous (by two orders of magni-
tude). They are not generally plotted on an H-R diagram; only a handful of isolated neutron
stars (i.e., neutron stars not in binary systems or not still inside the debris of the super-
nova explosions that created them) have been detected optically, owing to their extreme
faintness.

A final note on nomenclature: apart from their spectral types (B0, A5, G2, etc.), stars are
divided into luminosity classes, which are labeled by Roman numerals going from [ to V,
with decreasing luminosity. Classes I to IV are giants, and V designates main sequence
stars. Thus, the Sun is a G2V star. White dwarfs have their own classification system, with
spectral type names beginning with a capital D.

Problems

1. a. If the Sun subtends a solid angle < on the sky, and the flux from the Sun just above
the Earth’s atmosphere, integrated over all wavelengths, is f(dg), show that the flux
at the solar photosphere is 7f(dg)/ 2.
b. The angular diameter of the Sun is 0.57 degree. Calculate the solid angle subtended
by the Sun, in steradians.
Answer: Q = 7.8 x 107>,
c. The solar flux at Earth is

fldo) =14 x10°ergs™ cm™ = 1.4 kW m™2,

Use (b), and the Stefan-Boltzmann law, to derive the effective surface temperature of
the Sun.
Answer: Tg = 5800 K.
d. Derive an expression for the surface temperature of the Sun, in terms only of its
solid angle, its flux per unit wavelength f, (1) at Earth at one wavelength 4,, and
fundamental constants.

2. a. Show that, if the ratio of the blackbody fluxes from a star at two different frequencies
(i.e., a color) is measured, then, in principle, the surface temperature of the star can
be derived, even if the star’s solid angle on the sky is unknown (e.g., if it is too distant
to be spatially resolved, and its distance and surface area are both unknown).

b. Explain why it will be hard, in practice, to derive the temperature measurement if both
frequencies are on the Rayleigh-Jeans side of the blackbody curve, hv « kT.

c. For the case that both measurements are on the Wien tail of the blackbody curve,
hv > kT, derive a simple, approximate, expression for the temperature as a function
of the two frequencies and of the flux ratio at the two frequencies.
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d.

If, in addition to the flux ratio in (c), a parallax measurement and the total flux (inte-
grated over all frequencies) at Earth are available, show that the star’s radius can be
derived.

3. If parallax can be measured with an accuracy of 0.01 arcsecond, and the mean density
of stars in the solar neighborhood is 0.1 pc~3, how many stars can have their distances

measured via parallax?
Answer: 4.2 x 10°.

4. The maximal radial velocities measured for the two components of a spectroscopic binary
are 100 and 200 km s, with an orbital period of 2 days. The orbits are circular.

a.
b.

Find the mass ratio of the two stars.

Use Kepler's law (Eq. 2.42) to calculate the value of M sin® i for each star, where M is
the mass and i is the inclination to the observer’s line of sight of the perpendicular to
the orbital plane.

Answer: 3.7Ms and 1.8M,.

Calculate the mean expectation value of the factor sin’i, i.e., the mean value it would
have among an ensemble of binaries with random inclinations. Find the masses of
the two stars, if sin®i has its mean value.

Hint: In spherical coordinates, (6, ¢), integrate over the solid angle of a sphere where
the observer is in the direction of the z axis, with each solid angle element weighted
by sin’6.

Answers: 3/16 = 0.59; 6.3M and 3.TM,.

5. In an eclipsing spectroscopic binary, the maximal radial velocities measured for the two

components are 20 and 5 km s, The orbit is circular, and the orbital period is P = 5yr.

It takes 0.3 day from the start of the eclipse to the main minimum, which then lasts 1 day.

a. Find the mass of each star. Since the binary is of the eclipsing type, one can safely

approximate i & 90°. Check to what degree the results are affected by small deviations
from this angle, to convince yourself that this is a good approximation.
Answers: My = 2.3Mg, M; = 0.58 M.

. Assume again i = 90° and find the radius of each star. Is the result still insensitive to

the exact value of i?
Answers: n = 2.0rg, r, = 0.46r,.



3 Stellar Physics

In this chapter, we obtain a physical understanding of main-sequence stars and of their
properties, as outlined in the previous chapter. The Sun is the nearest and best-studied
star, and its properties provide useful standards to which other stars can be compared.
For reference, let us summarize the measured parameters of the Sun. The Earth-Sun

distance is

do = 1.5 x 10* km = 1 AU. (3.1)
The mass of the Sun is

Mg =2.0x 10" g. (3.2)
The radius of the Sun is

ro = 7.0 x 10" cm. (3.3)

Using the mass and the radius, we can find the mean density of the Sun,

M, = 3x2x107g
inRE 4w x (7 x 101 cm)?

o= =14gcm . (3.4)

The Sun’s mean density is thus not too different from that of liquid water. The bolometric
Solar luminosity is
Lo =38 x 10¥ ergs™. (3.5)

When divided by 47d2, this gives the Solar flux above the Earth’s atmosphere, sometimes
called the solar constant:

fo=14x10ergs'em™? = 1.4 kW m™>. (3.6)
The effective surface temperature is

Tro = 5800 K. (3.7)
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From Wien’s law (Eq. 2.16), the typical energy of a solar photon is then 1.4 eV. When the
energy flux is divided by this photon energy, the photon flux is

1.4 x 10°erg s~ em™

1.4eV x 1.6 x 1072 ergeV™!

foph & =63 x 10" s 'em™2 (3.8)

(where we have converted between energy units using 1 eV=1.6 x 107? erg).
From radioactive dating of Solar System bodies, the Sun’s age is about

to = 4.5 x 107 yr. (3.9)
Finally, from a solution of the stellar models that we will develop, the central density and

temperature of the Sun are

pe =150 gcm?, (3.10)
T. =15 x 10°K. (3.11)

3.1 Hydrostatic Equilibrium and the Virial Theorem

A star is a sphere of gas that is held together by its self gravity, and is balanced against
collapse by pressure gradients. To see this, let us calculate the free-fall timescale of the
Sun, i.e., the time it would take to collapse to a point, if there were no pressure support.
Consider a mass element dm at rest in the Sun at a radius r,. Its potential energy is

B GM(rp)dm
o ’

dU = (3.12)

where M(rp) is the mass interior to rp. From conservation of energy, the velocity of the
element as it falls toward the center is

1/dr\* GM(r) GM(r)
2\ dt N r o ’

(3.13)

where we have assumed that the amount of (also-falling) mass interior to ry remains
constant. Separating the variables and integrating, we find

- 0 1 1\7-2
TH:L alt:—[rO I:ZGM(rO)(;_T_o)jI dr
B rg /2 a1 5 1/2
“Ga) [ (755) .

The definite integral on the right equals 7/2, and the ratio M(ry)/r;, up to a factor 47/3,
is the mean density p, so

S . 3.15
5= \%2@5/) (3:15)
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P+dP

Figure 3.1 Hydrostatic equilibrium. The gravitational force Fgr on a mass element
of cross-sectional area A is balanced by the force AdP due to the pressure difference
between the top and the bottom of the mass element.

For the parameters of the Sun, we obtain

3T W
_ = 1800 s. 3.16
e (32 x 6.7 x10"8cgsx 14g Cm_3) ) ( )

Thus, without pressure support, the Sun would collapse to a point within half an hour.

This has not happened because the Sun is in hydrostatic equilibrium. Consider now a
small, cylinder-shaped mass element inside a star, with A the area of the cylinder’s base,
and dr its height (see Fig. 3.1). If there is a pressure difference dP between the top of the
cylinder and its bottom, this will lead to a net force Adp on the mass element, in addition
to the force of gravity toward the center. Equilibrium will exist if

—M _AdP=0. (3.17)
.
But
dm = p(r)Adr, (3.18)

which leads us to the first equation of stellar structure, the equation of hydrostatic equi-
librium:

dP(r) _ GM(r)p(r)
dr 2

(3.19)

Naturally, the pressure gradient is negative, because to counteract gravity, the pressure
must decrease outward (i.e., with increasing radius.)

This simple equation, combined with some thermodynamics, can already provide
valuable insight. Let us multiply both sides of Eq. 3.19 by 4 r’dr and integrate from
r = 0 to r,, the outer radius of the star:

Tx Ty 2
[ P L W f CiEr (3.20)
0 dr 0 r
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The right-hand side, in the form we have written it, is seen to be the energy that would
be gained in constructing the star from the inside out, bringing from infinity shell by
shell (each shell with a mass dM(r) = p(r)4rrdr). This is just the gravitational potential
self-energy of the star, Eg;. On the left side, integration by parts gives

[P(r)4mr®]; — 3 f " pr)anridr. (3.21)
0

We will define the surface of the star as the radius at which the pressure goes to zero. The
first term is therefore zero. The second term is seen to be —3 times the volume-averaged
pressure, P, up to division by the volume V of the star. Equating the two sides, we
obtain

_ 1E
P=—=-F (3.22)
3V

In words, the mean pressure in a star equals minus one-third of its gravitational energy
density. Equation 3.22 is one form of the so-called virial theorem for a gravitationally bound
system.

To see what Eq. 3.22 implies, consider a star composed of a classical, mono-atomic,
nonrelativistic, ideal gas of N identical particles.! Atevery point in the star the gas equation
of state is

PV = NkT, (3.23)

and its thermal energy is

Ew = INKT. (3.24)
Thus,
2 Eth
P=-—, 2
3V (3-25)

i.e., the local pressure equals 2/3 the local thermal energy density. Multiplying both sides
by 47 r? and integrating over the volume of the star, we find that

PV = ZE¥, (3.26)

with Ef* the total thermal energy of the star. Substituting from Eq. 3.22, we obtain

E:ﬁt = __& (3-27)

! Classical means that the typical separations between particles are larger than the de Broglie wavelengths of
the particles, A = h/p, where p is the momentum. Nonrelativistic means that the particle velocities obey v <« ¢ . An
ideal gas is defined as a gas in which particles experience only short-range (compared to their typical separations)
interactions with each other—billiard balls on a pool table are the usual analog.
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which is another form of the virial theorem. Equation 3.22 says that when a star contracts
and loses energy, i.e., its gravitational self-energy becomes more negative, then its thermal
energy rises. This means that stars have negative heat capacity—their temperatures rise
when they lose energy. As we will see, this remarkable fact is at the crux of all of stellar
evolution.

A third form of the virial theorem is obtained by considering the total energy of a star,
both gravitational and thermal,

E
Eiotal = EX' + By = —E = % (3.28)

Thus, the total energy of a star that is composed of a classical, nonrelativistic, ideal gas
is negative, meaning the star is bound. (To see what happens in the case of a relativistic
gas, solve Problem 1.) Since all stars constantly radiate away their energy (and hence
Eiotal becomes more negative), they are doomed to collapse (Eg becomes more negative),
eventually. We will see in chapter 4 that an exception to this occurs when the stellar gas
moves from the classical to the quantum regime.

We can also use Eq. 3.22 to get an idea of the typical pressure and temperature inside a
star, as follows. The right-hand side of Eq. 3.20 permits evaluating E,, for a choice of p(r).
For example, for a constant density profile, p = const.,

"~ GM 4 Zd T G4_7!'r3 24 err 3 GMZ
Egr _ —[ (r)p(r) Tr-ar _ _f 3 PT4aTT * ) (329)
0 0

r r 5 r,

A density profile, p(r), that falls with radius will give a somewhat more negative value of Eg,.
Taking a characteristic Eg; ~ —GM?/r, we find that the mean pressure in the Sun is

2 2
GM2  GM?

3 - 4
Trare 4drrg

3 1
O~_4
33

~ 10" dyne cm ™ = 10%atm. (3.30)

To find a typical temperature, which we will call the virial temperature, let us assume
again a classical nonrelativistic ideal gas, with particles of mean mass m. Equation 3.27
then applies, and

1GM}  1GMyNm

3
_NkTvir =
2 2 rg 2 o

(3.31)

The mass of an electron is negligibly small, only 221/2000 compared to the mass of a proton.
For an ionized hydrogen gas, consisting of an equal number of protons and electrons, the
mean mass m,

m = ,
2 2

(3.32)

is therefore close to one-half the mass of the proton or exactly one-half of the hydrogen
atom, my = 1.7 x 107%* g. The typical thermal energy is then
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- GMomy 6.7 x10%cgs x2x10¥ gx 1.7 x 107%* g
. 6ro 6 x 7 x 1010 cm

=5.4x 10" erg = 0.34 keV. (3.33)

Withk = 1.4 x 107 ®erg K™! = 8.6 x 107> eV K™}, this gives a virial temperature of about
4 x 10° K. As we will see, at temperatures of this order of magnitude, nuclear reactions
can take place, and thus replenish the thermal energy that the star radiates away, halting
the gravitational collapse (if only temporarily).

Of course, in reality, just like P(r), the density p(r) and the temperature T(r) are also
functions of radius and they grow toward the center of a star. To find them, we need to
define additional equations. We will see that the equation of hydrostatic equilibrium is
one of four coupled differential equations that determine stellar structure.

3.2 Mass Continuity

In the hydrostatic equilibrium equation (Eq. 3.19), we have M(r) and p(r), which are easily
related to each other:

dM(r) = p(r)4mridr, (3.34)
or
dM
dr(r) — 4xrtp(r). (3.35)

Although this is, in essence, merely the definition of density, in the context of stellar
structure this equation is often referred to as the equation of mass continuity or the
equation of mass conservation.

3.3 Radiative Energy Transport

The radial gradient in P(r) that supports a star is produced by a gradient in p(r) and T(r).
In much of the volume of most stars, T(r) is determined by the rate at which radiative
energy flows in and out through every radius, i.e., the luminosity L(r). To find the equation
that determines T(r), we need to study some of the basics of radiative transfer, the passage
of radiation through matter. In some of the volume of some stars, the energy transport
mechanism that dominates is convection, rather than radiative transport. We discuss con-
vection is section 3.12. Energy transport by means of conduction plays a role only in dense
stellar remnants—white dwarfs and neutron stars—which are discussed in chapter 4.
Photons in stars can be absorbed or scattered out of a beam via interactions with
molecules, with atoms (either neutral or ions), and with electrons. If a photon traverses a
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Figure 3.2 A volume element in a field of targets as viewed in perspective (left).
The target number density is », and each target presents a cross section o. From
the base of the cylindrical volume, ndx targets per unit area are seen in projection
(right). A straight line along the length of the volume will therefore intercept, on
average, no dx targets.

path dx filled with “targets” with a number density n (i.e., the number of targets per unit
volume), then the projected number of targets per unit area lying in the path of the photon
is ndx (see Fig. 3.2). If each target poses an effective cross section? o for absorption or
scattering, then the fraction of the area covered by targets is o ndx. Thus, the number of
targets that will typically be intersected by a straight line traversing the path dx, or, in other
words, the number of interactions the photon undergoes, will be

# of interactions = nodx. (3.36)

Equation 3.36 defines the concept of cross section. (Cross section can be defined equiva-
lently as the ratio between the interaction rate per target particle and the incoming flux of
projectiles.) Setting the left-hand side equal to 1, the typical distance a photon will travel
between interactions is called the mean free path:

I=—. (3.37)

More generally, the stellar matter will consist of a variety of absorbers and scatterers, each
with its own density n; and cross section o;. Thus,

SN S 3.38

_Zn;cn—px’ (3-38)
where we have used the fact that all the particle densities will be proportional to the mass
density p, to define the opacity «. The opacity obviously has cgs units of cm? g~!, and will

depend on the local density, temperature, and element abundance.

!

We will return later to the various processes that produce opacity. However, to get
an idea of the magnitude of the scattering process, let us consider one of the important
interactions—Thomson scattering of photons on free electrons (see Fig. 3.3).

2 The cross section of a particle, which has units of area, quantifies the degree to which the particle is liable
to take part in a particular interaction (e.g., a collision or a reaction) with some other particle.
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Figure 3.3 Thomson scattering of a photon on a free electron.

The Thomson cross section is

8t [ & \° ok
or=>3\"=) = 6.7 x 1077 cm*. (3.39)

Itis independent of temperature and photon energy.’ In the hot interiors of stars, the gas is
fully ionized and therefore free electrons are abundant. If we approximate, for simplicity,
that the gas is all hydrogen, then there is one electron per atom of mass my, and

Me N —. (3.40)

The mean free path for electron scattering is then

1 My 1.7x 107 g

e

les =

~~ 2 ~ 2 , 3.41
neor por l4gem—3 x 6.7 x 1072 cm? o (sl

where we have used the mean mass density of the Sun calculated previously. In reality,
the density of the Sun is higher than average in regions where electron scattering is the
dominant source of opacity, while in other regions other processes, apart from electron
scattering, are important. As a result, the actual typical photon mean free path is even
smaller, and is | & 1 mm.

Thus, photons can travel only a tiny distance inside the Sun before being scattered
or absorbed and reemitted in a new direction. Since the new direction is random, the
emergence of photons from the Sun is necessarily a random walk process. The vector D
describing the change in position of a photon after N steps, each described by a vector I;
having length | and random orientation (see Fig. 3.4), is

D=hL+L+L+ - +Iy. (3.42)
The square of the linear distance covered is

D? = L2+ LR+ -+ g +20; L+ Dy -, (3.43)
and its expectation value is

(D?) = NI2. (3.44)

3 Note the inverse square dependence of the Thomson cross section on the electron mass. For this reason,
protons and nuclei, which are much heavier, are much less effective photon scatterers. Similarly, the relevant
mass for electrons bound in atoms is the mass of the entire atom, and hence bound electrons pose a very small
Thomson scattering cross section.
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Figure 3.4 The net advance of a photon performing a random walk consisting of N
steps, each decribed by a vector 1;, is the vector D.

The expectation value of the term in parentheses in Eq. 3.43 is zero because it is a sum
over many vector dot products, each with a random angle, and hence with both positive
and negative cosines contributing equally. The linear distance covered in a random walk
is therefore

(D)2 =D=+/NI. (3.45)

To gain some intuition, it is instructive to calculate how long it takes a photon to travel
from the center of the Sun, where most of the energy is produced, to the surface.* From
Eq. 3.45, traveling a distance rg will require N = r2/I? steps in the random walk. Each
step requires a time I/c. Thus, the total time for the photon to emerge from the Sun is

b2 1} (7 x 10'° cm)?
T A e
™o e 1071cm x 3 x 1019 cm s—!
= 1.6 x 10" s = 52,000 yr. (3.46)

Thus, if the nuclear reactions powering the Sun were to suddenly switch off, we would
not notice® anything unusual for 50,000 years.

With this background, we can now derive the equation that relates the temperature
profile, T(r), to the flow of radiative energy through a star. The small mean free path of
photons inside the Sun and the very numerous scatterings, absorptions, and reemissions
every photon undergoes reaffirms that locally, every volume element inside the Sun radi-
ates as a blackbody to a very good approximation. However, there is a net flow of radiation
energy outwards, meaning there is some small anisotropy (a preferred direction), and

*In reality, of course, it is not the same photon that travels this path. In every interaction, the photon can
transfer energy to the particle it scatters on, or distribute its original energy among several photons that emerge
from the interaction. Hence, the photon energy is strongly “degraded” during the passage through the Sun.

> In fact, even then, nothing dramatic would happen. As we will see in section 3.9, a slow contraction of the
Sun would begin, with a timescale of ~107 yr. Over ~10° yr, the solar radius would only shrink by ~1%, which
is small but discernible.
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Figure 3.5 Radiative diffusion of energy between volume shells in a star, driven by
the gradient in the thermal energy density.

implying there is a higher energy density, at smaller radii than at larger radii. The net
flow of radiation energy through a mass shell at radius r, per unit time, is just L(r) (see
Fig. 3.5). This must equal the excess energy in the shell, compared to a shell at larger
radius, divided by the time it takes this excess energy to flow across the shell’s width Ar.
The excess energy density is Au, which multiplied by the shell’s volume gives the total
excess energy of the shell, 47r? ArAu. The time for the photons to cross the shell in a
random walk is (Ar)?/lc. Thus,

4nr’ArAu 5, Au
R e — Ay pe—, (3-47)
(Ar)?/lc Ar
A more rigorous derivation of this equation adds a factor 1/3 on the right-hand side,
which comes about from an integration of cos® § over a solid angle (see the derivation of
the equation of radiation pressure, Eq. 3.74, below). Including this factor and replacing
the differences with differentials, we obtain
L(r)  cdu

42— 3dr’ (3.48)

Note that this is, in effect, a diffusion equation, describing the outward flow of energy. The
left-hand side is the energy flux. On the right-hand side, du/dr is the gradient in energy
density, and —cl/3 is a diffusion coefficient that sets the proportionality relating the energy
flow and the energy density gradient. The opacity, as reflected in the mean free path I,
controls the flow of radiation through the star. For low opacity (large I), the flow will be
relatively unobstructed, and hence the luminosity will be high, and vice versa.

Since at every radius the energy density is close to that of blackbody radiation, then
(Eq. 2.9)

"= aT*, (3.49)
and
du  dudT ,dT

Substituting in Eq. 3.48, and expressing | as (kp)~!, we obtain the equation of radiative
energy transport,
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dT(r)_ 3L(r)k(r)p(r)
dr __47rr24acT3(r)'

(3.51)

From Eqgs. 3.48 and 3.49, together with an estimate of the mean free path, we can make
an order-of-magnitude prediction of the Sun’s luminosity. Approximating —du/dr with
~u/re = aT*/ry, we have

laT*
Lo~ 4mrt =2 (3.52)
3 o
Based on the virial theorem and the Sun’s mass and radius, we obtained in Eq. 3.33
an estimate of the Sun’s internal temperature, T,; ~ 4 x 10° K. Using this as a typical
temperature and taking I = 0.1 cm, we find

4
Lo ~ %7 x 10 ecm x3x10%ems ! x 107! x 7.6 x 107 cgs x (4 x 10° K)4

=2 x 103 ergs™, (3.53)
in reasonable agreement with the observed solar luminosity, L, = 3.8 x 10** ergs™'. (We
have abbreviated above the units of the radiation constant, a, as cgs.) The above estimate
can also be used to argue that, based on its observed luminosity, the Sun must be composed
primarily of ionized hydrogen. If the Sun were composed of, say, ionized carbon, the mean
particle mass would be m ~ 12my /7 ~ 2my, rather than my /2. Equation 3.33 would then
give a virial temperature that is 4 times as high, resulting in a luminosity prediction in
Eq. 3.52 that is too high by two orders of magnitude.

3.4 Energy Conservation

We will see that the luminosity of a star is produced by nuclear reactions, with output
energies that depend on the local conditions (density and temperature) and hence on
r. Let us define €(r) as the power produced per unit mass of stellar material. Energy
conservation means that the addition to a star’s luminosity due to the energy production
in a thin shell at radius r is

dL = edm = epdnridr, (3.54)
or

dL(r) 5

e =4nrip(r)e(r), (3.55)

which is the equation of energy conservation.
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3.5 The Equations of Stellar Structure

We have derived four coupled first-order differential equations describing stellar structure.
Let us rewrite them here:

dP(r) _ GM(r)p(r) ’ (3.56)
dr pe
dM(r) 2
= 3.57
o 4mrop(r), ( )
dT(r) 3L(r)k(r)p(r)
ey, o i .l ok 3.58
dr 4 r24acT(r)?’ {9.35)
B 47r?p(r)e(r). (3.59)
dr
We can define four boundary conditions for these equations, for example,
M(r = 0) =0, (3.60)
Lr=0) =0, (3.61)
P(r=r,) =0, (3.62)
M(r=r)=M,, (3.63)

where M, is the total mass of the star. (In reality, at the radius r, of the photosphere of
the star, P does not really go completely to zero, nor do T and p, and more sophisticated
boundary conditions are required, which account for the processes in the photosphere.)

To these four differential equations we need to add three equations connecting the pres-
sure, the opacity, and the energy production rate of the gas with its density, temperature,
and composition:

P = P(p, T, composition), (3.64)
k = k(p, T,composition), (3.65)
€ = €(p, T, composition). (3.66)

P(p, T) is usually called the equation of state. Each of these three functions will depend
on the composition through the element abundances and the ionization states of each
element in the gas. It is common in astronomy to parametrize the mass abundances of
hydrogen, helium, and the heavier elements (the latter are often referred to collectively by
the term “metals”) as

e P_H’ Y = pHe’ = pmetals. (367)

o P p

We have thus ended up with seven coupled equations defining the seven unknown
functions: P(r), M(r), p(r), T(r), (r), L(r), and €(r). As there are four boundary conditions



Stellar Physics | 43

for the four first-order differential equations, if there is a solution, it is unique. This is
usually expressed in the form of the Vogt-Russell conjecture, which states that the properties
and evolution of an isolated star are fully determined by its initial mass and its chemical
abundances. These determine the star’s observable parameters: its surface temperature,
radius, and luminosity. Two variables that we have neglected in this treatment, and that
have minor influence on stellar structure, are stellar rotation and magnetic fields. To
proceed, we need to define the three functions, P, k, and €.

3.6 The Equation of State

Different equations of state P(p, T, X, Y, Z) apply for different ranges of gas density, tem-
perature, and abundance. Under the conditions in most normal stars, the equation of state
of a classical, nonrelativistic, ideal gas, provides a good description. Consider, for example,
such a gas, composed of three different kinds of particles, each with its own mass m; and
density n;. The mean particle mass will be

_ + +n
5 — nimi + namp 3ms _ B. (3.68)
n+ ny + ny n
The gas pressure will then be
p
Py = nkT = —kT. (3.69)

The mean mass will depend on the chemical abundance and ionization state of the gas.
As we have already seen, for completely ionized pure hydrogen,

.
==, (3.70)

and therefore m/my = 0.5.
More generally, the number densities of hydrogen, helium, or an element of atomic
mass number A (i.e., an element with a total of A protons and neutrons in each atomic
nucleus) will be
_Xo Yo Zw

Hp = y MHe = ——, ha = )
my 4mH’ AmH

(3.71)

where Z, is the mass abundance of an element of atomic mass number A. Complete
ionization of hydrogen results in two particles (an electron and a proton); of helium, three
particles (two electrons and a nucleus); and of an atom with atomic number Z (i.e., with
Z protons or electrons), Z + 1 particles, which for heavy enough atoms is always close to
A/2. Thus, for an ionized gas we will have

A P 3 1
=2 3 § —np=—(2X+-Y+-Z
n ng + 3npe + > hA MH( +4 +2 )
__P 3X+Y+] 3.72
_ZmH 2 g ( )
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Figure 3.6 Calculation of radiation pressure. A beam of photons with blackbody
intensity B strikes the wall of a container at an angle 6 to its perpendicular. The
projected area of the beam, dA, is increased by 1/cos#, and therefore the power
reaching the wall per unit area is decreased to Bcosf. Since a photon’s momen-
tum, p, is its energy divided by ¢, the momentum flux in the beam is B/c. Every
reflection of a photon transfers twice its perpendicular component of momentum,
and therefore the momentum transfer per unit time and per unit area, i.e., the
pressure, is 2B cos? 6 /c. The total pressure is obtained by integrating over all angles
of the beams that approach the wall.

where we have used the fact that X + Y + Z = 1. Thus,

m el 2

— (3.73)
my nmey 1+3X+0.5Y

for atotally ionized gas. For solar abundances, X = 0.71, Y = 0.27, Z = 0.02, and therefore
m/my = 0.61. In the central regions of the Sun, about half of the hydrogen has already
been converted into helium by nuclear reactions, and as a result X = 0.34, Y = 0.64, and
Z = 0.02, giving m/mpy = 0.85.

In addition to the kinetic gas pressure, the photons in a star exert radiation pressure.
Let us digress briefly, and derive the equation of state for this kind of pressure. Consider
photons inside a blackbody radiator with an intensity given by the Planck function, I, = B,,
which, when integrated over wavelength, we denoted as B. As illustrated in Fig. 3.6, the
energy arriving at the surface of the radiator per unit time, per unit area, at some angle
6 to the perpendicular to the surface, is Bcos#, because the area of the beam, when
projected onto the wall of the radiator, is increased by 1/cos 6. Now, consider the photons
in the beam, which strike the fully reflective surface of the radiator at the angle 8. Every
photon of energy E has momentum p = E/c. When reflected, it transmits to the surface
a momentum Ap = (2E/c) cos 6. Therefore, there is a second factor of cosf that must
be applied to the incoming beam. The rate of momentum tranfer per unit area will be
obtained by integrating over all angles at which the photons hit the surface. But, the rate
of momentum transfer (i.e., the force) per unit area is, by definition, the pressure. Thus,

F  dp/dt 2 A 1

w
P=— = [ Bcos’0sinfdfdp = —B = —u, 74
A A C./,,/z cos” f sin 0] 3 3u (3.74)

where in the last equality we have used the previously found relation (Eq. 2.4) between
intensity and energy density. Note that the derivation above applies not only to photons,
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Figure 3.7 Lefi: A free electron accelerating in the Coulomb potential of an ion emits
bremsstrahlung, or “free—free” radiation. Right: In the inverse process of free—free
absorption, a photon is absorbed by a free electron. The process is possible only if
a neighboring ion, which can share some of the photon’s momentum, is present.

but to any particles with an isotropic velocity distribution, and with kinetic energies large
compared to their rest-mass energies, so that the relation p ~ E/c (which is exact for
photons) is a good approximation. Thus, the equation of state in which the radiation
pressure equals one-third of the thermal energy density holds for any ultrarelativistic gas.

Returning to the case of the pressure due to a thermal photon gas inside a star, we can
write

u=1aT*, (3.75)

1
Prad=§

which under some circumstances can become important or dominant (see Problems 2
and 3). The full equation of state for normal stars will therefore be

kT 1
P 4 Lors (3.76)

P=Py+ Pryg = —
g+ rad 7 3

We will see in chapter 4 that the conditions in white dwarfs and in neutron stars dictate
equations of state that are very different from this form.

3.7 Opacity

Like the equation of state, the opacity, «, at every radius in the star will depend on the
density, the temperature, and the chemical composition at that radius. We have already
mentioned one important source of opacity, Thomson scattering of photons off free elec-
trons. Let us now calculate correctly the electron density for an ionized gas of arbitrary
abundance (rather than pure hydrogen, as before):

A p 2 1 p
By = 2 —pp=—[(X+-Y+-Z]|=—(01+X), 3.
e =i+ 2nme+ ) | S na mn( +7Y+3 ) G 1+ %) (3.77)
where we have again assumed that the number of electrons in an atom of mass number
A is A/2. Therefore,

NeOT or |
g = = ——(1-4+X) = {14 X)0.2 . .
ko= "= (14 X) = (14 X) 02cm’ g (3.78)
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In regions of a star with relatively low temperatures, such that some or all of the elec-
trons are still bound to their atoms, three additional processes that are important sources of
opacity are bound-bound, bound—free (also called photoionization), and free—free absorp-
tion. In bound-bound and bound-free absorption, which we have already discussed in the
context of photospheric absorption features, an atom or ion is excited to a higher energy
level, or ionized to a higher degree of ionization, by absorbing a photon. Free—free absorp-
tion is the inverse process of free—free emission, often called bremsstrahlung (“braking
radiation” in German). In free—free emission (see Fig. 3.7), a free electron is accelerated
by the electric potential of an ion, and as a result radiates. Thus, in free—free absorption, a
photon is absorbed by a free electron and an ion, which share the photon’s momentum and
energy. All three processes depend on photon wavelength, in addition to gas temperature,
density, and composition.

When averaged over all wavelengths, the mean opacity due to both bound—free absorption
and free—free absorption behave approximately as

(3.79)

which is called a Kramers opacity law. This behavior holds only over limited ranges in
temperature and density. For example, free—free absorption actually increases with temper-
ature at low temperature and density, with the increase in free electron density. Similarly,
bound—free opacity cuts off at high temperatures at which the atoms are fully ionized.
Additional sources of opacity, significant especially in low-mass stars, are molecules and
H~ ions.®

3.8 Scaling Relations on the Main Sequence

From the equations we have derived so far, we can already deduce and understand the
observed functional forms of the mass—luminosity relation, L ~ M?%, and the effective-
temperature-luminosity relation, L ~ Tg, that are observed for main sequence stars. Let us
assume, for simplicity, that the functions P(r), M(r), p(r), and T (r) are roughly power laws,
ie., P(r) ~rf, M(r) ~ 17, etc. If so, we can immediately write the first three differential
equations (Egs. 3.56, 3.57, and 3.58) as scaling relations,

M
p~—£ (3.80)
"
M~ r3p, (3.81)
and
T4
L~ K—pr (3.82)

6 The negative H™ ion forms when a second electron attaches (with a quite weak bond) to a hydrogen atom.
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(just as, instead of solving a differential equation, say, df /dx = x*

, we can write directly
f ~ x°). For moderately massive stars, the pressure will be dominated by the kinetic gas

pressure, and the opacity by electron scattering. Therefore,

P~pT (3.83)
and (Eq. 3.78)

K = const. (3.84)

Equating 3.80 and 3.83, we find

M
T~ — (3.85)
r

(which is basically just the virial theorem again, for a nonrelativistic, classical, ideal gas—
Eq. 3.27). Substituting this into 3.82, and using 3.81 to express r3p, we find

L~ M?, (3.86)

as observed for main-sequence stars more massive than the Sun.

Equation 3.85 also suggests that r ~ M on the main sequence. To see this, consider a
star that is forming from a mass M that is contracting under its own gravity and heating
up (star formation is discussed in some detail in chapter 5). The contraction will stop,
and an equilibrium will be set up, once the density and the temperature in the core
are high enough for the onset of nuclear reactions. We will see that the nuclear power
density depends mainly on temperature. Thus, for any initial mass, r will stop shrinking
when a particular core temperature is reached. Therefore, the internal temperature T is
comparable in all main-sequence stars (i.e, it is weakly dependent on mass, and hence
approximately constant), and

r~ M. (3.87)

Detailed models confirm that the core temperature varies only by a factor ~4 over a range
of ~100 in mass on the main sequence. With r ~ M, we see from Eq. 3.81 that the density
of a star decreases as M2, so that more massive stars will have low density, and low-mass
stars will have high density.

Proceeding to low-mass stars, the high density means there is a dominant role for
bound—free and free—free opacity,

Jo)
o~ (3.88)

Since T ~ const.,r ~ M, and p ~ M™%, thenx ~ p ~ M™%, and Eq. 3.82 gives
T*r r 5
L~ Il o, (3.89)
kp P

as seen in low-mass stars.
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For the most massive stars, the low gas density will make radiation pressure dominant
in the equation of state (see Problem 3),

P~ T*, (3.90)

and electron scattering, with « = const., will again be the main source of opacity. Equating
with 3.80 and substituting for T* in Eq. 3.82, we find

L~ M, (3.91)

a flattening of the mass—luminosity relationship that is, in fact, observed for the most
massive stars.

Finally, we can also reproduce the functional dependence of the main sequence in the
H-R diagram. We saw that L ~ M* for low-mass stars and L ~ M? for moderately massive
stars. Let us then take an intermediate slope, L ~ M*, as representative. Since r ~ M, then

oTg = ETL}E ~ %-: ~ M~ [12 (3.92)
SO

L~ Tg, (3.93)
as observed.

We have thus seen that the mass vs. luminosity relation and the surface-temperature
vs. luminosity relation of main-sequence stars are simply consequences of the different
sources of pressure and opacity in stars of different masses, and of the fact that the onset
of nuclear hydrogen burning keeps the core temperatures of all main-sequence stars in a
narrow range. The latter fact is elucidated below.

3.9 Nuclear Energy Production

The last function we still need to describe is the power density €(p, T, X, Y, Z). To see
that the energy source behind € must be nuclear burning, we consider the alternatives.
Suppose that the source of the Sun’s energy were gravitational, i.e., that the Sun had
radiated until now the potential energy liberated by contracting from infinity to its present
radius. From the virial theorem, we saw that the thermal energy resulting from such a
contraction is minus one-half the gravitational energy,

Eg = —2E. (3.94)

Therefore, the other half of the gravitational energy released by the contraction, and which
the Sun could have radiated, is
1 GM

Ed»—v_
ra 2 o

(3.95)

To see how long the Sun could have shined at its present luminosity with this energy
source, we divide this energy by the solar luminosity. This gives the so-called Kelvin-
Helmbholtz timescale,
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1GMZ 1 B 6.7 x 1078 cgs x (2 x 10® g)?
T, Lo 2x7x100cm x 3.8 x 108 erg s

=5x10"s=1.6 x 10’ yr. (3.96)

The geological record shows that the Earth and Moon have existed for over 4 billion years,
and that the Sun has been shining with about the same luminosity during all of this period.
A similar calculation shows that chemical reactions (e.g., if the Sun were producing energy
by combining hydrogen and oxygen into water) are also not viable for producing the solar
luminosity for so long.

A viable energy source for the Sun and other main-sequence stars is nuclear fusion
of hydrogen into helium. Most of the nuclear energy of the Sun comes from a chain of
reactions called the p-p chain. The first step is the reaction

p+p—>d+e + v, (3.97)

where d designates a deuteron, composed of a proton and a neutron. As we will see in
section 3.10, the timescale for this process inside the Sun is 10 yr. The timescale is so
long mainly because the reaction proceeds via the weak interaction (as is evidenced by the
emission of a neutrino). The positron, the deuteron, and the neutrino share an energy of
0.425 MeV. Once the reaction occurs, the positron quickly annihilates with an electron,
producing two 0.511-MeV y-ray photons. The neutrino, having a weak interaction with
matter, escapes the Sun and carries off its energy, which has a mean of 0.26 MeV. The
remaining kinetic energy and photons quickly thermalize by means of frequent matter—
matter and matter—photon collisions. Typically, within 1 s, the deuteron will merge with
another proton to form *He:

p+d— *He+y, (3.98)

with a total energy release (kinetic + the y-ray photon) of 5.49 MeV. Finally, on a timescale
of 300,000 years, we have

‘He + *He — “He +p +p, (3.99)

with a kinetic energy release of 12.86 MeV. Every time this three-step chain occurs twice,
four protons are converted into a *He nucleus, two neutrinos, photons, and kinetic energy.
The total energy released per *He nucleus is thus

(4 x 0.511 4 2 x 0.425 + 2 x 5.49 + 12.86) MeV = 26.73 MeV. (3.100)

Deducting the 2 x 0.511 MeV from the annihilation of two preexisting electrons, we find
that this is just the rest-mass difference between four free protons and a *He nucleus:

[m(4p) — m(*He)lc* = 25.71 MeV = 0.7% m(4p)c>. (3.101)

Thus, the rest-mass-to-energy conversion efficiency of the p-p chain is 0.7%. The time for
the Sun to radiate away just 10% of the energy available from this source is
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0.1 x 0.007 x Mgc?
Lo
0.1 x 0.007 x 2 x 10** g x (3 x 10" cm s71)?
- 3.8 x 1033 erg s!

=3.3x10"7s=10" yr. (3.102)

Thuc =

In other words, in terms of energy budget, hydrogen fusion can easily produce the solar
luminosity over the age of the Solar System.

Next, we need to see if the conditions in the Sun are suitable for these reactions to
actually take place. Consider two nuclei with atomic numbers (i.e., number of protons
per nucleus) Z, and Zz. The strong interaction produces a short-range attractive force
between the nuclei on scales smaller than

ro ~ 1.4 x 107" cm. (3.103)

The strong interaction goes to zero at larger distances, and the Coulomb repulsion between
the nuclei takes over. The Coulomb energy barrier is

24 Zpe?
Egouf = ArBe, (3.104)

which at ry is of order
Ecoul(rO) = ZAZB MeV. (3105)

Figure 3.8 shows schematically the combined nuclear (strong) and electrostatic (Coulomb)
potential. In the reference frame of one of the nuclei, the other nucleus, with kinetic energy
E, can classically approach only to a distance

ZAZBeZ
n= E

(3.106)

where it will be repelled away. At a typical internal stellar temperature of 107 K, the kinetic
energy of anucleusis 1.5kT ~ 1keV. The characteristic kinetic energy is thus of order 103
of the energy required to overcome the Coulomb barrier. Typical nuclei will approach each
other only to a separation r; ~ 107'° cm, 1000 times larger than the distance at which the
strong nuclear binding force operates. Perhaps those nuclei that are in the high-energy tail
of the Maxwell-Boltzmann distribution can overcome the barrier? The fraction of nuclei
with such energies is

e~ E/KT oy p=1000 o 1—434 (3.107)
The number of protons in the Sun is
Mg 2x10¥ g 57

N, ~ —2 = 2 107, (3.108)

my 1.7 x 1072 ¢

Thus, there is not a single nucleus in the Sun (or, for that matter, in all the stars in the
observable Universe) with the kinetic energy required classically to overcome the Coulomb
barrier and undergo nuclear fusion with another nucleus.
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Figure 3.8 Schematic illustration of the potential energy V(r) between two nuclei
as a function of separation r. For two protons, the Coulomb repulsion reaches a
maximum, with V(r) ~ 1 MeV at r = rp, at which point the short-range nuclear
force sets in and binds the nuclei (negative potential energy). Two nuclei with
relative kinetic energy of ~1 keV, typical for the temperatures in stellar interiors,
can classically approach each other only to within a separation rq, 1000 times greater
than rg. The dashed rectangle is a rectangular barrier of height (V(r)) = 3E/2, which
we use to approximate the Coulomb barrier in our calculation of the probability for
quantum tunneling through the potential.

Fortunately, quantum tunneling through the barrier allows nuclear reactions to take
place after all. To see this, let us describe this two-body problem by means of the time-
independent Schrodinger equation, for a wave function W in a spherically symmetric
potential V(r):

ivz\y = [V(r) — E]¥, (3.109)
2p

where the reduced mass of the two nuclei, of masses m4 and mg, is

mamp
= —. 3.110
# ma + mp ( )
In our case, the potential is
ZAZBCZ
Vi) = = (3.111)

and E is the kinetic energy. Let us obtain an order-of-magnitude solution to the Schrédinger
equation. By our definition of r1, the radius of closest classical approach, we have V(r;) = E.
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We can then write V(r) = Er;/r, and the mean, volume-averaged, height of the potential
between r; and ry < r; is

fr: 4w r?V(r)dr 3
fr;' 4 ridr 2

(V(r)) = E. (3.112)
Approximating V/(r) with a constant function of this height (a “rectangular barrier”), the
radial component of the Schrédinger equation becomes

W 1drv) E

- e 3.113
2ur  dr? 2 ( )

which has a solution

Br /WLE
v=A B:—:—.
r

(3.114)
(The second independent solution of the equation, with an amplitude that rises with
decreasing radius, is unphysical.) The wave function amplitude, squared, is proportional
to the probability density for a particle to be at a given location. Multiplying the ratio of the
probability densities by the ratio of the volume elements, 4w rldr and 4z ridr, thus gives
the probability that a nucleus will tunnel from r, to within ry < r; of the other nucleus:

(W(ro)l>rg _ e 2 _ (_ 2/ E ZAZBBZ)
W(r)Er?  en PR T E

= exp (-%z,ng&%). (3.115)

A full solution of the Schrédinger equation gives the same answer, but with an additional
factor /+/2 in the exponential. If we recall the definition of the fine-structure constant,

e? 1
= s i amu 3.116
“The 137 (3.116)
and define an energy
Eg = (maZ4Zp)*2uc?, (3.117)

then the probability of penetrating the Coulomb barrier simplifies to the function
g(E) = e VEG/E, (3.118)
E¢ is called the Gamow energy and g(E) is called the Gamow factor. For two protons,
2
Fo=(m— x1x1) 22myc? ~ 500 keV (3.119)
¢ 137 g 7 ‘ '

(It is convenient to remember that the rest energy of a proton, my,c?, is 0.94 GeV.)
Thus, for the typical kinetic energy of particles in the Sun’s core, E ~ 1 keV, we find
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g(E) ~ e % ~ 1071°, While this probability, for a given pair or protons, is still small, it is
considerably larger than the classical probability we found in Eq. 3.107.

3.10 Nuclear Reaction Rates

Even if tunneling occurs, and two nuclei are within the strong force’s interaction range,
the probability of a nuclear reaction will still depend on a nuclear cross section, which will
generally depend inversely on the kinetic energy. Thus, the total cross section for a nuclear
reaction involving ingredient nuclei A and B is

S
oas(E) = E"e—ﬁcﬁ, (3.120)

where S is a constant, or a weak function of energy, with units of [area] x [energy]. S, for a
given nuclear reaction is generally derived from accelerator experiments, or is calculated
theoretically.

The number of reactions per nucleus A as it traverses a distance dx in a field with a
density np of “target” nuclei B is

dNA = HBO'Ade. (3121)

If we divide both sides by dt, then the number of reactions per nucleus A per unit time is

dN
d—t" = NBOABVAB, (3.122)

where v,p is the relative velocity between the nuclei.

From Eq. 3.122, we can proceed to find the power density function, €(p, T, X, Y, Z),
needed to solve the equations of stellar structure. Multiplying by the density n, of nuclei
A will give the number of reactions per unit time and per unit volume, i.e., the reaction
rate per unit volume,

RAB = NANBOABVAB- (3.123)

If every reaction releases an energy Q, multiplying by Q gives the power per unit volume.
Dividing by p then gives the power per unit mass, rather than per unit volume:

€ = nAnBaABVABQ/p. (3124)
Recalling that
pXa pXg
= , = ) 3.125
e AAmH s ABmH ( )

with X, and Xp symbolizing the mass abundances, and A4 and Ap the atomic mass
numbers of the two nucleus types, € can be expressed as

pXaXp

= ———————O0aRYV ] 3.126
2 ArAg ABVaBQ ( )
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In reality, the nuclei in a gas will have a distribution of velocities, so every velocity has
some probability of occurring. Hence, € can be obtained by averaging vagoap over all
velocities, with each velocity weighted by its probability, P(vag):

pXaXp
= — . 3.127
€ 2 ArAp (0aBVAB)Q ( )
with
(0ABVAB) =f oaBVaBP(VaB)dvag. (3.128)
0

A classical nonrelativistic gas will have a distribution of velocities described by the Maxwell-
Boltzmann distribution. The relative velocities of nuclei A and B will also follow a Maxwell-
Boltzmann distribution,

3/2 2
P(v)dv = 4n(2H“kT) v2exp (—%) dv, (3.129)

but with a mass represented by the reduced mass of the particles, u. For brevity, we have
omitted here the subscript AB from the velocities.

Inserting 3.120 and 3.129 into 3.128, and changing the integration variable from velocity
to kinetic energy using E = %,uvz, dE = pvdv, we obtain

1/2 00
(ov) = L S0 f e E/KTg=VE/EGE, (3.130)
) (kT)2 Jo

The integrand in this expression,
JlB) = gmitgTals, (3.131)

is composed of the product of two exponential functions, one (from the Boltzmann
distribution) falling with energy, and the other (due to the Gamow factor embodying
the Coulomb repulsion) rising with energy. Obviously, f (E) will have a narrow maximum
at some energy Ey, at which most of the reactions take place (see Fig. 3.9). The maximum
of f (E) is easily found by taking its derivative and equating to zero. It is at

kT 2/3
By — (7) EJ’. (3.132)

A Taylor expansion of f (E) around E; shows f (E) can be approximated by a Gaussian with

£ ”

a width parameter (i.e., the “c”, or standard deviation, of the Gaussian e~*'/27") of

2]/6

A= ﬁEg;/"(kT)S/G. (3.133)

The value of the integral can therefore be approximated well with the area of the Gaussian,
v 2mf(Ep)A (see Problem 7). Replacing in 3.127, we obtain the final expression for the
power density due to a given nuclear reaction,
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Figure 3.9 The Boltzmann probability distribution, P(E), the Gamow factor, g(E), and their
product, f(E). P(E) is shown for kT =1 keV, g(E) is for the case of two protons, with
Eg = 500 keV, and both g(E) and f (E) have been scaled up by large factors for display pur-
poses. The rarity of protons with large kinetic energies, as described by P(E), combined with
the Coulomb barrier, embodied by g(E), limit the protons taking part in nuclear reactions
to those with energies near Egy, where f (E) peaks. f(E) can be approximated as a Gaussian
centered at Ey (Ep = 5 keV for the case shown), with width parameter A.

2°5V2  pXaXs EJ° Ec \"*
€ = 5 Q5So Gm exp | —3 (— : (3.134)
\/5 mHAAABﬁ (kT)

Equation 3.134 can tell us, for example, the luminosity produced by the p-p chain in
the Sun. For a rough estimate, let us take for the mass density in the core of the Sun the
central density, p = 150 g cm™>. As already noted in Section 3.6, in the central regions
of the Sun, some of the hydrogen has already been converted into helium by nuclear
reactions. Let us assume a typical hydrogen abundance of X = 0.5, which we can use
for X, and Xp. The first step in the p-p chain, the p+p — d + e* + v, reaction, is by
far the slowest of the three steps in the chain, and it is therefore the bottleneck that sets
the rate of the entire p-p process. The constant S, for this reaction is calculated theoret-
ically to be 224 x 107*¢ cm? keV, which is characteristic of weak interactions. For Q, let
us take the entire thermal energy release of each p-p chain completion, since once the
first step occurs, on a timescale of 10'° yr, the following two reactions, with timescales
of order 1 s and 300,000 yr, respectively, are essentially instantaneous. We saw that every
completion of the chain produces 26.73 MeV of energy and two neutrinos. Subtracting
the 0.52 MeV carried off, on average, by the two neutrinos, the thermal energy released
per p-p chain completion is Q = 26.2 MeV. As already noted, E; = 500 keV for two pro-
tons, and the typical core temperature is kT = 1 keV. The atomic mass numbers are, of
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course, A4 = Ag = 1, and the reduced mass is u = m, /2. Finally, since we are consider-
ing a reaction between identical particles (i.e., protons on protons) we need to divide the
collision rate by 2, to avoid double counting. With these numbers, Eq. 3.134 gives a power
density of

e=10erg s 'g . (3.135)

Multiplying this by the mass of the core of the Sun, say, 0.2M; = 4 x 10°? g, gives a
luminosity of ~4 x 10* erg s~!
3.8 x 10¥ ergs™ .

Reviewing the derivation of Eqs. 3.122-3.134, we see that we can also recover the reaction
rate per nucleus, dN,/dt, by dividing back from € a factor (X4 Q)/(mpyAa). For the p+p
reaction, this gives a rate of 1.6 x 107'8 s~! per proton. The reciprocal of this rate is the

typical time a proton has to wait until it reacts with another proton, and indeed equals

, in good agreement with the observed solar luminosity of

Top ~ 6 x 107 5 ~ 2 x 10" yr, (3.136)

as asserted above. Thus, we have shown that hydrogen fusion provides an energy source
that can power the observed luminosity of the Sun over the known age of the Solar System,
about 5 billion years, not only in terms of energy budget (Eq. 3.102) but also in terms of
the energy generation rate. Furthermore, we see that the timescale to deplete the hydrogen
fuel in the solar core is of order 10 billion years.

The total power density at a point in a star with a given temperature, density, and
abundance will be the sum of the power densities due to all the possible nuclear reactions,
each described by 3.134. Because of the exponential term in 3.134, there will be a strong
preference for reactions between species with low atomic number, and hence small Eg.
For example, compare the reactions

p+d—>He+y  (Eg=0.66MeV) (3.137)
and
p+2C—-BN4+y  (Ec=355MeV), (3.138)

which have comparable nuclear cross sections S (both reactions follow the same process
of adding a proton to a nucleus and emitting a photon). At a typical kinetic energy of 1 keV,
if the abundances of deuterium and carbon nuclei were comparable, the ratio between the
rates would be

R(p2C) 3551 - 066"
R(pd) P (4 x 0.001)1/3

} ~ e % ~ 107, (3.139)

Furthermore, the higher the Gamow energy, the more strongly will the reaction rate
depend on temperature. For example, a first-order Taylor expansion of Eq. 3.134 around
T = 1.5 x 107 K, the central temperature of the Sun, shows thatthe p+p — d + et + v,
rate depends on temperature approximately as T*, while the p + 2C — 13N + y rate goes
like T'® (see Problem 8). The steep positive temperature dependence of nuclear reac-
tions, combined with the virial theorem, means that nuclear reactions serve as a natural
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“thermostat” that keeps stars stable. Suppose, for example, that the temperature inside
a star rises. This will increase the rate of nuclear reactions, leading to an increase in
luminosity. Due to opacity, this additional energy will not directly escape from the star,
resulting in a temporary increase in total energy. Since

Eiot = 3 Egr = —Em, (3.140)

the gravitational energy E, will grow (i.e., become less negative), meaning the star will
expand, and Ey, will become smaller, meaning the temperature will be reduced again.
This explains why main-sequence stars of very different masses have comparable core
temperatures.

The thermostatic behavior controls also the long-term evolution of stars. Eventually,
when the dominant nuclear fuel runs out, the power density € will drop. The star will then
contract, Ey, will increase, and T will rise until a new nuclear reaction, involving nuclei of
higher atomic number, can become effective.

A key prediction of the picture we have outlined, in which the energy of the Sun derives
from the p-p chain, is that there will be a constant flux of neutrinos coming out of the Sun.
As opposed to the photons, the weak interaction of the neutrinos with matter guarantees
that they can escape the core of the Sun almost unobstructed.” As calculated above, the
thermal energy released per p-p chain completion is 26.2 MeV. The neutrino number flux
on Earth should therefore be twice the solar energy flux divided by 26.2 MeV:

2f5  2x14x10%ergs ! cm™?
26.2MeV 262 x 1.6 x 10% erg

[ —— =6.7x10%s'em™.  (3.141)
This huge particle flux goes mostly unhindered through our bodies and through the entire
Earth, and is extremely difficult to detect. Experiments to measure the solar neutrino flux
began in the 1960s, and have consistently indicated a deficit in the flux of electron neutrinos
arriving from the Sun. It now appears most likely that the total neutrino flux from the Sun
is actually very close to the predictions of solar models. The observed deficit is the result
of previously unknown flavor oscillations, in which some of the original electron neutrinos
turn into other types of neutrinos enroute from the Sun to the Earth.

We note, for completeness, that apart from the particular p-p chain described in
Egs. 3.97-3.99, which is the main nuclear reaction sequence in the Sun, other nuclear
reactions occur, and produce neutrinos that are detectable on Earth (see Problem 9). In
stars more massive than the Sun, hydrogen is converted to helium also via a different
sequence of reactions, called the CNO cycle. In the CNO cycle, the trace amounts of car-
bon, nitrogen, and oxygen in the gas serve as catalysts in the hydrogen-to-helium burning,
without any additional C, N, or O being synthesized. The main branch of the CNO cycle
actually begins with reaction 3.138,

p+12C— BN+y. (3.142)
7 Typical cross sections for scattering of neutrinos on matter are of order 10~*3 cm?, 10'® times smaller than

the Thomson cross section for photons. Scaling from Eq. 3.41, the mean free path for neutrinos in the Sun is
~10'8 cm, 107 times greater than the solar radius.
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This is followed by
BN - BC+et + v, (3.143)
p+1BC— "N+, (3.144)
p+"N—PO+y. (3.145)
B e OH 8> 2 s (3.146)
and finally
p+ PN — 2C+ “*He. (3.147)

Although we noted that reaction 3.142 is slower by 20 orders of magnitude than the p-p
chain’s p+d — *He + y, the p + d reaction can take place only after overcoming the
p + p bottleneck, which has a timescale 18 orders of magnitude longer than p + d. The
lack of such a bottleneck for the p + '2C reaction is further compensated by this reaction’s
strong dependence on temperature. Although core temperature varies only weakly with
stellar mass, the slightly higher core temperatures in more massive stars are enough to
make the CNO cycle the dominant hydrogen-burning mechanism in main-sequence stars
of mass 1.2Mg, and higher.

3.11 Solution of the Equations of Stellar Structure

We have now derived the four differential equations and the three additional functions that,
together with boundary conditions, define uniquely the equilibrium properties of a star of
a given mass and composition. Along the way, we already deduced many of the observed
properties of main-sequence stars. “Solving” this system of coupled equations means
finding the functions P(r), T(r), and p(r), which are the ones that are usually considered
to describe the structure of the star. Unfortunately, there is no analytic solution to the
equations, unless some unrealistic assumptions are made (see, e.g., Problems 4 and 5).
Nevertheless, a numerical solution can be obtained straightforwardly, and is the most
reasonable way to proceed anyway, given the complicated nature of the functions P, «,
and € when all relevant processes are included. In a numerical solution, the differentials
in the equations are replaced by differences. Then, an example of one possible calculation
scheme is one in which the radial structure of a star is followed shell by shell, going either
outward from the center or inward from the surface.

3.12 Convection

Under certain conditions, the main means of energy transport in some regions of a star
is convection, rather than radiative transport. Convection occurs when a volume element
of material that is displaced from its equilibrium position, rather than returning to the
original position, continues moving in the displacement direction. For example, if the
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T+dT
P+dP
p+dp

o

Figure 3.10 A mass element (lower circle) inside a star undergoes a small displace-
ment dr to a higher position (upper circle), and expands adiabatically to match the
new surrounding pressure P + dP. If, after the expansion, the density inside the
element, p + 8p, is larger than the surrounding density p + dp, the element will
sink back to its former equilibrium position. If, on the other hand, the density inside
the volume is lower than that of the surroundings, the mass element will be buoyed
up, and convection ensues.

displacement is upward to a region of lower density, and after the displacement the density
of the volume element is lower than that of its new surroundings, the element will continue
to be buoyed upward. When convection sets in, it is very efficient at transporting heat, and
becomes the dominant transport mechanism.

To see what are the conditions for the onset of convection, consider a volume element
of gas at equilibrium radius r inside a star , where the temperature, pressure, and density
are T, P, and p, respectively (see Fig. 3.10). Now let us displace the element to a radius
r + dr, where the parameters of the surroundings are T + dT, P + dP, and p + dp. Since
the gas in the star obeys

P

—, 3.148
px ( )

taking the logarithmic derivative gives

dp _dP _dT (3.149)

P P T
To simplify the problem, we will assume that, at its new location, the volume element
expands adiabatically (i.e., without exchanging heat with its new surroundings, so dQ = 0,
and therefore the entropy, defined as dS = dQ /T, remains constant). The element expands
until its pressure matches the surrounding pressure, and reaches new parameters T + 8T,
p+ép, and P+ 8P = P + dP, where we have identified the small changes inside the
element with a “8” rather than a “d.” Since we approximate the expansion of the element
to be adiabatic, it obeys an equation of state

P x p?, (3.150)
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where the adiabatic index, y, is the usual ratio of heat capacities at constant pressure and
constant volume. Taking again the logarithmic derivative, we obtain

2oF (3.151)

The element will continue to float up, rather than falling back to equilibrium, if after the
expansion its density is lower than that of the the surroundings, i.e.,

p+3d8p <p+dp, (3.152)
or simply
sp < dp, (3.153)

(recall that both §p and dp are negative), or dividing both sides by p,

sp dp
— < —.

(3.154)
PP

Substituting from Eqs. 3.149 and 3.151, the condition for convection becomes

18P dP dT
LoP _ab dl (3.155)
y P P T
Recalling that § P = dP, this becomes
dT y —1dP

<, (3.156)
T y P

or upon division by dr,

aT —1TadP
e _y—14v (3.157)
dr y Pdr
Since the radial temperature and pressure gradients are both negative, the condition for
convection is that the temperature profile must fall fast enough with increasing radius,

i.e., convection sets in when

dT

y—1T |dP
— >_—_
dr

= 3.158
y Plar ipaa8]

For a nonrelativistic gas without internal degrees of freedom (e.g., ionized hydrogen),
y = 5/3. As the number of internal degrees of freedom increases, y becomes smaller,
making convection possible even if |dT/dr| is small. This can occur when the gas is
made of atoms, which can be excited or ionized, or of molecules that have rotational and
vibrational degrees of freedom and can be dissociated. Convection therefore occurs in
some cool regions of stars, where atoms and molecules exist. This applies to the outer
layers of intermediate-mass main-sequence stars and red giants, and to large ranges in
radius in low-mass stars. Another range of applicability of convection is in the cores of
massive stars. The Sun is convective in the outer 28% of its radius.

Once convection sets in, it mixes material at different radii and thus works toward
equilibrating temperatures, i.e., lowering the absolute value of the temperature gradient



Stellar Physics | 61

|dT /dr|. Therefore, convection can be implemented into stellar structure computations by
testing, at every radius, if the convection condition has been met. If it has, convection will
bring the temperature gradient back to its critical value, and therefore the radiative energy
transport equation (3.51) can be replaced by Eq. 3.158, but with an equality sign:

dT  y —1T(r)dP
&= 7 P (3.159)

Problems

1. In Egs. 3.23-3.28, we saw that, for a star composed of a classical, nonrelativistic, ideal

gas, Ewotal = Ejf + Egr = —Ef", and therefore the star is bound. Repeat the derivation,
but for a classical relativistic gas of particles. Recall (Eq. 3.75) that the equation of state
of a relativistic gas is P = %Eth/v. Show that, in this case, Eg, = —Ej5', and therefore

Etotal = Ejf' + Egr = 0, i.e., the star is marginally bound. As a result, stars dominated by
radiation pressure are unstable.

2. The pressure inside a normal star is given by (Eq. 3.76)

pkT 1 _,
P:Pg+Prad:—__+'—aT.
m 3

Using parameters appropriate to the Sun, show that throughout the Sun, including the
core, where the internal temperature is about 107 K, the kinetic pressure dominates.

3. Because of the destabilizing influence of radiation pressure (see Problem 1), the most
massive stars that can form are those in which the radiation pressure and the nonrela-
tivistic kinetic pressure are approximately equal. Estimate the mass of the most massive
stars, as follows.

a. Assume that the gravitational binding energy of a star of mass M and radius R is
|Ege| ~ GM?/R. Use the virial theorem (Eg. 3.22),
p=_L1
3V

to show that
4r\ 3 2
o /3 4/3
P (34) GM“>p™~,

where p is the typical density.
b. Show that if the radiation pressure, P,y = %aT“, equals the kinetic pressure, then the
total pressure is

1/3 4/3
=) (5"
a m
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c. Equate the expressions for the pressure in (a) and (b), to obtain an expression for
the maximal mass of a star. Find its value, in solar masses, assuming a fully ionized
hydrogen composition.

Answer: M = 110M,,.

4. Consider a hypothetical star of radius R, with density p that is constant, i.e., independent
of radius. The star is composed of a classical, nonrelativistic, ideal gas of fully ionized
hydrogen.

a. Solve the equations of stellar structure for the pressure profile, P(r), with the boundary
condition P(R) = 0.

Answer: P(r) = (27/3)Gp?(R* — r?).

b. Find the temperature profile, T(r).

c. Assume that the nuclear energy production rate depends on temperature as € ~ T*.
(This is the approximate dependence of the rate for the p-p chain at the temperature
in the core of the Sun.) At what radius does € decrease to 0.1 of its central value, and
what fraction of the star’s volume is included within this radius?

5. Suppose a star of total mass M and radius R has a density profile p = p.(1 — r/R),
where p, is the central density.
a. Find M(r).
b. Express the total mass M in terms of R and p..
c. Solve for the pressure profile, P(r), with the boundary condition P(R) = 0.
Answer:

sp| @ 2pEzE: Frend largd
Pr) =7 Gp:R [% -3z} +3lz) -~ 3lp) ] :
6. Consider a star of mass M = 10M, composed entirely of fully ionized '2C. Its core
temperature is T, = 6 x 10® K (compared to T, = 1.5 x 10’ K for the Sun).
a. What is the mean particle mass m, in units of my?
Answer: 12/7.

b. Use the classical ideal gas law, the dimensional relation between mass, density, and
radius, and the virial theorem to find the scaling of the stellar radius r. with total
mass M, mean particle mass m, and core temperature T.. Using the values of these
parameters for the Sun, derive the radius of the star.

Answer: 0.70r,.

c. Ifthe luminosity of the star is L =107L, what is the effective surface temperature?
d. Suppose the star produces energy via the reaction

2C+2C — *Mg.

The atomic weight of '2C is 12, and that of #*Mg is 23.985. (The atomic weight of a
nucleus is defined as the ratio of its mass to 1/12 the mass of a '2C nucleus). What

fraction of the star’s mass can be converted into thermal energy?
Answer: 6.3 x 107*.



Stellar Physics | 63

e. How much time does it take for the star to use up 10% of its carbon?
Answer: 950 yr.

7. We saw that the nuclear reaction rate in a star depends on

(V) o focf(E)dE,
0

where

f(E) = B—E/kTe—m,

and E¢ is the Gamow energy (Eq. 3.131).
a. By taking the derivative of f(E) and equating to zero, show that f{E) has a maximum
at

kT\*? _1/3
EO = (7) EG %

b. Perform a Taylor expansion, to second order, of f(E) around Eg, to approximate f(E)
with a Gaussian. Show that the width parameter (i.e., the “o") of the Gaussian is

21/6 16 .
— /6
Hint: Take the logarithm of f (E), before Taylor expanding, and then exponentiate again
the Taylor expansion.

c. Show that

[oof(E)dE = V271 f (E)A.
0

8. Show that the dependence on temperature of the nuclear power density (Eq. 3.134) at a
temperature T near Ty can be approximated as a power law, € o T?, where

Ec \'? 2
p= (ﬁ) B
Evaluate B at To = 1.5 x 107 K, for the reactions p+p — d+ et + v, and p +'°C —
BN+ y.
Hint: From Eq. 3.134, find Ine, and calculate d(In€)/d(In T)|7,. This is the first-order

coefficient in a Taylor expansion of Ine€ as a function of InT (a pure power law relation
between € and T would obey Ine = const. + BInT).

9. We saw (Eg. 3.141) that, on Earth, the number flux of solar neutrinos from the p-p chain is
2f5  2x14x10%ergs ' cm™?

26.2MeV  26.2x 1.6 x 10~¢ erg

=6.7 x 10" s ecm ™2,

f;ueutrino =

Other nuclear reactions in the Sun supplement this neutrino flux with a small additional
flux of higher-energy neutrinos. A neutrino detector in Japan, named SuperKamiokande,
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consists of a tank of 50 kton of water, surrounded by photomultiplier tubes. The tubes

detect the flash of Cerenkov radiation emitted by a recoiling electron when a high-energy

neutrino scatters on it.

a. How many electrons are there in the water of the detector?

b. Calculate the detection rate for neutrino scattering, in events per day, if 107° of the

solar neutrinos have a high enough energy to be detected by this experiment, and
each electron poses a scattering cross section o = 107* cm?.
Hint: Consider the density of neutrino targets “seen” by an individual electron, with
a relative velocity of ¢ between the neutrinos and the electron, to obtain the rate at
which one electron interacts with the incoming neutrinos, and multiply by the total
number of electrons, from (a), to obtain the rate in the entire detector.

Answers: 1.6 x 10** electrons; 9 events per day.



4 Stellar Evolution and Stellar Remnants

So far, we have considered only stars in static equilibrium, and found that a star of a
given mass and composition has a unique, fully determined, structure. However, it is
now also clear that true equilibrium cannot exist. Nuclear reactions in the central regions
synthesize hydrogen into helium, and over time change the initial elemental composition.
Furthermore, convection may set in at some radii and mix processed and unprocessed gas.
The equations of pressure, opacity, and nuclear power density all depend sensitively on
the abundances. Indeed, at some point, the hydrogen fuel in the core will be largely used
up, and the star will lose the energy source that produces pressure, the gradient of which
supports the star against gravitational collapse. It is therefore unavoidable that stars evolve
with time. In this chapter, we discuss the various processes that stars of different masses
undergo after the main sequence, and the properties of their compact remnants—white
dwarfs, neutron stars, and black holes. We then study the phenomena that can occur when
such compact objects accrete material from a companion star in a binary pair.

4.1 Stellar Evolution

Stellar evolution, as opposed to equilibrium, can be taken into account by solving a series
of equilibrium stellar models (called a stellar evolution track), in which one updates, as a
function of a star’s age since formation, the gradual enrichment by elements heavier than
hydrogen at different radii in the star. It turns out that the observed properties of stars on
the main sequence change little during the hydrogen-burning stage, and therefore they
make only small movements on the H-R diagram.

From scaling arguments, we can find the dependence of the main-sequence lifetime,
tms, on stellar mass. We previously derived the observed dependence of luminosity on
mass,

L~ M. (4.1)
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We now also know that the energy source is nuclear reactions, whereby a fraction of a star’s
rest mass is converted to energy and radiated away. The total radiated energy is therefore
proportional to mass,

Ltys ~ E~ M, (4.2)
and
M
bms ~ Mo (4.3)

For intermediate-mass stars, which obey a mass—luminosity relation with a ~ 3, tyns ~
M2, Thus, the more massive a star, the shorter its hydrogen-burning phase on the main
sequence. Detailed stellar models confirm this result. For example, the main-sequence
lifetimes of stars with initial solar abundance and various masses are

0.5My — ~5 x 1010yr;
1.0Mgy — ~10yr;
10Mg — ~2 x 107yr. (4.4)

The Sun is therefore about halfway through its main-sequence lifetime. We saw that,
for the most massive stars, a ~ 1, the result of electron-scattering opacity and radia-
tion pressure. The lifetime t,,s therefore becomes independent of mass and reaches a
limiting value,

>30Mg —~ 3 x 10%r. (4.5)

The lifetimes of massive stars, ~10°~107 yr, are short compared to the age of the Sun or
the age of the Universe (which, as we will see in chapters 7-9, is about 14 gigayears [Gyr],
where 1 Gyr is 107 yr). The fact that we observe such stars means that star formation is an
ongoing process, as we will see in chapter 5.

Once most of the hydrogen in the core of a star has been converted into helium, the
core contracts and the inner temperatures rise. As a result, hydrogen in the less-processed
regions outside the core starts to burn in a shell surrounding the core. Stellar models
consistently predict that at this stage there is a huge expansion of the outer layers of the
star. The increase in luminosity, due to the gravitational contraction and the hydrogen
shell burning, moves the star up in the H-R diagram, while the increase in radius lowers
the effective temperature, moving the star to the right on the diagram (see Fig. 4.1). This
is the red giant phase. The huge expansion of the star’s envelope is difficult to explain by
means of some simple and intuitive argument, but it is well understood and predicted
robustly by the equations of stellar structure. The red-giant phase is brief compared to the
main sequence, lasting roughly one-tenth the time, from a billion years for solar-mass
stars, to only of order a million years for ~10 M, stars, and a few 10° years for the most
massive stars.

As the red-giant phase progresses, the helium core contracts and heats up, while
additional helium “ash” is deposited on it by the hydrogen-burning shell. At some point,
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Figure 4.1 Illustration of post-main-sequence evolution on the H-R diagram. Top: Observed H-R dia-
gram for stars in the globular cluster M3 (more on star clusters in section 5.1.5). The main-sequence
turnoff marks the point at which stars are now leaving the main sequence and evolving on to the
red-giant branch. All the stars in the cluster formed together about 13 Gyr ago, and the cluster has
not experienced subsequent star formation. As a result, all stars above a certain mass, corresponding
to the turnoff point, have left the main sequence, while those below that mass are still on the main
sequence. The density of points in each region of the diagram reflects the amount of time spent by stars
in each post-main-sequence evolution stage. Bottom: Theoretical stellar evolution tracks for stars of
various initial main-sequence masses (with an assumed initial metal abundance of Z = 0.0004). Each
track begins at the lower left end on the zero-age main sequence. After leaving the main sequence, stars
evolve along, and up to the tip of, the red-giant branch. They then move quickly on the diagram to the
left edge of the horizontal branch, where helium core burning and hydrogen shell burning take place,
and evolve to the right along the horizontal branch. Once all the helium in the core has been converted
to carbon and oxygen, the star rises up the “asymptotic giant branch” where double shell burning—a
helium-burning shell within a hydrogen burning shell—takes place. Note the good correspondence
between the theoretical track for the 0.8 M, initial-mass star (solid line) and the observed H-R dia-
gram on top. For clarity, the theoretical horizontal and asymptotic giant branches are not shown
for the other initial masses. Data credits: S.-C. Rey et al. 2001, Astrophys. J., 122, 3219; and L. Girardi,
et al. 2000, Astron. Astrophys. Suppl., 141, 371.

the core will reach a temperature of about T ~ 108 K and a density p ~ 10* g cm 3, where
helium burning can become effective through the triple-alpha reaction,

*He +*He +*He —'2C + y(7.275 MeV). (4.6)

Triple-alpha is the only reaction that can produce elements heavier than helium in the
presence of only hydrogen and helium, because no stable elements exist with atomic mass
numbers of 5 or 8. The beryllium isotope ®Be, formed from the fusion of two *He nuclei,
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has a lifetime of only ~107'¢ s. Nevertheless, a small equilibrium abundance of ®Be can be
established, and capture of another *He nucleus then completes the triple-alpha process.
The last stage would have an extremely low probability, were it not for the existence of
an excited nuclear energy level in '2C, which, when added to the rest mass energy of
12C, happens to have almost exactly the rest mass energies of *He +®Be. This resonance
greatly increases the cross section for the second stage of the reaction. In fact, from the
existence of abundant carbon in the Universe (without which, of course, carbon-based life
would be impossible) Hoyle predicted the existence of this excited level of *C before it
was discovered experimentally.

Along with carbon production, some oxygen and neon can also be synthesized via the

reactions

*He +2C -0+ y (4.7)
and

“He +'°0 —*°Ne + y. (4.8)

At the same time, hydrogen continues to burn in a shell surrounding the core. When
helium ignition begins, the star moves quickly on the H-R diagram to the left side of
the horizontal branch, and then evolves more slowly to the right along this branch, as
seen in Fig. 4.1. Horizontal branch evolution last only about 1% of the main-sequence
lifetime. Once the helium in the core has been exhausted, the core (now composed mainly
of oxygen and carbon) contracts again, until a surrounding shell of helium ignites, with a
hydrogen-burning shell around it. During this brief (~107 yr) double-shell-burning stage,
the star ascends the asymptotic giant branch of the H-R diagram—essentially a repeat of
the red-giant branch evolution, but with helium + hydrogen shell burning around an inert
carbon/oxygen core, rather than hydrogen shell burning around an inert helium core.

Evolved stars undergo large mass loss, especially on the red-giant branch and on the
asymptotic giant branch, as a result of the low gravity in their extended outer regions
and the radiation pressure produced by their large luminosities. Mass loss is particularly
severe on the asymptotic giant branch during so-called thermal pulses—roughly periodic
flashes of enhanced helium shell burning. These mass outflows, or stellar winds, lead to
mass-loss rates of up to 107* M, yr !, which rid a star of a large fraction of its initial mass.
Giants are highly convective throughout their volumes, leading to a dredge-up of newly
synthesized elements from the core to the outer layers, where they are expelled with the
winds. In these processes, and additional ones we will see below, the nuclear reactions
inside post-main-sequence stars create essentially all elements in the Universe that are
heavier than helium.

In stars with an initial mass of less than about 8 M, as the giant phase progresses, the
dense matter in the core reaches equilibrium in a new state of matter called a degenerate
electron gas. As we will see in the next section, regions of the core that are in this state
are supported against further gravitational contraction, even in the absence of nuclear
reactions. As a result, the cores of such stars do not heat up to the temperatures required
for the synthesis of heavier elements, and at the end of the asymptotic giant phase they
remain with a helium/carbon/oxygen core.



Stellar Evolution and Stellar Remnants | 69

Figure 4.2 Several examples of planetary nebulae, newly formed white dwarfs that irradiate the shells of gas
that were previously shed in the final stages of stellar evolution. The shells have diameters of ~0.2-1 pc. Photo
credits: M. Meixner, T. A. Rector, B. Balick et al., H. Bond, R. Ciardullo, NASA, NOAO, ESA, and the Hubble
Heritage Team.

At this point, the remaining outer envelopes of the star expand to the point that they are
completely blown off and dispersed. During this very brief stage (~10* yr), the star is a
planetary nebula' (see Fig. 4.2), in which ultraviolet photons from the hot, newly exposed,
core excite the expanding shells of gas that previously constituted the outer layers of the
star. Finally, the exposed remnant of the original core, called a “white dwarf,” reaches the
endpoint of stellar evolution for stars of this mass. In the white-dwarf region of the H-R
diagram, these stars move with time to lower temperature and luminosity as they slowly
radiate away their heat. White dwarfs are the subject of the next section.

Stars with an initial mass greater than about 8 My continue the sequence of core con-
traction and synthesis of progressively heavier elements, which eventually (and quickly)
ends in a supernova explosion. We shall return to this class of stars in section 4.3.

4.2 White Dwarfs

In the 19th and early 20th centuries, it was discovered that the nearby (2.7 pc) A-type star
Sirius, the brightest star in the sky, is a visual binary, with a white dwarf companion that
was named Sirius B. (In fact, Sirius B is the nearest known white dwarf, and was the first

! Planetary nebulae have nothing to do with planets, and the name has a purely historical origin.
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Figure 4.3 Observed motion on the sky, over the past century, of the visual binary consist-
ing of Sirius A and its faint white dwarf companion, Sirius B. On the left are the observed
positions due the orbital motions around the center of mass, combined with the proper
motion of the system as a whole. On the right side, only the positions of Sirius B relative
to Sirius A are shown. The maximum projected separation of the pair is 10 arcseconds.
Using Kepler's law, a mass close to 1M, is derived for the white dwarf.

one ever found.) An orbital period of about 50 years was observed (see Fig. 4.3), allowing
the first measurement of the mass of a white dwarf, which turned out to be close to 1M,
Like all white dwarfs, Sirius B’s low luminosity and high temperature imply a small radius
of about 6000 km, i.e., less than that of the Earth. The mean density inside Sirius B is
therefore of order 1 ton cm™>. In this section, we work out the basic physics of white
dwarfs and of matter at these extremely high densities.

4.2.1 Matter at Quantum Densities

We saw in the previous section that when the core of a star exhausts its nuclear energy
supply, it contracts and heats up until reaching the ignition temperature of the next avail-
able nuclear reaction, and so on. After each contraction, the density of the core increases.
At some point, the distances between atoms will be smaller than their de Broglie wave-
lengths. At that point, our previous assumption of a classical (rather than quantum) ideal
gas, which we used to derive the equation of state, becomes invalid. To get an idea of the
conditions under which this happens, recall that the de Broglie wavelength of a particle of
momentum p is

_h_ h_ h 4o
T p (2mE)2 T (3mkT)1/2’ (*+9)
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where we have represented the energy with the mean energy of a particle, E ~ 3kT/2.
Since electrons and protons share the same energy, but the mass of the electron is much
smaller than the mass of the proton or of other nuclei, the wavelengths of the electrons
are longer, and it is the electron density that will first reach the quantum domain. At
interparticle separations of order less than half a de Broglie wavelength, quantum effects
should become important, corresponding to a density of

m,  8my(3mkT)?
(A/2)3 h3

Py~ (4.10)

For example, for the conditions at the center of the Sun, T = 15 x 10° K, we obtain

8 x1.7x 1072 g(3x9x1078 gx 1.4 x 107 1% erg K~ x 15 x 10°K)>/2
Pa = (6.6 x 10=%7 erg s)?

=640 gcm™ (4.11)

The central density in the Sun is p &~ 150 g cm~3, and thus the gas in the Sun is still in
the classical regime. Even very dense gas can remain classical, if it is hot enough. For
example, for T = 108K, i.e., E ~ kT ~ 10 keV,

pq ~ 11,000 g cm . (4.12)

Instead of the Maxwell-Boltzmann distribution, the energy distribution at quantum den-
sities will follow Bose-Einstein statistics for bosons (particles with spin that is an integer
multiple of #) or Fermi-Dirac statistics for fermions (particles with spin that is an uneven
integer multiple of %/2). Let us develop the equation of state for such conditions.

4.2.2 Equation of State of a Degenerate Electron Gas

Heisenberg’s uncertainty principle states that, due to the wave nature of matter, the posi-
tion and momentum of a particle are simultaneously defined only to within an uncer-
tainty

AxAp, > h. (4.13)

Similar relations can be written for each of the coordinates, x, y, and z. Multiplying the
relations, we obtain

AxAyAzAp,Ap,Ap, > h’, (4.14)
or
d*pdV > W’ (4.15)

The constant h® thus defines the six-dimensional volume of a “cell” in position—
momentum phase space. The uncertainty principle implies that two identical particles
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Figure 4.4 Approach to degeneracy of the Fermi-Dirac occupation number, f(E), as
kT — 0, shown for kT = Er/2, E/5, Ef /10, and Ef/40. AtkT < Er, all particles occupy
the lowest energy state possible without violating the Pauli exclusion principle. The distri-
bution then approaches a step function, with all energy states below Ey occupied, and all
those above Ep empty.

that are in the same phase—space cell are in the same quantum state. According to Pauli’s
exclusion principle, two identical fermions cannot occupy the same quantum state. Thus,
fermions that are closely packed and hence localized into a small volume, dV, must each
have a large uncertainty in momentum, and have momenta p that are different from those
of the other fermions in the volume. This necessarily pushes the fermions to large p’s,
and large momenta mean large pressure.

The Fermi-Dirac phase-space distribution, embodying these principles for an ideal gas
of fermions, is

25+1 d*pdVv

(4.16)

where s is the spin of each fermion in units of %, and (T is the chemical potential® of the
gas. When T — 0, then p(T) approaches an asymptotic value, Ef. When kT « E, the first
term in the Fermi-Dirac distribution (the occupation number) approaches a step function
(see Fig. 4.4) in which all particles occupy the lowest energy states possible without violating
the Pauli principle. This means that all energy states up to an energy Er are occupied, and
all above Ey are empty. Under such conditions, the gas is said to be degenerate. For

2 The chemical potential of a thermodynamic system is the change in energy due to the introduction of an
additional particle, at constant entropy and volume.
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dA

Figure 4.5 Calculation of the pressure exerted by particles of an ideal gas with
momentum p that are reflected off the side of a container.

degenerate electrons, which are s = 1/2 particles, having an isotropic velocity field, the
phase—space distribution will be

2 x 4np? 2 if |p| < py

dN(p)dp = . , 4.17
(p)ap { 0 ifpl > py (4.17)
where py, called the Fermi momentum, is the magnitude of the momentum corresponding
to the Fermi energy E;. Dividing by dV, we obtain the number density of electrons of a
given momentum p:

2dp
n(pdp=| S LIPISP (4.18)
0 if |p| > py
Integrating over all momenta from 0 to py gives a relation between the electron density
and py:
I 8m , 8r
Ne = ‘/(; Fp dp = '3—}:L—3pf (419)

Next, let us derive a general expression for the pressure exerted by any ideal gas. By
definition, an ideal gas consists of particles that interact only at short distances, and
hence can transfer momentum only during an “impact” with another particle. Consider
ideal gas particles impinging on the side of a container, with a mean interval dt between
consecutive impacts (see Fig. 4.5). Set the x axis perpendicular to the surface. Particles
with an ¥ component of momentum p, will transfer a momentum 2p, to the surface with
each reflection. The force per unit area due to each collision is then

dF, _2py 2pxva 2pevk
dA ~ dAdt  dAdx  dV '

(4.20)

where v, = dx/dt. The pressure is obtained by summing the forces due to all particles of
all momenta:

o PxVx
P = dN , .
fo (P)= 5, dp (4.21)
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where we have divided by 2 because, at any given time, only half of all the particles will
have a v, component toward the side of the container, rather than away from it. But

PV = mvf = %mv2 = %pv, (4.22)

where we have utilized v + v;’ 4+ v; = v* and assumed that the velocities are isotropic so

that, on average, v} = v; = v7. Since dN/dV =n,

1 o0
P= 5/0 n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical equation of
state,

P = nkT. (4.24)

For a nonrelativistic> degenerate electron gas, however, we replace n(p) with the Fermi-
Dirac distribution in the degenerate limit (Eq. 4.18). Taking v = p/m,, we obtain instead

5/3
n’>,

P, = = 4.25
T3/ h3mep 3h3m, 5 ( )

1 (¥ 8x p* 87 pj‘?_(?,)z” n?

3 87 Sm,

where we have used Eq. 4.19 to express py in terms of n,. To relate n, to the mass density
appearing in the equations of stellar structure, consider a fully ionized gas composed of
a particular element, of atomic number Z and atomic mass number A, and a density of
ions ny. Then

= Ay, = Fte, (4.26)
Am,
Substituting into Eq. 4.25, we obtain a useful form for the equation of state of a degenerate
nonrelativistic electron gas:

2/3 2 5/3
AT A (EY e (4.27)
¢ 5/3 ) .
T 20m.m, A

The important feature of this equation of state is that the electron pressure does not
depend on temperature. Indeed, in our derivation of this equation, we have assumed
that kT is effectively zero. (More precisely, kT is very low compared to the energy of the

most energetic electrons at the Fermi energy, which are prevented from occupying lower
energy states by the Pauli principle—see Problem 1.)

In a typical white dwarf, p ~ 10° g cm™? and T ~ 107 K. White dwarfs are generally
composed of material that was processed by nuclear reactions into helium, carbon, and
oxygen, and therefore Z/A = 0.5. Plugging these numbers into 4.27, we find

3 Note that, although we have used nonrelativistic considerations (Eq. 4.22) to derive Eq. 4.23, it holds in the
relativistic case as well. We can easily verify that, for an ultrarelativistic gas with particle energies E, by replacing
p with E/c, v with ¢, and n(p)dp with n(E)dE, we recover the relation P = u/3, which we derived in Eq. 3.74.



Stellar Evolution and Stellar Remnants | 75

~27 2
P, ~ (6.6 x 107% erg s) 0.553(10° g )5/
2029 % 10728 p (1.7 5 1034 g)3/3

=3 x 10?? dyne cm ™. (4.28)

As opposed to the electrons, the nuclei at such densities are still completely in the classical
regime. The thermal pressure due to the nuclei, assuming a helium composition, is

106 3 x1.4x 10716 K1 x 107 K
Py = n kT = LkT N gam -’ X X erg X
4my, 4x1.7x10"%*g
= 2 x 10?%dyne cm . (4.29)

The degenerate electron pressure therefore completely dominates the pressure in the star.

4.2.3 Properties of White Dwarfs

Next, we can see what the degenerate electron pressure equation of state, combined with
the other equations of stellar structure, implies for the properties of white dwarfs. Let us
start with the relation between mass and radius.

4.2.3.1 Mass—Radius Relationship
The equations of mass continuity and hydrostatic equilibrium, expressed as scaling rela-
tions (see Egs. 3.80 and 3.81), suggest

M
~ 5 (4.30)
and
GMp GM?
P~ ~ : (4.31)
r r4

The degenerate electron-gas equation of state is

M5/3
P~ bp b (4.32)
where the constant factor b is given in Eq. 4.27. Equating the pressures gives
b
~ M1 4.33
ro = (4.33)

In other words, the radius of a white dwarf decreases with increasing mass. An order-of-
magnitude estimate of the radius is therefore

b h? 2Z\°/3
Faud ~ —M™13 ~ (_) M-13

G ZOmemf,”G A
(6.6 x 10727 erg 5)2(2 x 103 g)~1/3 Z\NP M\
20 x 9 x 10-28 g (1.7 x 10-24 g)5/3 6.7 x 10~8 cgs \ A Mo

5/3 —-1/3
=1.2 x 10°cm Z M , (4.34)
A Mg
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i.e., about 4000 km for Z/A = 0.5 and M = 1M, as deduced for observed white dwarfs
from their luminosities and temperatures. A full solution of the equations of stellar
structure for the degenerate gas equation of state gives

z 5/3 M -1/3
fwd = 2.3 x 10°cm (Z) (M—) : (4.35)
©

4.2.3.2 The Chandrasekhar Mass
The larger the white-dwarf mass that we consider, the smaller r,q becomes, implying
larger densities, and therefore larger momenta to which the electrons are pushed. When
the electron velocities become comparable to the speed of light, we can no longer assume
v = p/min Eq. 4.23. Instead, v, which dictates the rate at which collisions transfer momen-
tum to the container wall, approaches c. In the ultrarelativistic limit, we can replace v with
c. Equation 4.25 is then replaced with
4 :

P, = % ! ?1—7; 2pedp = %% (4.36)
Again using Egs. 4.19 and 4.26, we obtain the equation of state for an ultrarelativistic
degenerate spin-1/2 fermion gas:

3\ he 2\
P, =(— — (= 3 4.37
e (Sn) 4m;/3(A) g 37

Compared to the nonrelativistic case (Eq. 4.27), note the 4/3 power, but also the fact that the
electron mass does not appear, i.e., this equation holds for any ultrarelativistic degenerate
ideal gas of spin-1/2 particles. This comes about because, for ultrarelativistic particles,
the rest mass is a negligible fraction of the total energy, E = (m?c* + pc?)!/?, and hence

p = E/c. As we go from small to large white-dwarf masses there will be a gradual transition
from the nonrelativistic to the ultrarelativistic equation of state, with the power-law index
of p gradually decreasing from 5/3 to 4/3.

This necessarily means that, as we go to higher masses, and the density increases due
to the shrinking radius, the pressure support will rise more and more slowly, so that the
radius shrinks even more sharply with increasing mass.* To see what happens as a result,
let us rederive the scaling relations between mass and radius, but with an index (4 + €)/3,
and then let € approach 0. Thus,

P ~ p#ta3 (4.38)
SO

M(4+e)/3 MZ

T A (4.39)

* Sirius B, with a mass of 1M, is among the more massive white dwarfs known, and its equation of state is
already in the mildly relativistic regime. Its radius, 5880 km, is therefore smaller than would be expected based
on Eq 4.35, but is fully consistent with the results of a relativistic calculation.
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or

re ~ ME-D/3, (4.40)
and

r~ MlE2/3€ (4.41)
When € — 0,

r—- M =0. (4.42)

In other words, at a mass high enough so that the electrons become ultrarelativistic, the
electron pressure becomes incapable of supporting the star against gravity, the radius
shrinks to zero (and the density rises to infinity), unless some other source of pressure
sets in. We will see that, at high enough density, the degeneracy pressure due to protons
and neutrons begins to operate, and it can sometimes stop the full gravitational collapse,
producing objects called neutron stars.

The above argument implies that there is a maximum stellar mass that can be supported
by degenerate electron pressure. It is called the Chandrasekhar mass. To estimate it, recall
from the virial theorem that

PV = —1E,. (4.43)

Substituting the ultrarelativistic electron degeneracy pressure for P, and the usual
expression for the self-energy Eg;, we can write

3\’ he [2\*° 1 GM?
) E_(z) v~ (4.44)
8 4m;'/ 3\ A 3 0r
With
M 4.45
P~ (4.43)
and
4 4
V=—1r, (4.46)
3
r cancels out of the equation and we obtain
Z\* [ hc 7
M~011( — ; 4.4

A full solution of the equations of stellar structure for this equation of state gives a
somewhat larger numerical coefficient, so that the Chandrasekhar mass is

Z\* ( he ¥
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The expression Gmﬁ /(hc) that appears in the Chandrasekhar mass is a dimensionless
constant that can be formed by taking a proton’s gravitational self-energy, with the proton
radius expressed by its de Broglie wavelength, and forming the ratio with the proton’s rest

energy:
Gm; Gm;
~a= h/(mpc)myc? — he

6.7 x10 % cgs (1.7 x 107%* g)?
© 6.6x 1027 ergs x 3 x 1010 cm s~!

~107%. (4.49)

The constant ag expresses the strength of the gravitational interaction, and is the gravi-
tational analog of the fine-structure constant,

e’ 1

_F .1 4.50
Bem =g 137 (4.50)

which expresses the strength of the electromagnetic interaction. Equation 4.48 says that
the maximum mass of a star supported by electron degeneracy pressure is, to an order of
magnitude, the mass of a’/* protons (i.e., ~10% protons). Since Z/A ~ 0.5,

Ma = 0.21 x 0.52 x 10°%7 x 1.7 x 102 g = 1.4 M. (4.51)

In fact, no white dwarfs with masses higher than M, have been found.

There is also a lower bound to the masses of isolated® white dwarfs that have been
measured, of about 0.25Mg. This, however, is a result of the finite age of the Universe,
1.4 x 10" yr. Stars that will form white dwarfs having masses smaller than this (namely,
stars that have an initial mass on the main sequence smaller than about 0.8 M) have not
yet had time to go through their main-sequence lifetimes, even if they were formed early
in the history of the Universe.

4.2.3.3 White Dwarf Cooling

Due to the good thermal conduction of the degenerate electrons in a white dwarf (similar
to the conduction in metals, which arises in the same way), the temperature inside a
white dwart is approximately constant with radius. The temperature can be estimated by
recalling that a white dwarf forms from the contraction of a thermally unsupported stellar
core, of mass M, down to the radius at which degeneracy pressure stops the contraction.
Just before reaching that final point of equilibrium, from the virial theorem, the thermal
energy will equal half the gravitational energy:

1 GM?

E‘thN'—

T (4.52)

> In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes lower
the mass of a white dwarf, or even destroy the white dwarf completely. See section 4.6.3.
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For a pure helium composition, the number of nuclei in the core is M/4my, and the
number of electrons is M/2my. The total thermal energy (which, once degeneracy sets it,
will no longer play a role in supporting the star against gravity) is therefore

EthziNkT=E£(1+l) kT = o Myr (4.53)
2 2m, \2 4 my,
and so
4GM
AT ~ ot 2 (4.54)

Substituting the equilibrium ryq of white dwarfs from Eq. 4.34 yields

8/3 —-5/3

kT - SOszemp é / M4/3
9h? A

80(6.7 x 1078 cgs)? 9 x 10728 g (1.7 x 10~ g)3/3

- =5/3 33 \4/3
- 9(66 x 10—27 erg S—l)Z 0.5 (1 x 10 g)

= 1.1 x 10 %erg, (4.55)

for a 0.5M(, white dwarf. The temperature is thus kT ~ 70 keV, or T ~ 8 x 108K, and a
just-formed degenerate core is a very hot object, with thermal emission that peaks in the
X-ray part of the spectrum. As such, once the core becomes an exposed white dwarf, its
radiation ionizes the layers of gas that were blown off in the various stages on the giant
phase. As already noted, this produces the objects called planetary nebulae.

A white dwarf is an endpoint in stellar evolution, devoid of nuclear reactions. It there-
fore cools by radiating from its surface the thermal energy stored in the still-classical gas
of nuclei within the star’s volume. (The degeneracy of the electron gas limits almost com-

pletely the ability of the electrons to lose their kinetic energies.) The radiated luminosity
will be

L=4nrloTy, (4.56)

where T is the effective temperature of the white-dwarf photosphere. Although electron
heat conduction leads to a constant temperature over most of the volume, there is a thin
nondegenerate surface layer (of order 1% of the white-dwarf radius) that insulates the star.
This layer lowers T relative to the interior temperature and slows down the rate of energy
loss.

However, to obtain a crude upper limit on the rate at which a white dwarf cools by
means of its radiative energy loss, let us assume a constant temperature all the way out to
the surface of the star, so that Tz ~ T. The radiative energy loss rate is then

dEw,  3MkdT

2 T4 —
drriqo T

& Bm, d (4:57)
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(where we have included in the right-hand term only the contribution of the nuclei to
the thermal energy from Eq. 4.53). Separating the variables T and t, and integrating, the
cooling time to a temperature T is

3Mk
8mpdmnr’ 03T
3x1x102%gx14x10"ergK™!
T 8x 1.7 x 1072 g 47 (4 x 108 cm)? x 5.7 x 105 cgs x 3T2

Ay -3
- 10° ) 4.58
3 0”(1031() (+8)

where we have taken M = 0.5Mg and ryq = 4000 km. (We have abbreviated the units of
the Stefan-Boltzmann law’s o as cgs.) Alternatively, we can write the temperature as a

Tcool ™

function of time as

T i =1/3
O (- 4.59
10°K (3 x 109yr) #23)

Thus, even with the unrealistically efficient cooling we have assumed, it would take a

0.5M, white dwarf several gigayears to cool to 10 K. In reality, the insulation of the
nondegenerate surface layer results in an effective temperature that is significantly lower
than the interior temperature, and hence an even lower cooling rate. Furthermore, at some
point in the cooling evolution, crystallization of the nucleons inside the white dwarf takes
place, and the latent heat that is released and added to the thermal balance further slows
down the decline in temperature. Detailed models have been calculated that take these
and other processes into account for various masses and chemical compositions of white
dwarfs (a carbon/oxygen core is usually assumed, surrounded by helium and hydrogen
envelopes). The models show that over 10'° yr, comparable to the age of the Universe,
white dwarfs cannot cool below ~3000—4000K. This explains why most white dwarfs are
observed to have high temperatures, and hence their blue to white colors. The coolest
white dwarfs known have effective temperatures of ~3500 K.

4.2.3.4 Brown Dwarfs
Let us digress for a moment from the subject of stellar remnants, and use the equations we
have developed to see that electron degeneracy and its consequences also dictate a minimal
initial mass that a star must have to shine. Consider a newly forming star (or “protostar”)
composed of a collapsing cloud of hydrogen. Nuclear ignition of hydrogen requires a
minimal temperature of about Ty, ~ 107K. Recall the relation between temperature and
mass of a white dwarf, obtained by arguing that the contraction of the core will halt at
the radius when degeneracy pressure sets in (Eq. 4.55). However, for fully ionized hydro-
gen (as opposed to helium), N = 2M/m,, (rather than N = 3M/4m,; Eq. 4.53). There
are 8/3 times more particles, and the temperature is correspondingly lower, so Eq. 4.55
becomes

_10G*m,my”’ (Z)‘”

kT 2

M*3, (4.60)



Stellar Evolution and Stellar Remnants | 81

If the mass of the protostar is small enough such that contraction halts before T, is
attained, the object will never achieve true stardom on the main sequence. The limiting
mass is

—3/4
10G2m,my" Z\*"?
Mpmin ~ (kTign)*/* (TP (K) = 0.09M,, (4.61)

where we have assumed Z/A = 1, appropriate for hydrogen. A full solution of the stellar
structure equations gives

Muin = 0.07Mo. (4.62)

Such “failed stars,” with masses lower than this limit, are called brown dwarfs. As noted
in section 2.2.2, stars of this type have indeed been found, and are labeled with spectral
types Land T.

4.3 Supernovae and Neutron Stars

4.3.1 Core Collapse in Massive Stars

We now return to stars with initial masses (i.e., their masses when they begin their lives
on the main sequence) of about 8 M, or more. This corresponds to spectral types O and
“early” B. After exhausting most of the hydrogen in their cores, such stars move to the
giant branch. They then begin a sequence of steps, each consisting of the contraction and
heating of the inner regions, resulting in the ignition of new nuclear reactions. As time
advances, shells at various inner radii attain the temperatures and the densities required
for the reactions that produce progressively heavier elements. Apart from the reactions
already discussed for lower-mass stars,

‘He+2C >0 +y (4.63)
and
*He +°0 - Ne + y, (4.64)

these massive stars can also burn carbon via the reactions

2C 4+12C >®Ne +*He + y, (4.65)
2C+2C—>%Na+p, (4.66)
and

2c+2¢ 5BMg+n. (4.67)
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Figure 4.6 Simplified schematic view of the layered structure of a massive star and the
distribution of the main elements that compose it, at the onset of core collapse and the
ensuing supernova explosion.

Carbon burning is followed by neon, oxygen, and silicon burning. Each of these stages
takes less and less time. For example, for a 25M, star, the duration of each burning
stage is

H ~5x10°%yr
He ~5x10°yr
C ~500yr
Ne ~1yr
Si ~ 1day.

Massive stars undergo all the stages of nuclear burning up to the production of elements
in the “iron group” with atomic mass number around A = 56, consisting of isotopes of
Cr, Mn, Fe, Co, and Ni. At this stage, the star’s outer envelope has expanded to about
10007y, and it has a dense core of radius ~10* km with an onion-like layered structure
(see Fig. 4.6). The outer layers of this core are still burning hydrogen. Looking inward, the
core consists of concentric shells composed primarily of helium, carbon, oxygen, neon,
silicon, and iron, respectively.

Figure 4.7 shows, for all the chemical elements, the binding energy per nucleon (i.e.,
the binding energy of a nucleus divided by its mass number A). Energy can be gained
by fusing or fissioning elements with low binding energy per nucleon into elements with
high binding energy per nucleon. The iron group elements are the most tightly bound
nuclei, and are therefore a “dead end” in nuclear energy production. Synthesis of iron-
group elements into heavier elements consumes, rather than releases, thermal energy.
This fact is at the root of the “iron catastrophe” that ensues.

When the central iron core continues to grow and approaches M,, two processes begin:
nuclear photodisintegration and neutronization.
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Figure 4.7 Binding energy per nucleon as a function of atomic mass number. Several ele-
ments are marked. The iron-group elements with A = 56 have the highest binding energy
per nucleon, 8.8 MeV, and therefore nuclear fusion of these elements into heavier elements
does not release thermal energy, but rather consumes it.

Nuclear Photodisintegration: The temperature is high enough for energetic photons to be
abundant, and they get absorbed in the endothermic (i.e., energy-consuming) nuclear
reaction

y +°%Fe — 13*He + 4n, (4.68)

with an energy consumption of 124 MeV. The helium nuclei are further unbound in the
process

y +*He — 2p + 2n, (4.69)

consuming 28.3 MeV (the binding energy of a *He nucleus). The total energy of the star
is thus reduced by (124 + 13 x 28.3)/56 ~ 8.8 MeV= 1.4 x 10~ erg per nucleon. With
about 10’ protons in a Chandrasekhar mass, this corresponds to a total energy loss of
1.4 x 10°? erg, ~10 times the energy radiated by the Sun over 10%° yr.

Neutronization: The large densities in the core lead to a large increase in the rates of
processes such as

e +p—=>n+v, (4.70)
e~ +°°Fe —>°Mn + v, (4.71)
e~ +°Mn —Cr + v,. (4.72)

This neutronization depletes the core of electrons, and their supporting degeneracy
pressure, as well as of energy, which is carried off by the neutrinos.
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The two processes lead, in principle, to an almost total loss of thermal pressure support
and to an unrestrained collapse of the core of a star on a free-fall timescale. For the typical
core densities prior to collapse, p ~ 10° g cm™* (calculated from stellar evolution models),
this timescale is (Eq. 3.15)

( 31 )1/2 0.1s (4.73)
T = i U Y 5 .
T =\3265

In practice, at these high densities, the mean free path for neutrino scattering becomes of
order the core radius. This slows down the energy loss, and hence the collapse time, to a
few seconds.

As the collapse proceeds and the density and the temperature increase, the reaction

e +p—>ntv (4.74)
becomes common, and is infrequently offset by the inverse process of neutron decay

n—>p+e +7, (4.75)
leading to an equilibrium ratio of densities of

Ne =Ny N ﬁnn. (4.76)

Thus, most of the nucleons become neutrons, and a neutron star forms, in which degen-
erate neutrons, rather than electrons, provide the pressure support against gravity.

4.3.2 Properties of Neutron Stars

The properties of neutron stars can be estimated easily by replacing m, with m, in
Egs. 4.34—-4.35, describing white dwarfs. Thus,

t, ’\'23><109cmme 2\ (M _1/3’”14km M o 4.77
ns e m, \ A Mo - 1.4Mg ' )

Here we have set Z/A = 1, since the number of particles contributing to the degeneracy

pressure (i.e., the neutrons) is almost equal to the total number of nucleons. Since the
radius of a neutron star is about 500 times smaller than that of a white dwarf, the mean
density is about 10® times greater, i.e., p ~ 10'* g cm—>. This is similar to the density of
nuclear matter. In fact, one can consider a neutron star to be one huge nucleus of atomic
mass number A ~ 10%7.

Our estimate of the radius is only approximate, since we have neglected two effects
which are important. First, at these interparticle separations, the nuclear interactions play
an important role in the equation of state, apart from the neutron degeneracy pressure.
The equation of state of nuclear matter is poorly known, due to our poor understanding
of the details of the strong interaction. In fact, it is hoped that actual measurements of
the sizes of neutron stars will provide experimental constraints on the nuclear equation
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of state, which would be important input to nuclear physics. Second, the gravitational
potential energy of a test particle of mass m at the surface of a ~1.4M neutron star, of
radius r ~ 10 km, is a significant fraction of the particle’s rest-mass energy:

Epxy GM 67 x10%cgsx14x2x10¥¢g
mc2  rc2 10 x 105 cm (3 x 100 cm s—1)?

~ 20%. (4.78)

This means that matter falling onto a neutron star loses 20% of its rest mass, and the
mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the total mass
that composed it. Thus, a proper treatment of the physics of neutron stars needs to be
calculated within the strong-field regime of general relativity. More detailed calculations,
including these two effects, give a radius of about 10 km for a 1.4M neutron star.

The Chandrasekhar mass,

Z\*{ he i

can be used to estimate a maximal mass for a neutron star, beyond which the density is so
high that even the degenerate neutron gas becomes ultra-relativistic and unable to support
the star against gravity. Again replacing the Z/A = 0.5, appropriate for white dwarfs, with
Z/A = 1, describing neutron stars, gives a factor of 4, or

Mg max = 1.4Mg x 4 = 5.6Mp. (4.80)

Taking into account general relativistic effects lowers this estimate to about 5M. This
reduction come about because, in the regime of strong gravity, the pressure itself con-
tributes significantly to the gravitational field, and thus pressure gradually loses its
effectiveness in counteracting gravitation. Detailed calculations that attempt also to take
into account the strong interaction of nuclear matter further lower the maximal mass to
2-3My, but this is still highly uncertain.

4.3.3 Supernova Explosions

The fall of the layers of matter that surrounded the core onto the surface of a newly formed
neutron star sets off a shock wave that propagates outward and blows off the outer shells
of the star, in what is observed as a supernova explosion (see Fig. 4.8). The details of how
exactly this occurs are not understood yet. In fact, sophisticated numerical simulations of
the collapse are presently still unable to reproduce all the properties of the observed “explo-
sion,” i.e., the ejection of the star’s outer regions. A kinetic energy of about 3 x 10°! erg
is imparted to the material flying out (as determined from measurements of the mass
and velocity of ejecta in supernova remnants). About 3 x 10*° erg can be observed over a
period of order one month as luminous energy, driven primarily by the decay of radioactive
elements synthesized during the last few moments before collapse, during the collapse,
and during the explosion. Although the luminous energy is only 1% of the kinetic energy,
it nevertheless makes a supernova an impressive event; the mean luminosity is of order
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Figure 4.8 Optical-light image of the supernova SN1994D, below and to the left of its host galaxy, NGC 4526.
For several weeks around its peak brightness, the luminosity of a supernova is comparable to that of an entire
galaxy, with L ~ 1010Lg,. (The spikes emerging from the supernova are due to diffraction.) Photo credit: NASA,
ESA, the High-Z Supernova Search Team and the Hubble Key Project Team.

3 x 10* erg
30d x 24 hr x 60m x 60 s

Lsn ~ 10 ergs™! ~ 3 x 10°Lg, (4.81)

comparable to the luminosity of an entire galaxy of stars (see chapter 6).
However, the total gravitational binding energy released in the collapse of the core to a
neutron star is

GM® 53 M g Tns -1
By~ = =5x10 (1.4M@) (IOkm) erg. (4.82)

The kinetic and radiative energies are just small fractions, ~10~2 and ~10~*, respectively,
of this energy. The bulk of the energy released in the collapse is carried away by neutrino—
antineutrino pairs. The density is so high that photons cannot emerge from the star, and
they undergo frequent photon—photon collisions. These produce electron—positron pairs,
which form neutrino pairs:

y+y > e +e = v+ U,y + Uy, vr + Dy (4.83)
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(the u and 7 neutrinos are neutrinos related to the muon and the tauon, which are heavy
relatives of the electron.) The neutrinos can pass through the star with few scatterings
(see Problem 3), and can therefore drain almost all of the thermal energy.

A striking confirmation of this picture was obtained in 1987, with the explosion of
Supernova 1987A in the Large Magellanic Cloud, a satellite galaxy of our Galaxy (the
Milky Way; see chapter 6), at a distance of 50 kpc from Earth. This was the nearest
supernova observed since the year 1604. A total of 20 antineutrinos (several of them with
directional information pointing toward the supernova) were detected simultaneously in
the span of a few seconds by two different underground experiments. Each experiment
consisted of a detector composed of a large tank filled with water and surrounded by
photomultiplier tubes. These experiments were initially designed to search for proton
decay. The experiments discovered the antineutrinos, and measured their approximate
energies and directions via the reaction

be+p—>n+tet, (4.84)

by detecting the Cerenkov radiation emitted by the positrons moving faster than the speed
of light in water. The typical energies of the v,’s were 20 MeV. The detection of 20 particles,
divided by the efficiency of the experiments to antineutrino detection (which was a function
of antineutrino energy), implied that a fluence (i.e., a time-integrated flux) of 2 x 10? cm~2
electron antineutrinos had reached Earth. The electron antineutrinos, v,’s, are just one
out of six types of particles (v, Ve, vy, Uy, Vr, V) that are produced in similar numbers and

carry off the collapse energy. Thus, the total energy released in neutrinos was

Eneutrino ~ 2 % 10° cm™2 x 6 x (20 MeV x 1.6 x 10~ %erg MeV ™)
x 41 (5 x 10* pc x 3.1 x 10® cm pc 1) ~ 10°* erg, (4.85)

close to the total energy expected from the collapse of a stellar core.

We note here that there is an altogether different avenue for stars to pass the Chan-
drasekhar limit and explode, in events that are called type Ia supernovae. White dwarfs
that are in close binaries, where mass transfer takes place from a companion onto the
white dwarf, can reach M,. At that stage, or possibly even before actually reaching M,
thermonuclear ignition of the carbon core occurs. However, this happens under degen-
erate conditions, without the thermostatic effect of a classical equation of state. With a
classical equation of state, a rise in temperature produces a rise in pressure that leads to
an expansion of the star, a lowering of the temperature, and a decrease in the nuclear reac-
tion rates. Instead, under degenerate conditions, the white dwarf structure is insensitive
to the rise in temperature, which raises the nuclear reaction rates more and more, ending
in a thermonuclear runaway that blows up the entire star. As opposed to core-collapse
supernovae, which leave a neutron star remnant (or a black hole, see below), it is believed
that type Ia supernovae leave no stellar remnant (see Problem 4). It is presently unknown
what kind of star is the companion of the white dwarf in the systems that are the progeni-
tors of of type la supernovae. It is also possible that a type-1a explosion is actually the result
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of the merger of two white dwarfs—see Problem 6. The supernova shown in Fig. 4.8 was a
type Ia event. We will return later to the physics of accretion in close binaries (section 4.6)
and to the use of type Ia supernovae in cosmology (chapters 7 and 9).

Finally, there exists a class of objects even more luminous than SNe, though very tran-
sient, called gamma-ray bursts (GRBs). These explosions release of the order of 10°! erg
over a period of just a few seconds. As their name implies, much of this energy is
released at gamma-ray frequencies, but the rapidly fading “afterglows” of the explosions
can sometimes be detected at longer wavelengths on longer timescales—minutes in X-
rays, days in the optical, and weeks at radio wavelengths. A GRB occurs about once a
day in the observable Universe. It is now known that at least half of these explosions
occur in star-forming galaxies, i.e., galaxies that have massive young stars. This argues
that some GRBs result from the core collapse of massive stars of a particular type or in
a particular configuration, i.e., that they are a certain kind of core-collapse supernova. In
recent years, evidence has been accumulating that actually links some GRBs to super-
novae observed at the same location. The nature and mechanisms of GRBs are still widely
debated. The large energy outputs, as well as indirect evidence of the existence of highly
relativistic bulk motions of material, suggest that GRBs involve the formation of black
holes.

The material expelled by the mass outflows from giants and by both types of
supernovae—core-collapse and la—is essentially the only source of all “heavy” elements.
Except for helium and trace amounts of the next few lightest elements, which were syn-
thesized early in the history of the Universe (as we will see in chapter 9), all nucleosynthesis
takes place inside stars during their various evolution stages, or during their explosions
as supernovae.

4.4 Pulsars and Supernova Remnants

Many neutron stars have been identified as such in their manifestation as pulsars. Pulsars
were first discovered with radio telescopes in the 1960s as point sources of periodic pulses
of radio emission, with periods of the order of t ~ 1073 to 1 s. Today, over 1000 pulsars
are known. The periods of most pulsars are observed to grow slowly with time in a very
regular manner. The predictability of the pulse arrival times is comparable to that of the
most accurate man-made clocks. Figure 4.9 shows a typical pulsar time series. One of
the best studied pulsars, which we shall use as an example, is the Crab pulsar, at the
center of the Crab nebula (see Fig. 4.10). The Crab nebula, an example of a supernova
remnant, is an expanding cloud of gaseous fragments at the same location in the sky
where a bright supernova explosion was observed and documented in the year 1054 by
Chinese, Japanese, and Korean astronomers. The Crab pulsar, from which pulsations are
detected at radio, optical, and X-ray wavelengths, has a pulsation period of T = 33 ms, i.e.,

an angular frequency
2

w=— =190 s71. (4.86)
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Figure 4.9 Flux at 430 MHz vs. time from PSR ]0546+2441, a typical radio pul-
sar, over several periods. The pulse period is 2.84385038524 s (i.e., measured to
12 significant digits). Note the variable strength, and occasional disappearance of
the pulses. The inset shows a zoom-in on the pulse profile, averaged over many
periods. Data credit: D. Champion, see Mon. Not. Royal. Astron. Soc. (2005), 363,
929.

The period derivative is

dr 1 ms

— =42 x 1078, 4.87

at  75yr 8 ( )
or

dw 2w dt 9 3

- =g =-24x10757 (4.88)

The total luminosity of the Crab nebula, integrated over all wavelengths, is
Lt & 5 x 10%%erg s7, (4.89)

and is mostly in the form of synchrotron radiation, i.e., radiation emitted by relativistic
electrons as they spiral along magnetic field lines.

4-4.1 Identification of Pulsars as Neutron Stars

To see that the Crab pulsar (and other pulsars) are most plausibly identified with spin-
ning neutron stars, let us consider possible mechanisms for producing periodicity of the
observed magnitude and regularity. Three options that come to mind, of astronomical phe-
nomena associated with periodicity, are binaries, stellar pulsations, and stellar rotation.
For binary orbits, the angular frequency, masses, and separation are related by Kepler’s
law,
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Figure 4.10 The Crab nebula, the remnant of a core-collapse supernova that exploded in the year 1054,

at a distance of 2 kpc. Top: Image in optical light. Image scale is 4 pc on a side. Bottom: Zoom in on the
area marked in the top photo, in optical light (left), with the pulsar at the center of the remnant indicated
by the arrow; and in X-rays (right), showing the pulsar, bidirectional jets, and a toroidal structure formed by
synchrotron emission from energetic particles. Note that a similar emission morphology is faintly discernible
also in the optical image on the left. Photo credits: European Southern Observatory; and NASA/CXC/ASU and
J. Hester et al.
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o = =11 "% (4.90)

[G(M; + My)]'/?
w2/3
_[67x 1078 cgs (4 x 10*? g)]'/3
(190 51273

=2 x 10’ cm = 200 km, (4.91)

where we have assumed two solar-mass objects and inserted the Crab pulsar’s frequency.
The separation a is much smaller than the radii of normal stars or of white dwarfs. Only a
pair of neutron stars could exist in a binary at this separation. However, general relativity
predicts that two such masses orbiting at so small a separation will lose gravitational
binding energy via the emission of gravitational waves (see Problems 5 and 6). This loss
of energy will cause the separation between the pair to shrink, and the orbital frequency
to grow, contrary to the observation that the pulsar frequencies decrease with time. Thus,
orbital motion of stellar-mass objects cannot be the explanation for pulsars.

A second option is stellar pulsations. Stars are, in fact, observed to pulsate regularly
in various modes, with the pulsation period dependent on density as® t o p~/2. Normal
stars oscillate with periods between hours and months, and white dwarfs oscillate with
periods of 100 to 1000 s. Neutron stars, which are 10® times denser than white dwarfs,
should therefore pulsate with periods 10* times shorter, i.e., less than 0.1 s. However, the
most common period for pulsars is about 0.8 s. There is thus no known class of stars with
the density that would produce the required pulsation period.

Finally, let us assume that the rapid and very regular pulsation is produced via
anisotropic emission from a rotating star. The fastest that a star can spin is at the angular
frequency at which centrifugal forces do not break it apart. This limit can be found by
requiring that the gravitational force on a test mass m, at the surface, be greater than the
centrifugal force:

GMm 5
> mow’r, (4.92)
2
or
M o
-2 (4.93)
and therefore
. 3M  3e? 3(190s71)? TP — -
= > = = 1.0 X m -, .
P =4 7 4nG ~ 41 x 67 x 10-8 cgs & (4:94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying apart, its
mean density must be at least five orders of magnitude larger than that of a white dwarf,

61t is easy to see from a dimensional argument that this must be the case for radial pulsations. Consider a
star that is “squeezed” radially, and then released. The restoring force due to the pressure has dimensions of
pressuretimesarea, F ~ PA ~ (GMp/r)r?, where we have used the equation of hydrostatic equilibrium (Eq. 3.19)
to express the dimensions of the pressure. Equating this to the mass times the acceleration, Ma ~ Mr/t2, gives
the required result. Note that the pulsation period,  ~ (Gp)~1/2, is essentially the same as the free-fall timescale,
Eq. 3.15.
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but consistent with that of a neutron star. Note that the pulsars with the shortest periods
known, of about 1 ms (rather than the Crab’s 33 ms), must have mean densities 1000
times larger to avoid breaking apart, i.e., ~ 10'* g cm™>. This is just the mean density we
predicted for neutron stars.

Next, let us presume that the luminosity of the Crab nebula is powered by the pulsar’s
loss of rotational energy as it spins down. (The observed luminosity of the pulsar itself,
~10%! erg s~!, is much too small to be the energy source of the extended emission.) Since

Et = 3107, (4.95)

where [ is the moment of inertia,

Lt . dErot_ I d(l)
TR T

(4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-density
sphere, I = £Mr?. Then

M2 5 Lt 5x5x10¥ergs!
L T wdojdt T 2x190s (- 2.4 x 10952

=3 x 10® g cm?. (4.97)

A 1.4M,, neutron star of radius 10 km has just this value of Mr?:
Mr? = 1.4 x 2 x 102 g x (10° cm)? = 2.8 x 10* g cm?. (4.98)

By comparison, a normal star like the Sun has Mr? of order 10° larger than the value in
Eq. 4.98. Conservation of angular momentum, | = Iw, then dictates that when a stellar
core of solar mass and solar radius collapses to a radius of about 10 km, it will spin up
by a factor of order 10°. The rotation period of the Sun is 25.4 days, or 2 x 10° s, which
is typical of main-sequence stars. Collapse of a stellar core to neutron-star proportions is
thus expected to produce an object with a spin period of order milliseconds, as observed
in pulsars.

Thus, we see that if we identify pulsars as rapidly spinning stars, then their spin rate
is that expected from the collapse of the cores of main-sequence stars to neutron star
dimensions; their mean densities are those of neutron stars; and their loss or rotational
energy accounts for the luminosity of the supernova ejecta in which they are embedded, if
they have the moments of inertia of neutron stars. Finally, the location of pulsars at the sites
of some historical supernovae, an explosion that is expected to accompany the formation
of a neutron star (in terms of the energy released, even if the details of the explosion are
not yet fully understood), leaves little doubt that pulsars are indeed neutron stars.

4.4.2 Pulsar Emission Mechanisms

The details of how pulsars produce their observed periodic emission are still a matter of
active research. However, it is widely accepted that the basic phenomenon is the rotation
of a neutron star having a magnetic field axis that is misaligned with respect to the star’s



Stellar Evolution and Stellar Remnants | g3

rotation axis by some angle 6. A spinning magnetic dipole radiates an electromagnetic

luminosity
1 o6 402
L=—Brw sin‘f, (4.99)
6c3

where B is the magnetic field on the surface of the star, at a radius r, on the magnetic pole.
Solving Eq. 4.99 for B, with the observed properties of the Crab, a typical neutron-star
radius, and sin8 =~ 1,

(6c3 L)% [6(3 x 10" em s71)3 x 5 x 10%® erg s71]1/2
P sinf (105 cm)(190 s—1)2 x 1

~8x 102 G. (4.100)

Magnetic fields of roughly such an order of magnitude are expected when the ionized
(and hence highly conductive) gas in a star is compressed during the collapse of the iron
core. The originally small magnetic field of the star (e.g., ~1 G in the Sun) is “frozen” into
the gas. When the gas is compressed, the flux in the magnetic field lines is amplified in
proportion to r~2, corresponding to ~ 10'° between the core of a main sequence star and
a neutron star.

In a process that is not yet fully agreed upon, the complex interactions between mag-
netic and electric fields, particles, and radiation in the neighborhood of the neutron star
power the nebula, and also lead to the emission of radiation in two conical beams in the
direction of the magnetic axis. As the star spins and the magnetic axis precesses around
the rotation axis, each beams traces an annulus of angular radius 8 on the sky, as seen
from the neutron star (see Fig. 4.11). Distant observers who happen to lie on the path
of these “lighthouse beams” detect a pulse once every rotation, when the beam sweeps
past them. This implies, of course, that we can detect only a fraction of all pulsars, namely
those for which the Earth lies in the path of one of the beams.

Evidence that magnetic dipole radiation is the basic emission mechanism can be found
from the age of the Crab pulsar. If such radiation is leading to the pulsar’s loss of rotational
energy, then, combining Egs. 4.96 and 4.99, we find

dErot da) 4
= Jw— ;
% w— X, (4.101)
and
dw
— = Cw’. 4.102
o w ( )

The constant C can be determined from the present values of dw/dt and w,

@y
@}

C= (4.103)

Separating variables in Eq. 4.102 and integrating, we obtain for the age of the pulsar

wpg (11
bpulsar = 2—0.)0 e g L (4.104)
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Figure 4.11 Schematic model of a pulsar. Biconical beams of radiation emerge
along the magnetic axis of a neutron star. The magnetic axis is inclined by an angle
f to the star’s spin axis. Observers in a direction, as viewed from the star, that is
within one of the two annular regions swept out by the beams as the star rotates
will detect periodic pulses.

where w; is the initial angular frequency of the neutron star upon formation. Thus, an
upper limit on the current age of the Crab pulsar is obtained by taking w = wg and w; = oo,

) wo 190 s~
r < . =
pulsar = 5 e 2 X 2.4 x 109 52

=4 x 10" s = 1260 yr. (4.105)

This limit is consistent with the historical age, 950 yr, of the supernova of the year 1054.
The pulsar age will equal 950 yr if we set 7; = 27 /w; = 2.5 ms, close to the expected spin
rate of newly formed neutron stars.”

4-4.3 Neutron Star Cooling

As already noted, according to the above picture, we observe only a fraction of all pulsars,

those for which the Earth is in the rotating pulsar beam. More significantly, pulsars

slow down and lose their rotational energies, and as a result, at some point in time, will-
become undetectable as pulsars. However, there should exist a large population of old,

spun-down, neutron stars—the remnants of all massive stars that have undergone core

collapse to this state. In section 4.2.3.3, we saw that the small surface areas of white dwarfs

result in very long cooling times. The surfaces of neutron stars, smaller by five orders of
magnitude compared to those of white dwarfs, mean that old neutron stars will be “stuck”

at temperatures of order 10° K, with thermal radiation peaking at photon energies of tens

of electron volts (called the extreme UV range).

7 The so-called braking index, which equals 3 in Eq. 4.102 for the case of a magnetic dipole, has actually been
measured directly for several pulsars, and is sometimes less than 3. Such is the case for the Crab pulsar, and its
deduced initial spin period is then actually 19 ms.
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Detailed calculations of neutron star cooling are considerably more uncertain than those
for white dwarfs, partly due to the poorly constrained equation of state on nuclear matter,
which leads to uncertainty in the structure and composition of a neutron star. A cooling
calculation also needs to take into account many different physical processes, not all fully
understood, that may play a role under the extreme conditions of gravity, temperature,
density, and magnetic field inside and near the surface of a neutron star. Interstellar gas
atoms falling onto a neutron-star surface also have an effect, and are likely to heat it to
X-ray temperatures. To date, only several candidate isolated old neutron stars have been
found in X-ray surveys. The small surface areas of neutron stars mean that their optical
luminosities are very low, and hence such objects can be found only when they are near
enough. X-ray surveys do reveal a large population of accreting neutron stars in binary
systems, called X-ray binaries, which we will study in section 4.6.

4.5 Black Holes

In the case of a stellar remnant with a mass above the maximum allowed mass of a neutron
star, no mechanism is known that can prevent the complete gravitational collapse of the
object. In fact, general relativity predicts that even if some new form of pressure sets in
at high densities, the gravitational field due to such pressure will overcome any support
the pressure gradient provides, and the collapse of the star to a singularity, or black hole
is unavoidable.

As its name implies, matter or radiation cannot escape from a black hole. An incorrect
derivation, giving the correct answer, of the degree to which a mass must be compressed
to become a black hole can be obtained by requiring that the escape velocity, v,, from a
spherical mass of radius r be greater than ¢ (and hence nothing can escape),

GM 1, 1,
—r_ > iVe :EC , (4106)

and therefore the Schwarzschild radius is

2GM M
o = 3km—. 4.1
T 2 mMO (4.107)

Photons cannot escape from an object with a mass M that is concentrated within a radius
smaller than r,. The above derivation is incorrect because the kinetic energy of a photon
is not mc?/2, nor is the gravitational potential accurately described by the Newtonian
limit, GM /.

A correct derivation of r;, which we shall only outline schematically, begins with the
Einstein equations of general relativity,

87G
codos, (4.108)

Gy =
H C4

The Einstein equations relate the geometry and curvature of spacetime to the distribution
of mass—energy. T,, is the energy—momentum tensor. It is represented by a 4 x 4 matrix,
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and each of its indices runs over the four spacetime coordinates. This is the “source”
term in the equations and includes mass—energy density and pressure. G,,, is the Einstein
tensor consisting of combinations of first and second partial derivatives, with respect to the
spacetime coordinates, of the metric, g,,. (A more detailed description of T,,, and G, is
given in chapter 8.) The metric describes the geometry of spacetime via the line element

(ds)* = guud,dx,, (4.109)
J7RY

where ds is the interval between two close spacetime events. For example, the metric
(familiar from special relativity) that describes spacetime in a flat (Euclidean) region of
space, far from any mass concentration, is the Minkowski metric, with a line element

(ds)? = (cdt)? — (dx)* — (dy)? — (d=)*. (4.110)
The nonzero terms of the 4 x 4 matrix describing g, in this case are

go=1 gn=—1 gn=—1, gz=—1 (4.111)
In spherical coordinates, the Minkowski metric has the form,

(ds)? = (cdt)* — (dr)* — (rd)* — (r sin@dg)?, (4.112)

ie.,

go=1 gn=-1, gn=-r’ g3=-r’sin’e. (4.113)

Since G, and T,, are symmetric 4 x 4 tensors (e.g., G,, = G,,), there are only 10,
rather than 16, independent Einstein equations, and a zero-divergence condition on T,
(implying local energy conservation) further reduces this to six equations.

A solution of the Einstein equations for the geometry of spacetime in the vacuum
surrounding a static, spherically symmetric, mass distribution, as viewed by an observer
at infinity (i.e., very distant from the mass) is the Schwarzschild metric:

~1
(ds)? = (1 - ZGM) (cdt)? — (1 - ZGM) (dr)> — (rd9)* — (rsinfdg¢)’,  (4.114)

rc? rc?

wherer, 6, and ¢ are spherical coordinates centered on the mass, and t is the time measured
by the distant observer. The time shown by any clock can be found from the proper time

7, defined as
d
dr = ?s (4.115)

For a clock at rest (i.e., dr = df = d¢ = 0),

2GM\ '/ $\1/2
dr = (1 - ) dt = (1 - L) dt. (4.116)

rc?

Consider now a stellar remnant that is compact enough that its radius is within r;, and
hence the Schwarzschild metric (which applies only in vacuum) describes spacetime in
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the vicinity of r;. When a clock is placed at r — r, dt approaches zero times dt. During
a time interval of, say, dt=1 s, measured by a distant observer, the clock near r; advances
by much less. In other words, clocks appear (to a distant observer) to tick more and
more slowly as they approach r;, and to stop completely at r,. This is called gravitational
time dilation.

The electric and magnetic fields of a light wave emitted by a source near r, will also
appear to oscillate more slowly due to the time dilation, and therefore the frequency of
light will decrease, and its wavelength A will increase, relative to the wavelength 2, of light
emitted by the same source far from the black hole. This gravitational redshift is

A 2GM\ 2 ¢\ —1/2
A (1 _ ) - (1 . r—) . (4.117)

When the light source is at r;, the wavelength becomes infinite and the energy of the
photons, hc/A, approaches zero.

In general relativity, once we know the metric that describes spacetime, we can find
the trajectories of free-falling particles and of radiation. In particular, massless parti-
cles and light move along null geodesics, defined as paths along which ds = 0. Setting
ds = 0 in Eq. 4.114, the coordinate speed of a light beam moving in the radial direction
(d0 = dop = 0) is

dr 2GM 7,
- =c (1 - ) = +¢ (1 - —) . (4.118)

rc? r

Atr > r,, the speed is +c, as expected. However, as light is emitted from closer and closer
to r, its speed appears to decline (again, to a distant observer), going to zero at r,. Gravity
works effectively as an index of refraction, with n = oo at ;. As a result, no information
can emerge from a radius smaller than r;, which constitutes an event horizon around the
black hole. We have thus rederived (correctly, this time) the Schwarzschild radius and its
main properties.

Because of gravitational time dilation, a star collapsing to a black hole, as viewed by a
distant observer, appears to shrink in progressively slower motion, and gradually appears
to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an infinite time for the
star to cross r;, and therefore, formally, black holes do not exist, in terms of distant static
observers such as ourselves. (They certainly can exist, even in the “present” of observers
who are near enough to a black hole.) However, for all practical purposes, there are no
differences in observed properties between such “frozen stars” and truly collapsed black
holes. This comes about because, as a source of light falls toward r;, the rate at which
photons from the source reach the observer declines as (1 — r;/r)'/%. Furthermore, the
energy of each photon declines due to the gravitational redshift also as (1 — r,/r)"/2. The
equation of motion for a radially free-falling light source, r(t), can be roughly estimated
by noting that, as the source approaches r,, it will move with a velocity close to ¢, and
hence its geodesic (i.e., its path in spacetime) will be close to that of the null geodesic of
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photons. Let us take the negative solution in Eq. 4.118 (the source is falling to smaller
radii). Separating the variables,

ST . (4.119)
r—r
changing variables to x = r — r;, and integrating gives
c(t — to) = —f BB g — 4 mIn %) = —~[r =1, +rlnfr—nil. (4.120)
X

Asr — r; — 0, the logarithmic term becomes dominant, and we can write the equation of
motion, r(t), as viewed by the distant observer, as

c(t — to)]

fs

r—rs ~ exp [— (4.121)

Inserting this dependence into the expression for the decline in the observed photon
emission rate due to gravitational time dilation, we find that

dNph re\1/2 r—r\"? ct

(where in the last step we have substituted r ~ r, in the denominator, and r — r; in the
numerator using Eq. 4.121).

For example, for a 5M stellar core undergoing its final collapse, the characteristic time is

2r, 2x5x3kmx10°cmkm™! »
— = T Te—— =10"*s=0.1 ms. (4.123)

Thus, after a mere 20 ms, the photon rate will decline by a factor exp(-200) = 10~¥, The
photon emission rate from a Sun-like star emitting in the optical range, at a typical photon
energy of hv = 1 eV, is of order

dNpn L 3.8 x 103 ergs~! 10 ¢ (4.124)
dt hv  1eV x 1.6 x 1072 ergeV ! ' '

A factor of 10% decrease in photon flux implies that, after just 20 ms, the photon emis-
sion rate from the star will decrease to ~10~** s~!, The time between the emission of
consecutive photons will thus be ~10* s, many orders of magnitude larger than the age
of the Universe, which is of order 10'° yr ~10'7 s. The “frozen star” is truly “black,” and
no photons emerge from it after a timescale of milliseconds.

Theoretically, quantum mechanics allows an exception to this rule, and small amounts
of so-called Hawking radiation can escape a black hole, even causing it to “evaporate”
completely if it is small enough. However, it is unclear if black hole evaporation has any
astronomical relevance.

Observationally, there are many objects considered to be stellar-mass black hole candi-
dates, consisting of members of binary systems in which the minimum mass of one of the
members is significantly larger than 3Mg, yet a main-sequence or giant star of such mass
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is not seen. Presumably, black holes form from the core collapse of stars with an initial
mass above some threshold (which is currently thought to be about 25Mg). In some of
these binary systems, accretion of matter onto the black hole is taking place. Such systems
are discussed in more detail in section 4.6. Finally, there is evidence for the existence
of supermassive black holes, with masses of ~10°-10°Mg, in the centers of most large
galaxies. These are discussed in chapter 6.

4.6 Interacting Binaries

Until now, stars were the only luminous objects we considered. However, there exists
an assortment of objects that are powered not by nuclear reactions, but by the accretion
of matter onto a gravitational potential well. Objects in this category include pre-main-
sequence stars, interacting binaries, active galactic nuclei and quasars, and possibly some
types of supernovae and gamma-ray bursts. While all these objects are rare relative to
normal stars, they are interesting and important for many physical and observational
applications. The physics of accretion is similar in many of these objects. In this sec-
tion, we will focus on interacting binaries, which are the best-studied accretion powered
objects.

As already noted, many stars are in binary systems.® Pairs with an orbital period of less
than about 10 days are usually in orbits that are circular, “aligned” (i.e., the spin axes of
the two stars and the orbital plane axis are all parallel), and synchronized (i.e., each star
completes a single rotation about its axis once per orbit, and thus each star always sees the
same side of its companion star). This comes about by the action of the strong tidal forces
that the stars exert on each other at small separations. The force per unit mass on a mass
element at the surface of a star, at distance Ar from the center, due to the mass M; of the
star itself is

Fgan _ GM,
m (Ar)2’

(4.125)

The tidal force on this mass element, due to the influence of the second star of mass M,
at a distance r (assuming Ar < r) is

Fide _ oo (] 1 _2GMyAr 413k
m 2\ 2 (r + Ar)? 3 (+.126)
The ratio between the forces is
Fﬁde 2M2 (AF)3
= —101—1 . 4127
Fgrav M, r ( )

Thus, the larger Ar/r, the more tidal distortion of the shapes of the stars occurs, such that
they become two ovals pointing at each other. As long as the stars are not tidally locked (i.e.,

8 Current evidence is that the binary fraction among stars depends on stellar mass, with most of the massive
stars being in binaries, but most low-mass stars being single. About one-half of solar-mass stars are in binaries.
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M, accretion  pg 1

disk

Figure 4.12 Equipotential surfaces (dotted curves) in the corotating reference frame of a binary system
with mass ratio My /Mj = 5. Left: In this example, both stars are inside their respective Roche lobes,
but are tidally distorted. Loss of energy to tidal friction will cease only when the orbits about the center
of mass become circularized, and aligned and synchronized with the rotations, so that there is no
motion in the corotating frame. Right: Here, the secondary star, on the right, fills its Roche lobe.
Matter flows through the L; point and falls onto the primary star, which is now a compact object.
Viewed from an inertial frame, the falling material possesses angular momentum, and hence an
accretion disk is formed around the compact primary star.

synchronized and circularized), energy is continuously lost to friction while the different
parts of each star are deformed during the orbit. Once tidal locking is achieved, everything
appears stationary in a reference frame rotating at the binary frequency, and the system
achieves its minimum energy.’

If we draw the surfaces of constant potential energy in the rotating frame of such a
binary, the isopotential surfaces close to each of the stars will be approximately spherical,
but at larger radii they are more and more oval shaped, due to the gravitational pull
of the companion (see Fig. 4.12). There is one particular isopotential surface for which
projections onto any plane passing through the line connecting the stars traces a “figure 8”,
i.e., the surface is pinched into two pointed “lobes” that connect at a point between the two
stars. These are called Roche lobes and the point where they connect is the first Lagrange
point, L;. At L;, the gravitational forces due to the two stars, and the centrifugal force in
the rotating frame due to rotation about the center of mass, all sum up to zero.!?

In any star, surfaces of constant gas density and pressure will be parallel to surfaces
of constant potential (which is why isolated stars are spherical). Thus, a member of a
close binary that evolves and grows in radius, e.g., into a red giant, will have a shape that

% The same kind of tidal deformation is applied by the Sun and the Moon to the Earth, especially to the Earth’s
liquid water surface layer. The deformation is maximal when the three bodies are approximately aligned, during
full Moon and new Moon. During one daily Earth rotation, a point on the Earth goes through two “high tide”
locations and two “low tide” locations. Due to the loss of energy to tidal friction, the Earth—-Moon system is by
now largely circularized, but only partly synchronized. On the one hand, the Moon’s orbital and rotation periods
are exactly equal, and hence we always see the same (“near”) side of the Moon. Although the Moon is solid,
synchronization was achieved by means of the solid tidal stresses and deformations imposed on it by the Earth.
The Earth’s rotation, on the other hand, is not yet synchronized with either the Sun’s or the Moon’s orbital
periods. See Problem 8 for some quantitative assessments of ocean tides.

10 Note that Ly is generally not at the center of mass. The center of mass is closer to the more massive star in the
binary system, while L1 is closer to the less massive star. Only in equal-mass binaries do the two points coincide.
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is increasingly teardrop shaped. If the star inflates enough to fill its Roche lobe, stellar
material at the L, point is no longer bound to the star, and can fall onto the companion.
Three configurations are thus possible:

In a detached binary neither of the stars fills its Roche lobe; in a semi-detached binary
one of the stars fills its Roche lobe; and in a contact binary both stars fill their Roche lobes.
In the last case the binary system looks like a single, peanut-shaped object with two stellar
cores and a common envelope.

In the semi-detached case there is always transfer of matter from the Roche-lobe-filling
star to its companion. Different observational phenomena result, depending on the nature
of the receiving star. If it is a main-sequence star, an Algol-type binary system results. If the
receiving star is a white dwarf, the resulting phenomena are called cataclysmic variables,
novae, and type Ia supernovae. If the receiver is a neutron star or black hole, the system is
called an X-ray binary.

Viewed from an inertial reference frame, the accreted material possesses angular mo-
mentum having the direction of the system’s orbital angular momentum. (In the rotating
frame, the matter experiences a Coriolis force as it falls toward the receiving star.) If the
receiving star is compact, the accreted material will not reach the surface immediately, but
rather go into orbit around the star. The gas particles on different coplanar, elliptical orbits
will collide with each other, and eventually an accretion disk forms around the receiving
star.

4.6.1 Accretion Disks

In an accretion disk, particles move on approximately circular orbits, and lose energy
and angular momentum due to viscous interaction with particles moving along orbits
at adjacent radii. The particles therefore slowly drift to progressively smaller radii, until
reaching the surface of the star (or the Schwarzschild radius, if the accretor is a black
hole). The frictional heat is radiated away. Although the exact process by which viscous
friction operates in accretion disks is still a matter of debate, we can nonetheless derive
some general properties of these objects.

Consider a mass element, dM, in the accretion disk around a star of mass M. To fall
from a circular Keplerian orbit of radius r + dr to an orbit at radius r, the mass element
must lose some potential energy. Half of the lost potential energy is necessarily converted
to additional kinetic energy at the smaller radius with its higher Keplerian velocity, and
the remaining half can be converted to heat.!! The gain in thermal energy of the mass
element will thus be

1 (GMdM GMdM
dEp = - , (4.128)

r  r4dr

1 Note that this result, while following directly from Newtonian mechanics for a particle in a circular orbit,
is just another instance of the virial theorem for a classical nonrelativistic system of particles in gravitational
equilibrium—in this case a system of one particle.
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where we neglect the gravitational self-binding energy of the disk itself. Assuming that the
hot gas radiates its thermal energy as a blackbody at the same radius where the gravitational
energy is liberated, the luminosity from an annulus in the disk will be

dE 1 dM /1 1 1 . dr
— =z — == = —-GMM— =22 r)dra T?, 4.129
o dt ZGM dt (r r+dr) ZG ré (errjara ( )

where M is the mass accretion rate through a particular annulus of the disk, o is the
Stefan-Boltzmann constant, and the factor of 2 on the right-hand side is because the area
of the annulus includes both the “top” and the “bottom.” Taking the two right-hand terms
and isolating T, we find for the temperature profile of an accretion disk

- 1/4
'ﬂn:(GMM) o, (4.130)

8ro

In a steady state, M must be independent of r (otherwise material would pile up in the
disk, or there would be a shortage of material at small radii), and must equal the accretion
rate of mass reaching the stellar surface. Thus, T o r~*/#, meaning that the inner regions
of the disk are the hottest ones, and it is from them that most of the luminosity emerges.
The total luminosity of an accretion disk with inner and outer radii ri, and 7, is found by
integrating over the luminosity from all annuli,

Tout 4 1 . 1 1

L= [ 20rreT*rdr=-GMM(— - —). (4.131)
Tin 2 Tin Tout

This result could have, of course, been obtained directly from conservation of energy.!? If

Tout 3> Tin, the result simplifies further to

1GMM
Iies— . (4.132)
2 rin

It is instructive to evaluate the radiative efficiency of accretion disks by dividing the
luminosity above by Mc?, the hypothetical power that would be obtained if all the accreted
rest mass were converted to energy:

_1GM
a 2 czrin '

n (4.133)

If the accreting object is, e.g., a 1.4 Mg neutron star with an accretion disk reaching down
to the stellar surface at a radius of 10 km, then r;, is about 2.5 times the Schwarzschild
radius, r, = 2GM/c? (Eq. 4.107), that corresponds to such a mass (recall that r; &~ 3 km for

12 Note that, in addition to energy conservation, a full treatment of accretion disk structure must also conserve
angular momentum. The angular momentum per unit mass of a disk particle at radius r, in a circular Keplerian
orbit with velocity v;, is J/m = rv; = +/GMr. Thus, a particle descending to an orbit at smaller r must get rid of
angular momentum by transfering it outward to other particles in the disk via viscous torques. Some particles at
the outer edge of the disk must therefore gain angular momentum, and hence move to larger radii. Some of the
gravitational energy released by the inflow will power this outflow of matter, at the expense of the energy that
can be radiated by the disk. The work done by the frictional torques also increases by a factor of 3 the thermal
energies in the outer radii of the disk, at the expense of the inner radii, slightly modifying Eq. 4.130. The exact
form will depend also on the amount of angular momentum transferred to the accreting object at the inner edge
of the disk.
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1M,). The rest-mass-to-radiative energy conversion efficiency is then about 0.10. For black-
hole accretors, it turns out from solution of the general relativity equations of motion that
gas particles have a last stable orbit at which they can populate the accretion disk. At smaller
radii, a particle quickly spirals in and crosses the event horizon, carrying its remaining
kinetic energy with it. The last stable orbit for a nonrotating black hole®? is at 3r,. Accretion
disks around such black holes will therefore have an efficiency of 1/12 = 0.08, somewhat
lower than accretion disks around neutron stars. (A solution of the problem using the
correct general relativistic, rather than Newtonian, potential, gives an efficiency of 0.057).
The point to note, however, is that, in either case, the efficiency is an order of magnitude
higher than the efficiency of the nuclear reactions operating in stars, n = 0.007 or less.
Furthermore, only a tiny fraction of a main-sequence star’s mass is involved at any given
time in nuclear reactions, whereas an accretion disk can extract energy with high efficiency
from all of the mass being channeled through it. Under appropriate conditions, accretion
disks can therefore produce high luminosities.

Let us calculate the typical luminosities and temperatures of accretion disks in various
situations. In cataclysmic variables, the accretor is a white dwarf, with a typical mass of
1M and a radius of 10* km. A typical accretion rate!* is 107°M,, yr~!. This produces a
luminosity of

_1GMM 6.7 x10®cgsx2x10¥ gx 107 x 2 x 10® g

L =
2 g 2 x3.15x 107 s x 107 cm

=4 x10¥ ergs™! = L, (4.134)

The luminosity from the accretion disk thus completely overpowers the luminosity of the
white dwarf. The disk luminosity can be much greater than that of the donor star (for
low-mass main-sequence donors, the most common case), comparable to the donor star
(for intermediate-mass main sequence stars) or much smaller than the donor luminosity
(for high-mass main sequence and red-giant donors). At the inner radius (which dominates
the luminosity from the disk) the temperature is (Eq. 4.130)

c o 1/4
GMM _
T(r) = ( — ) pe3is

(6.7 x107% cgs x 2 x 10 g x 1077 x 2 x 10*}
N 3.15 x 107 5 x 87 x 5.7 x 10~5 cgs

=5x 10* K. (4.135)

1/4
g) (10° cm) ¥4

13 A black hole is fully characterized by only three parameters—its mass, its spin angular momentum, and its
electric charge (the latter probably not being of astrophysical relevance, because astronomical bodies are expected
to be almost completely neutral). Spacetime around a rotating black hole is described by a metric called the Kerr
metric, rather than by the Schwarzschild metric. Black-hole spin is accompanied by the general relativistic
phenomenon of “frame dragging,” in which spacetime outside the event horizon rotates with the black hole. In
a rotating black hole, the last stable orbit and the event horizon are at smaller radii than in the nonrotating case.

14 The accretion rate can be limited by the rate at which the donor star transfers mass through the L; point,
by the efficiency of the viscous process that causes material in the accretion disk to fall to smaller radii, or by the
radiation pressure of the luminosity resulting from the accretion process—see section 4.6.2.
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The thermal spectrum from the disk therefore peaks in the far UV part of the spectrum,
and is usually different from the spectrum of the main-sequence or red-giant donor star
(which of course generally has a red spectrum). The integrated spectrum of the system
will therefore have at least two distinct components.

When the orbits of cataclysmic variables are sufficiently inclined to our line of sight,
monitoring the total light output over time, as the systems rotate, reveals changes due
to mutual eclipses by the various components: the donor star, the accretion disk, and
sometimes a “hot spot” where the stream of matter from the donor hits the disk. The
changing projected area of the distorted donor star also affects the light output. Analysis
of such data allows reconstructing the configurations and parameters of these systems. In
addition to the periodic variability induced by eclipses and changes in orientation, accreting
systems reveal also aperiodic variability, i.e., variations with a “noise-like” character. These
variations likely arise from an unstable flow of the material overflowing the donor’s Roche
lobe, causing changes in M, as well as from instabilities and flares in the accretion disk
itself.

In a class of cataclysmic variable called novae there are also outbursts of luminosity
during which the system brightens dramatically for about a month. The outbursts occur
once every 10-10° yr, as a result of rapid thermonuclear burning of the hydrogen-rich (and
hence potentially explosive) accreted material that has accumulated on the surface of the
white dwarf. Assuming again an accretion rate of 107" Mg, yr™!, over a period of 1000 yr,
a mass of 107®M,, will cover the surface of the white dwarf. If completely ignited, it yields
an energy

Enova = 0.007mc? =0.007 x 107° x 2 x 10** g x (3 x 10" cm s ") &~ 10** erg. (4.136)

When divided by a month (2.5 x 10° s), this gives a mean luminosity of 4 x 10* ergs™' =
10°Lg, i.e., 10° times the normal luminosity of the accretion disk. In reality, only partial
processing of the accreted hydrogen takes place, and the energy is also partly consumed
in unbinding some material from the underlying white dwarf. On the other hand, for
longer recurrence times between outbursts, the mass of accumulated hydrogen can be
larger than assumed above. The gamma-ray spectra of novae reveal emission from the
radioactive decay of elements that are synthesized in these explosions, providing direct
evidence of the process at hand.

As discussed in section 4.3.3, under certain conditions (likely involving the reaching of
the Chandrasekhar mass by the accreting white dwarf) an extreme, runaway version of the
nova eruption, called a type Ia supernova, occurs. In such an event, a large fraction of
the white dwarf mass (i.e., of order 1M, of carbon, rather than the 10~°M,, of hydrogen
in the nova case) is ignited and is explosively synthesized into iron-group elements. The
total energy is, correspondingly, 10° times larger than that of a nova, i.e., 10°' =% erg. As
in the core-collapse supernova explosions that end the life of massive stars, the ratio of
kinetic to luminous energy is about 100, and thus type la supernovae, with a luminos-
ity of about 10'°L,, can outshine their host galaxies for a period of about a month (see
Problem 4). Although core-collape supernovae and type Ia supernovae have similar lumi-
nous and kinetic energy outputs, one should remember that in core-collapse supernovae
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99% of the energy is carried away by neutrinos, and therefore core-collapse supernovae
are intrinsically far more energetic events. Type la supernovae have a narrow range of
observed optical luminosities, probably as a result of the fact that they generally involve
the explosion of about 1.4 Mg, of white dwarf material. These supernovae are therefore very
useful as “standard candles” for measuring distances. In chapters 7 and 9 we will see how
they have been used in this application.

When the receiving star in an interacting binary is a neutron star or a black hole, the
inner radius of the accretion disk is of order 10 km, rather than 10* km, and therefore
the luminosity is much greater than in a white-dwarf accretor. For example, scaling from
Eq.4.134, if the accretor is a 1.4 M neutron star with the same accretion rate, the accretion-
disk luminosity is of order 10% erg s™!. The temperature at the inner radius, scaling as
MUY4r=3/% (Eq. 4.135), is T = 107 K. The emission therefore peaks in the X-rays, and hence
the name X-ray binaries. In reality, due to the extreme matter and radiation densities,
temperatures, and magnetic fields near the surface of a neutron star, the accretion disk
may not actually reach the surface, and accreting material is sometimes channeled to the
poles, forming a hot-spot where it hits the surface. In addition to the thermal emission
from the accretion disk, other, nonthermal, radiation components are observed in such
systems, e.g., synchrotron emission from relativistic electrons spiraling along magnetic
field lines. Some accreting white dwarfs also possess strong magnetic fields that funnel
the accretion flow directly onto hot spots on the white dwarf. Such magnetic cataclysmic
variables also appear then as X-ray sources.

4.6.2 Accretion Rate and Eddington Luminosity

The above discussion shows that the properties of accreting systems are largely determined
by three parameters, M, M, and ry,. M and r;, are limited to particular values by the
properties of stars and stellar remnants. However, the accretion rate, M, also cannot
assume arbitrarily large values. To see this, consider an electron at a radius r in an ionized
gas that is taking part in an accretion flow toward some compact object of mass M. The
accretion flow produces a luminosity per frequency interval L,, and therefore the density
of photons with energy hv at r is

L,
fiph = 4 richv’

The rate at which photons of this energy are scattered via Thomson scattering on the
electron is

(4.137)

Rscat = nphorre, (4.138)

where o7 is the Thomson scattering cross section. Each scattering event transfers, on
average, a momentum p = hv/c to the electron. The rate of momentum transfer to the
electron, i.e., the force exerted on it by the radiation, is then

dp _ hv _ LL’GT
dt o T 4mric

(4.139)
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The total radiative force on the electron is obtained by integrating over all frequencies v,

LO’T

(4.140)

4 = :
Rt 22

The electron would be repelled from the accreting source of luminosity, were it not for
the gravitational attraction of the accreting object. This force will be much greater on pro-
tons than on electrons. However, the Coulomb attraction between electrons and protons
prevents their separation, and therefore the gravitational attraction on a proton effectively
operates on neighboring electrons as well. The attractive force on the electron is therefore

GMm
Fgay = — 4 (4.141)

The accretion flow, and its resulting luminosity, can proceed only if the radiative force
does not halt the inward flow of matter, i.e., Fig < Fgray. Equating the two forces, using
Eqs. 4.140 and 4.141, we obtain the maximum luminosity possible in a system powered
by accretion,

47cGM
Lpim ey (4.142)

or

_ 4r x3x101%%x67x10 % cgs x2x10¥ gx1.7x107* g M
N 6.7 x 10~25 cm? Mo

=13 x 10¥ erg 1M 65 % 10° L@—M——.
Mo Mo
This limiting luminosity is called the Eddington luminosity.

Recalling our derivation, above, of a luminosity of order 10" erg s~! from an accretion
disk around a 1.4M, neutron star with an accretion rate M = 10~°M,, yr~!, we see that
an accretion rate, say, 100 times larger would bring the system to a luminosity of several
times Lg, and is therefore impossible. This is not strictly true, since in the derivation
of Lg we have assumed spherical accretion and an isotropically radiating source. Both
assumptions fail in an accretion disk, which takes in matter along an equatorial plane,
and radiates preferentially in directions perpendicular to that plane. Nevertheless, detailed
models of accretion disk structure show that disks become unstable when radiating at
luminosities approaching L. The Eddington limit is therefore a useful benchmark even
for nonspherical accreting systems. Finally, note that Lg applies to systems undergoing
steady-state accretion. Objects of a given mass can have higher luminosities (see, e.g., the
luminosities of novae and supernovae that we calculated above), but then an outflow of
material is unavoidable, the object is disrupted, and the large luminosity must be transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic effects
on both members. We recall that isolated neutron stars power their pulsar emission and
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their surrounding supernova remnant emission at the expense of their rotational energy,
and thus gradually slow down. A neutron star in a binary system, if accreting matter from
its companion, under suitable conditions can gain angular momentum, which can spin
the pulsar back up. Thus, many pulsars in binary systems are spinning at millisecond
frequencies, i.e., close to the maximal spin possible for a neutron star, and have negative
period derivatives, P (if they are still being spun up by the accretion; see Problem 9).
The neutron star can also affect the donor star. The jets and beams present in pulsars
may hit one side of the donor star (the binaries are tidally locked), heat it, ablate it, or
completely destroy it. Several examples of such black-widow pulsars are known, in which
an old millisecond pulsar has no companion, or in which the companion is a white
dwarf of much too small a mass to have evolved in isolation from the main sequence
(i.e., white dwarfs of such mass form after a time that is much greater than the age of
the Universe).

The transfer of mass and angular momentum in an interacting binary can also lead to
complex evolution of the parameters of the system, such as binary separation and accretion
rate. Changes in those parameters can then affect the future evolution of the system. Let
us see how this works. The orbital angular momentum of a circular binary composed of
masses M; and M, with separation a is

] = lw = pa’w, (4.143)
where [ is the moment of inertia, and u is the reduced mass,

MM,

P MM

(4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substituting
from Kepler’s law (Eq. 2.35),

G(M M
wzz (1+ 2)’

5 (4.145)

we get

J = 1y G(M; + My)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative of
J equals zero,

da du poda
- = VG(M; + M) (E*/E+ 2_1/_55) =0, (4.147)
or
2dpn 1%

— = (4.148)
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Expressing 1t in terms of its constituent masses gives

d;LL 1 dM] sz

— = M Mi—). 4.149

dt M1+Mz(dt 2+ M Pl
However, conservation of mass means that M; = —M,, and hence

dﬂ M1

== ——1__(M;— M). 4.150

= o 1o M MY (+150)
Replacing in Eq. 4.148, we finally get

. Mj—M 1d
AL e o (4.151)

MM,  adt’

Equation 4.151 determines how the period and separation of the system evolve, depend-
ing on the constituent masses, the accretion rate, and its sign. For example, consider a
system that starts out with two close main sequence stars, with M; > M,. M; will therefore
be the first to become a red giant, fill its Roche lobe, and transfer mass to M,. Since M,
loses mass, M, is negative. From Eq. 4.151, a is then negative. In other words, the two
stars approach each other. The decrease in separation @ means that the Roche lobe around
M; moves to a smaller radius, and the accretion rate grows further. If this trend is not
interrupted (e.g., by the end of the giant stage of M), the system reaches a common enve-
lope stage. Evolution resumes once M; becomes a white dwarf, or at a later stage, when
M, becomes a red giant, if it fills its Roche lobe. Accretion will now be in the opposite
sense, and M; is therefore positive. If, despite the earlier accretion phase and the individ-
ual stellar evolution, M, is still larger than M,, then a will now be positive. If the Roche
lobe size of M; overtakes the star’s radius, accretion will stop. Alternatively, if by this time
M; > M, the two stars will again approach each other and there may be a second common
envelope phase. Obviously, there are many other possible evolution paths, depending on
the initial parameters. Moreover, in reality stars lose mass throughout their evolution by
means of winds, and therefore the total mass and angular momentum of a binary system
will generally not be conserved, opening further binary evolution paths.

Problems

1. In a fully degenerate gas, all the particles have energies lower than the Fermi energy.
For such a gas we found (Eq. 4.19) the relation between the density n, and the Fermi
momentum p;:

8mr ,
Ne = %pf

a. For a nonrelativistic electron gas, use the relation py = ,/2m.Ef between the Fermi
momentum, the electrom mass m,, and the Fermi energy Ej, to express Efin terms
of n, and m,.
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b. Estimate a characteristic n, under typical conditions inside a white dwarf. Using
the result of (a), and assuming a temperature T = 10’ K, evaluate numerically the
ratio Ey,/Ef, where Ey, is the characteristic thermal energy of an electron in a gas of
temperature T, to see that the electrons inside a white dwarf are indeed degenerate.

2. Cold, planetary-mass objects such as Jupiter are mostly devoid of internal thermal
energy sources, as is the case of white dwarfs. However, planets are supported against
gravity by repulsive atomic electrostatic forces rather than by free electron degeneracy
pressure. Estimate the maximum mass that can be supported by atomic electrostatic
forces, as follows.

a. Approximate the typical pressure inside a planet by means of the electrostatic
Coulomb energy density due to each atom’s repulsion of its adjacent atoms. Ignore
the effect of nonadjacent atoms, whose charges are screened. Assume a pure atomic-
hydrogen composition. Assume further that the atoms are distributed on a static
grid of constant density with separations r, and hence there are six neighboring
atoms surrounding each atom, with the centers of their electron clouds separated
by ~r from the center of the electron cloud of the central atom.

b. Express the planet radius in terms of the planet mass M, the hydrogen atom mass,
my, and the “rigid” interatomic spacing r, and then write the gravitational binding
energy density of the planet in terms of these parameters.

c. Equate the electrostatic energy density you found to the gravitational binding energy

density. The interatomic spacing r should cancel out from the equation (why?).
Find the mass at which this equality occurs, and compare to Jupiter's mass,
M, = 0.001 M.
Answer: 8M. For larger masses, the gravitational energy density will overcome the
atomic electrostatic repulsion, the planet radius will stop growing with mass as fast
as M'/3, the density will increase, and quantum degeneracy pressure of the electrons
will set in as the main source of pressure. From there on, the planet’s radius will
decrease as its mass increases, as M~'/? (Eq. 4.34).

3. Most of the energy released in the collapse of a massive star to a neutron star (a
core-collapse supernova) is in the form of neutrinos.

a. If the just-formed neutron star has a mass M = 1.4M, and a radius R = 10 km,
estimate the mean nucleon density, in cm™>. Find the mean free path, in cm, of a
neutrino inside the neutron star, assuming the density you found and a cross section
for scattering of neutrinos on neutrons of 7,,, = 107* cm?.

b. How many seconds does it take a typical neutrino to emerge from the neutron star
in a random walk?

Hint: Neutrinos travel at a velocity close to c. Recall that the radial distance d covered
in a random walk of N steps, each of length |, is d = /NI.

c. Twelve electron antineutrinos from Supernova 1987A were detected by the
Kamiokande neutrino detector in Japan. This experiment consisted of a tank filled

with 3 kton of water, and surrounded by photomultiplier tubes. The photomultipliers
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detect the Cerenkov radiation emitted by a recoiling positron that is emitted after a
proton absorbs an antineutrino from the supernova. Estimate how many people on
Earth could have perceived a flash of light, due to the Cerenkov radiation produced
by the same process, when an antineutrino from the supernova traveled through
their eyeball. Assume that eyeballs are composed primarily of water, each weighs
about 10 g, and that the Earth’s population was 5 billion in 1987.

4. Type la supernovae are probably thermonuclear explosions of accreting white dwarfs
that have approached or reached the Chandrasekhar limit.

a. Use the virial theorem to obtain an expression for the mean pressure inside a white
dwarf of mass M and radius R.

b. Use the result of (a) to estimate, to an order of magnitude, the speed of sound, v; =
JdP/dp ~ /P/p, inside a white dwarf. In an accreting white dwarf with a carbon
core that has reached nuclear ignition temperature, a nuclear burning “flame”
encompasses the star at the sound velocity or faster. Within how much time, in sec-
onds, does the flame traverse the radius of the white dwarf, assuming R = 10* km,
M = 1.4M? Note that this sound-crossing timescale is ~(Gp) /%, which is also
the free-fall timescale (Eq. 3.15.)

c. Calculate the total energy output, in ergs, of the explosion, assuming that the entire
mass of the white dwarf is synthesized from carbon to nickel, with a mass-to-energy
conversion efficiency of 0.1%. Compare this energy to the gravitational binding
energy of the white dwarf, to demonstrate that the white dwarf explodes completely,
without leaving any remnant.

d. Gamma rays from the radioactive decays *®Ni —°°Co 4+ y —>®Fe + y drive most
of the optical luminosity of the supernova. The atomic weights of *®Ni and *®Fe
are 55.942135 and 55.934941, respectively. Calculate the total energy radiated in
the optical range during the event. Given that the characteristic times for the two
radioactive decay processes are 8.8 days and 111 days, respectively, show that the
typical luminosity is ~10'0L,.

5. General relativity predicts that accelerated masses radiate gravitational waves, thereby
losing energy, in analogy to the emission of electromagnetic radiation by accelerated
charges. There is indirect evidence for the existence of such waves from the orbital
time evolution of some binary pulsars. If gravitational radiation were also responsible
for the loss of rotational energy E,.: of isolated pulsars (e.g., the Crab pulsar), then a
dependence

AE o o o
dt
would be expected, where w is the angular rotation velocity.

a. Under the above assumption, find an expression for w(t).

b. For the time dependence found in (a), derive an upper limit for the age of the Crab
pulsar. Given that the supernova that marked the Crab’s formation occurred in the
year 1054, is gravitational radiation a viable braking mechanism for the Crab pulsar?
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6. Atype la supernova is thought to be the thermonuclear explosion of an accreting white
dwarf that goes over the Chandrasekhar limit (see Problem 4). An alternative scenario,
however, is that supernova la progenitors are white dwarf binaries that lose orbital
energy to gravitational waves (see Problem 5) until they merge, and thus exceed the
Chandrasekhar mass and explode.

a. Show that the orbital kinetic energy of an equal-mass binary with separation a and
individual masses M is
GM?

E = ,
% 2a

and the total orbital energy (kinetic plus gravitational) is minus this amount.
b. The power lost to gravitational radiation by such a system is

i 26 (2GMY
B 56\ ¢2a /)

By equating to the time derivative of the total energy found in (a), obtain a differential

equation for a(t), and solve it.

c. Whatis the maximum initial separation that a white-dwarf binary can have, ifthe com-
ponents are to merge within 10 Gyr? Assume the white dwarfs have 1M, each, and
the merger occurs whena = 0.

Answer: 0.016 AU.

7. A star of mass m and radius r approaches a black hole of mass M to within a distance
d>r.

a. Using Eq. 4.127, express, in terms of m, r, and M, the distance d at which the New-
tonian radial tidal force exerted by the black hole on the star equals the gravitational
binding force of the star, and hence the star will be torn apart.

b. Find the black-hole mass M above which the tidal disruption distance, d, is smaller
than the Schwarzschild radius of the black hole, and evaluate it for a star with
m = Mg and r = rg. Black holes with masses above this value can swallow Sun-like
stars whole, without first tidally shredding them.

Answer: 1.6 x 10°M,.

c. Derive a Newtonian expression for the tangential tidal force exerted inward on the

star, in terms of m, r, M, and d, again under the approximation r <« d. The combined
effects of the radial tidal force in (a) and and the tangential tidal force in (c) will lead
to “spaghettification” of stars, or other objects that approach the black hole to within
the disruption distance.
Hint: Remember that the star is in a radial gravitational field, and hence there is a
tangential component to the gravitational force exerted on regions of the star that
are off the axis defined by the black hole and the center of the star. The tangential
component can be found by noting that the small angle between the axis and the
edge of the star is ~r/d.



112 | Chapter 4

8. Practitioners of some schools of yoga are warned not to perform yoga during the full

or the new Moon, citing the tidal effect of the Moon at those times on other “watery

bodies” such as the oceans. Let us investigate this idea.

a.

Verify the dramatic tidal effect of the Moon on the oceans by using Eq. 4.127 to cal-
culate the ratio of the tidal “lifting force” Fyq4e and the Earth’s gravitational attraction
Fgrav, for a point mass on the surface of the Earth and on the Earth-Moon line. Use
this ratio to estimate the change in water height, in cm, between high tide and low
tide, due to the moon alone. Repeat the calculation for the tidal effect due to the
Sun alone.

Hint: The surface of the oceans traces an equipotential surface, gR = constant, where
R is the distance from the Earth’s center to the ocean surface at every point, and g
is the effective gravitational acceleration at every point on the surface. Translate the
tidal-to-gravitational force ratio into a relative change in g between a point at high
tide (which experiences the full tidal force) and a point at low tide (which experiences
no tidal force), and thus derive the relative change in R.

Answers: 77 cm due to Moon, 33 cm due to Sun.

Note: While the Sun and Moon are the drivers of ocean tides, a reliable calculation
of tides at a particular Earth location must take into account additional factors,
including the varying distances between Earth, Moon, and Sun (due to their elliptical
orbits), their inclined orbital planes, the latitude, coastline shape, beach profile,
ocean depth, water viscosity and salinity, and prevailing ocean currents.

. Calculate by how much (in milligrams) you are lighter when the full or new Moon

is overhead or below, compared to when it is rising or setting, assuming your body
weight is 50 kg.

Calculate in dynes and in gram-force (i.e., in dynes divided by the gravitational
acceleration g = 980 cm s™2) the tidal stretch exerted on your body by the Moon
plus the Sun when you are standing up with the full or new moon overhead. Assume
your body weight is 50 kg and your height is 180 cm.

9. A spinning neutron star of mass M = 1.4 M, constant density, and radius R = 10 km
has a period P =1 s. The neutron star is accreting mass from a binary companion
through an accretion disk, at a rate of M = 1072 M, yr~'. Assume that the accreted
matter is in a circular Keplerian orbit around the neutron star until just before it hits
the surface, and once it does then all of the matter’s angular momentum is transferred
onto the neutron star.

a.

b.

Derive a differential equation for P, the rate at which the neutron-star period
decreases.

Solve the equation to find how long will it take to reach P = 1 ms, the maximal spin
rate of a neutron star.

Hint: Calculate the Keplerian velocity of the accreted material a moment before it hits
the neutron star surface, and use it to derive the angular momentum per unit mass
of this material, J/m. The angular momentum of a rotating object with moment of
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inertia | is lw. The rate of change of the star’s angular momentum is just the rate at
which it receives angular momentum from the accreted matter, i.e.,

d ]

—(lw) =M.

dt( «) m

The moment of inertia of a constant-density sphereis | = %MRZ. Solve for the angular

acceleration w, neglecting changes in the neutron star’s mass and radius. (This will
be justified by the result.) From the relation P = 27 /w, derive P. This “spin-up”
process explains the properties of old, “millisecond pulsars,” some of which, indeed,
have negative P.

Answer: 2.6 x 10® yr. Over this time, the neutron star mass increases by 18%, and its
radius decreases by 5%, justifying the approximation of constant mass and radius.

10. A compact accreting object of mass M is radiating at the Eddington luminosity
(Eq. 4.142) corresponding to that mass,

4rcGMmy, 38 4 M
L= ——=13x10"ergs™  —.
or MCD

An astronaut wearing a white space suit is placed at rest at an arbitrary distance from
the compact object. Assuming that the cross-sectional area of the astronaut’s body is
A = 1.5 m?, find the maximum allowed mass m of the astronaut, in kg, if the radiation
pressure is to support her from falling onto the compact object.
Hint: By definition, a proton at any distance from this object will float, its gravitational
attraction to the object balanced by the radiation pressure on nearby electrons. Consider
the astronaut as a particle with mass m and cross section equal to her geometrical
cross section, 2A (the factor of 2 is because her suit is white, so every photon reflection
transfers twice the photon momentum). Compare m to my, and 2A to or.
Answer: 77 kg.



5 Star Formation, H 11 Regions, and the Interstellar Medium

Much of the baryonic matter (i.e., matter composed of protons and neutrons) in the Uni-
verse is not inside stars, but is, instead, distributed between the stars. The interstellar
medium (ISM) consists of molecular, atomic, and ionized gas, with large ranges of den-
sities and temperatures, as well as solid particles of dust. Most of the volume of the ISM
is in the ionized and atomic gas phases. However, the molecular gas phase is particularly
interesting because new generations of stars can form, under some conditions, out of this
material. The newly formed stars then influence the remainder of the gas from which they
formed, by means of outflows, photodissociation and photoionization by the radiation
from massive stars, shocks and element enrichment from the explosions of the massive
stars as core-collapse supernovae, and more. The ISM, in turn, releases this stellar energy
by means of physical processes that are distinct from those we have seen in stars and
stellar remnants. In this chapter, we focus on the ISM in star-forming regions. We briefly
survey star forming environments, some of the properties of young stellar populations,
the main physical processes that operate in the ISM around newly formed stars, and the
observable consequences of those processes.

5.1 Cloud Collapse and Star Formation

Stars are seen to form in molecular clouds, which are one component of the ISM. Molecular
clouds are randomly shaped agglomerations composed mainly of molecular-hydrogen
gas, with typical masses of 10°-10° M, sizes of hundreds of parsecs, and typical particle
densities of 102-10* cm 3. The temperatures in molecular clouds are between ~10 and
100 K. Molecular clouds are the largest, most massive, gravitationally bound objects in the
ISM. While the densities of molecular clouds are among the highest encountered in the
ISM, it is important to realize that even this gas is extremely rarified compared to gas at an
atmospheric density of ~10'” cm 3. In fact, the densities of molecular clouds are many
orders of magnitude lower than the density of the best vacua achievable in the laboratory.
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(We will see below that these low densities have an important effect on the radiation
emitted by the ISM.) The nearest (and probably the best-studied) giant molecular clouds
are in the Orion star-forming region, at a distance of about 500 pc. Several views of this
region are shown in Fig. 5.1, at various wavelengths and scales.

As we have seen, the mean mass densities inside stars are ~1 g cm™3

, l.e., particle
densities of ~10** cm™3. Thus, to form new stars, some regions of a molecular cloud
must be compressed by many orders of magnitude. The details of the process of star
formation are not understood yet. We can outline, however, some of the general criteria
under which gravitational contraction of a gas cloud can proceed, and potentially lead to

the conditions required for star formation.

5.1.1 The Jeans Instability

Let us assume, for simplicity, a spherical gas cloud of constant density p and temperature
T, composed of particles with mean mass m. The gas is ideal, classical, and nonrelativistic.
The cloud’s mass is M, its radius is r, and its gravitational energy is

GM?

E.. | ~
| Eg| -

(5.1)

If the cloud undergoes a radial compression dr, the gravitational energy will change (be-
come more negative) by

GM?
"

|dEg| = dr. (5.2)

The volume will decrease by
dV = 4nrdr, (5.3)

and the thermal energy will therefore grow by

M. _dr

dEy, = PdV = nkT4nridr = kT4mridr = 351&—. (5.4)
r

rﬁ%nﬂ

The cloud will be unstable to gravitational collapse if the change in gravitational energy is
greater than the rise in thermal energy (and the pressure support it provides),

|dEg| > dEy,. (5.5)

Substituting from Eqs. 5.2 and 5.4, we see that this means that, for a cloud of given radius
r and temperature T, collapse will occur if the mass is greater than the Jeans mass,

3kT




Figure 5.1 Several views of the Orion star-forming region. Counterclockwise from top pair: A map showing radio
emission from the CO molecule, superimposed on an optical image of the familiar constellation; near-infrared

zoom in on the region that constitutes the “sword” of the constellation, centered on the Orion nebula; a further
zoom-in (about 1 pc on a side) on the “Trapezium” cluster of massive young stars that power the brightest H 11
region; and optical images of several protoplanetary disks around young stars, seen as dark silhouettes on the
backdrop of the gas emission. Disk diameters are ~100-500 AU. Photo credits: S. Sakamoto et al., see Astrophys.
J.. 425 (1994), 641; G. Kopan, R. Hurt, and the Two Micron All Sky Survey; M. McCaughrean and the European
Southern Observatory; and C. R. O’Dell—Vanderbilt University, ESA, and NASA.
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Equivalently, a cloud of mass M will collapse only if its radius is smaller than the Jeans
radius,
Gm

— T 5.7
n= M fpet]

This condition can also be stated as a condition on the density, which must be larger than
the Jeans density,

M 3 3kT\?
— _ , 5.8
& tnerp 4 M? (Gr‘n) .8)

Let us obtain some representative numbers for a typical molecular cloud with M ~
1000M and T ~ 20 K. At these low temperatures, there are few free electrons, and most
of the hydrogen is bound in H; molecules, so m ~ 2my. The Jeans density is then

3

3 ( 3x1.4x10%ergK™! x20K )
Py

- 47(1000 x 2 x 103 g)2 \ 6.7 x 1078 cgs x 2 x 1.7 x 102 g
=3x10* gem™?, (5.9)

corresponding to a number density of

- py 3x107*gcm™ P 510
n = = = i cm . .
y(H) =2 = 7% 1.7 x 102 g (5.10)

Thus, the typical observed density of molecular clouds, 10*~10* cm 3, is several orders
of magnitude higher than the Jeans density and, according to the criterion we have just
formulated, the clouds should be unstable to gravitational collapse. Since the clouds exist
and appear to be long-lived, another source of pressure, other than thermal pressure, must
be present. It is currently believed that the dominant pressure is provided by turbulence,
magnetic fields, or both.

If, rather than looking at the entire 1000M, cloud, we consider a one-solar-mass clump
of gas inside the cloud (with the same temperature of T = 20 K and density of 10*-
10* cm™3), the Jeans density for this clump is 10° times larger, i.e., ~10® cm™3. This is
much higher than the actual density of the clump, and the clump is thus stable against
collapse. We can therefore expect the collapse of a molecular cloud to begin with the
larger masses, that more easily pass the Jeans criterion. As the collapse proceeds and the
density increases, progressively smaller regions of the cloud reach the Jeans density for
their masses, and can start to collapse independently. This fragmentation into smaller
and denser masses continues until the creation of a cluster of individual protostars, i.e.,
objects that will evolve into stars on the main sequence. From Eq. 5.7, the Jeans radius of
a molecular cloud fragment of mass of order 1M, which can eventually collapse to such
a protostar, is

rp~5 x 10'° cm. (5.11)
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5.1.2 Cloud Collapse

Although the Jeans criterion provides a necessary condition for the onset of collapse in a gas
cloud, the collapse involves the release of gravitational energy, and can proceed only if there
is an avenue for releasing this energy. If, for example, the gravitational energy is converted
to thermal energy and the temperature and the pressure rise, the Jeans mass will rise and
the collapse will stop. The contraction will then proceed slowly, at a pace determined by
the rate at which thermal energy is radiated away. However, if the gravitational energy is
converted to some other, non-pressure-producing, form, then the collapse of a cloud that
passes the Jeans criterion can proceed on a free-fall time. Two such avenues for converting
gravitational energy, which are important in star-forming regions, are dissociation of H,
which uses up 4.5 eV per molecule, and ionization of hydrogen, which takes 13.6 eV per
atom.

Consider, for example, the 1My clump discussed above. If hydrogen dissociation
and ionization can take place, then once the density has reached the Jeans value for
such a mass, pj =3 x 107"® g cm™, the cloud can collapse on a free-fall timescale
(Eq. 3.15):

3r \ /2 _ 3m )1/2
N\326p) T \32x67x10%cgs x3 x 10-B gcm3
= 1.2 x 10" s = 40, 000 yr. (5.12)

The free-fall collapse will stop once most of the hydrogen is first dissociated and then
ionized, because continued compression past that point will quickly raise the temperature
and pressure. We can find the properties of the collapsed cloud at its new equilibrium
state from the virial theorem, which we developed in the context of stellar physics. At
the new virial equilibrium, the thermal energy of the (now ionized) gas will again equal
minus-one-half the gravitational energy. If we make the crude approximation that, during
the collapse, the gas does not radiate away any energy (as in the treatment of convection in
section 3.12, this is an adiabatic approximation), then minus the other half of the gravita-
tional energy, in turn, equals the energy converted in breaking up the molecules and the
atoms. Thus,

lg (M45eV+M136V 5.13
= = — | —4. — .0e .
3 2mpy my ( )
and
3 3 M

Ep = SNkT =2 kT, :

) 2 0.5my 14
SO

3 M M M

= kT = (—45evV+—13.6€V]). .

2 0.5my, (ZmH Vo 0C ) 5.13)
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The typical particle energy at the new equilibrium is then

3 1 1
KT = 2456V +-13.6eV=80¢V, (5.16)

and the temperature is

_ 2 8eV
"~ 30.86x 104 eV K™!

= 60,000 K. (5.17)

To find the radius of the clump at this new equilibrium, we can again invoke the virial

theorem,

1 GM? M

= ~3 , (5.18)

2 r 2 0.5my
or

GMmy 67 x108cgsx2x10¥gx17x107*¢g
r ~ =
6kT 4x8eVx16x1012ergeV!
=5.0x 10" cm &~ 0.3 AU. (5.19)

Thus, dissociation and ionization of hydrogen alone can consume enough energy to bring a
solar-mass protostar down to dimensions of order 100 times that of the Sun. In reality, this
adiabatic approximation for cloud collapse gives only an upper limit to the temperature
and radius of the protostar. Several processes by means of which the gas can radiate
away energy (and which are discussed in section 5.2.3, below) operate efficiently during
the collapse, lowering the temperature considerably. Furthermore, as when discussing
stellar structure, we have ignored angular momentum and magnetic fields, but in stellar
formation they likely play important roles. In particular, angular momentum conservation
will restrain the collapse in the plane perpendicular to the direction of rotation of the cloud,
and an accretion disk structure (see discussion in section 4.6.1) will be formed.

From this point on, the loss of thermal energy is controlled by the radiative efficiency
and the opacity of the gas, and the protostar at the center of the accretion disk slowly
grows in mass by means of the matter channeled into it by the disk, and contracts in
radius. Calculations indicate that after ~107-108 yr, the temperature of ~107 K required
for hydrogen ignition is achieved in the core of the protostar, and it becomes a star on
the main sequence in the H-R diagram. While there is a thus plausible physical path to
star formation, it is important to realize that the processes described above have not been
directly observed, since they occur inside dusty, and hence opaque, molecular clouds.

5.1.3 Planetary System Formation

The field of pre-main-sequence stellar evolution and planetary system formation is rich
and rapidly developing, in terms of both theory and observations, but we will touch upon
it only briefly and descriptively.
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In recent years, disks of gas and dust have been discovered around many young stel-
lar objects (see Fig. 5.1). As noted above, disks are expected naturally since the angular
momentum of a collapsing gas clump prevents it from collapsing in a purely radial direc-
tion. These protoplanetary disks are thought to be potential planetary systems in the
making. One possible scenario for planet formation is that the rocky cores of planets form
first by mutual adhesion of colliding small fragments in the disk, followed by gravitational
accretion of additional solid and gas-phase material. In an analogy of “the rich get richer,”
the superior gravitational attraction of the largest protoplanets allows them to accrete the
most material from the disk and to swallow smaller planets, eventually concentrating
much of the disk material in a fairly small number of planets. In the lower-temperature
outer regions of the protoplanetary disk, beyond the ice radius (or snow line) where water
is frozen, there is perhaps a larger quantity of solid material available for this process,
compared to the hot inner regions of the disk, where water and CO; are in their gas
phases. Icy planets and gas giants with large masses can thus form only beyond the ice
radius.

In the final stages of pre-main-sequence contraction and initial nuclear ignition, a star
goes through a T-Tauri phase, characterized by a strong stellar wind. Bipolar jets of material
are also observed to emerge from some objects. When the stellar wind begins, it likely
cleans out a star’s surroundings of any remaining gas and dust that are not bound in
planets. In the inner regions of the new planetary system, mainly the rocky cores of the
planets remain. In the case of the Earth, the oceans and the atmosphere may have been
later additions, brought to Earth via comet impacts (see Problem 1).

The recent discovery of extrasolar planets that are gas giants in small-radius orbits (see
section 2.2.4) suggests a process of “migration” of the giant planets inward. It is presently
still debated what is the physical process behind such migration, and why a migration of
giant planets did not occur in our Solar System. It is unlikely that it did occur, all the way
until the “swallowing” of one or more of the original giant planets by the Sun, since the
migrating giant planets would have dragged the rocky inner planets along with them into
the Sun.

5.1.4 The Initial Mass Function

Stars form with a range of masses between those of stars at the hydrogen-burning limit,
M ~ 0.1Mg, and the most massive known stars, M ~ 100M,. The relative number dis-
tribution of stars as a function of mass is described by the initial mass function. There
is some evidence that this function is “universal,” i.e., of the same form at all locations,
and perhaps also at all times in the past, but there is yet no full agreement on this issue.
Observations suggest that a reasonable description of the number of stars of mass m per
unit mass interval is given by a power law,

d—Nocm_“ 5.20
dm ’ (5.20)
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Figure 5.2 Left: The Pleiades, an open star cluster that is visible to the naked eye, at a distance of 120 pc. Note
the nebulosities surrounding some of these young stars. Image scale is about 2 pc on the vertical side. Right: The
globular cluster M80, at a distance of 8.7 kpc. Image scale is 4 pc on the vertical side. Photo credits: NASA, ESA,
AURA/Caltech; NASA and the Hubble Heritage Team.

where o = 2.35 over most of the mass range. This is called the Salpeter initial mass
function. Thus, low-mass stars are much more common than high-mass stars. On the
other hand, in the range between 0.1M, and 1M,,, the slope probably flattens, and there
may even be a maximum to the distribution between 0.1M; and 0.5M,. The faintness
of low-mass stars, on the one hand, and the rarity and short lives of high-mass stars,
on the other hand, make measurement of the initial mass function a difficult task. This
empirical uncertainty compounds the already-mentioned theoretical uncertainty regarding
the details of star formation.

5.1.5 Star Clusters

Due to the “top-down” fragmentation by which molecular clouds collapse, stars are formed
in star clusters. Two main types of clusters are observed: open clusters and globular
clusters. Open clusters are collections of 50-1000 stars, and are generally (but not always)
observed to be young, as evidenced by the presence of massive stars. Most open clusters
are not bound by their self-gravity, and therefore disperse on a crossing timescale, the time
it takes a star to cross the cluster, given the typical random internal velocities. Since young
open clusters are currently being formed from gas that has been enriched by previous
stellar generations, the stars in open clusters are observed to have high “metallicities,” i.e.,
“heavy” element abundances that are comparable to solar ones.

Globular clusters are bound systems of 10*~10° stars within a spherical distribution
of radius of a few parsecs. Their stellar populations consist of main-sequence stars and
giants of masses lower than about a solar mass, as well as the stellar remnants (white
dwarfs, neutron stars) of the more massive stars that existed in the past. The stars have
low metallicities, indicating these are ancient systems that were formed from relatively
unprocessed gas. Figure 5.2 shows examples of an open cluster and a globular cluster.

A third kind of cluster has been discovered in recent years in galactic regions called
starbursts undergoing intense star formation. The clusters, coined super star clusters,
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consist of 10*~10° stars within a few pc, including young, very massive stars. It is possible
that super star clusters, or some fraction of them, can remain bound even after the massive
stars in them explode as supernovae, and that they can survive other subsequent disruptive
processes such as tidal forces from the galactic structures, which we will discuss in chapter
6. If so, after several billion years they will evolve into objects similar in many properties
to globular clusters. Thus, super star clusters may simply be young globular clusters.

5.2 H 11 Regions

In star-birth regions, the more massive among the stars that have formed have high
effective temperatures. These stars therefore emit UV and X-ray radiation, which ionizes
the hydrogen and helium in the uncollapsed parts of the molecular cloud. The resulting
H 11 regions consist of gas in equilibrium between photoionization by the stellar photons
and the inverse process of recombination that occurs when ions capture free electrons.
(“H 11” is an astronomical term for ionized hydrogen, i.e., H". Thus, H 1 is neutral atomic
hydrogen, C 1v is three-times-ionized carbon, or C**, etc.) Let us examine some of the
physical processes involved, and their consequences.

5.2.1 The Stromgren Radius

An approximately spherical region of radius r will be formed around a hot star, within
which all the photons that can ionize hydrogen (photons with energies hv > 13.6 eV) are
absorbed by the gas (see Fig. 5.3). Under steady-state conditions, the total number of
hydrogen recombinations per unit time inside this volume must equal the total number
of photoionizations per unit time. The latter rate equals just the number of ionizing
photons that leave the star per unit time, Q.. Thus,

4 3
Qs = Rrecgnr , (5.21)

where R is the number of recombinations of electrons and protons per unit time per
unit volume. As in our discussion of nuclear reaction rates (see Eq. 3.123), recombination
involves collisions between two types of particles having certain volume densities, relative
velocities v, and a cross section o, for interaction. Thus, the recombination rate will be

R rec = Nphe(OrecV) = Hpheet(T) = a(T)ng = a(T)xznZ, (5.22)
where
a(T) = (OrecV) (5.23)

is the temperature-dependent recombination coefficient. In Eq. 5.22, we have assumed that
the density of electrons and protons is the same, n, = n, (as it would be in a pure hydrogen
gas), and that a fraction x of the gas, which has density n, is ionized. Let us further assume
that the hydrogen is almost fully ionized within this region, i.e., x = 1, an assumption
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Figure 5.3 Schematic illustration of the Stromgren sphere of ionized hydrogen that
is produced around a hot star via photoionization. Inside the radius rstrom, the
hydrogen is almost completely ionized, i.e., there is an “H 11” region. Beyond rstrom,
the hydrogen is neutral (“H 17), since all photons capable of ionizing it have been
absorbed. Further yet from the star, all photons energetic enough to photodissociate
hydrogen molecules, Hj, have also been absorbed, and the gas is molecular.

we will justify shortly. Combining Eqgs. 5.21 and 5.22, the radius of the spherical volume
within which all the ionizing photons are absorbed is

1/3
I'strom =( 3Q* ) . (5.24)

4 an?

This is called the Stromgren radius.
To obtain a typical value of rg,om, consider a main-sequence O5V star, with a luminosity
per unit frequency L, . Its output of ionizing photons can be calculated numerically to be

Qs = fw mdv ~3x10% 571 (5.25)
mw=136ev  hV

Typical gas densities in H 11 regions are n = 10-10* cm~>. The recombination coefficient

a(T) can be calculated from quantum mechanics. As will be elaborated in more detail

below, the temperature of the gas is set by a balance between heating via photoionization

and cooling through radiation. The equilibrium temperature is typically 10* K. At this

temperature,’

«(10* K) = 2.6 x 107" cm’ s, (5.26)

! This value for «(T) includes recombinations of hydrogen to all its excited states, but excludes recombinations
to the ground state. An atom that recombines to the ground state will emit a photon with energy hv > 13.6 eV,
which will quickly ionize some other nearby hydrogen atom. Thus, recombinations to the ground state, under
most conditions, have no effect on the overall ionization balance, and can therefore be ignored. This assumption
is called “case B” recombination.
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Thus, for example, for n = 10* cm=3,

3x3x10% 57! i
fswom = | 47 x 2.6 x 101 cm? 51 x (10* cm—3)2

=6 x 10" cm = 0.2 pc. (5.27)

Such H 11 regions of ionized gas, which have been carved out of the molecular gas by the
ionizing radiation around young stars are, in fact, seen in many star-forming regions (see
Fig. 5.1).

5.2.2 lonization Fraction

Outside the Stromgren radius the gas is, of course, neutral, since, by definition, the ion-
izing photons have all been absorbed. Let us now justify the assumption that, within the
Stromgren sphere, the gas is almost completely ionized, and there is a sharp transition
in hydrogen ionization—an ionization front—at ry,.,. Using again the same consider-
ations as before to write the rate of a reaction per unit volume, but now with collisions
between neutral atoms and ionizing photons, the photoionization rate per unit volume at
any point is

Rion = n'photonn(l - x)UionC: (528)

where nppoon is the ionizing photon density, n(1 — x) is the density of neutral hydrogen
atoms, and oy, is the photoionization cross section. The photon density is just the ionizing
photon flux at a distance r from the ionizing star, divided by c,

Q*

i (5.29)

Mphoton =

The cross section of a hydrogen atom for photoionization from its ground state by photons
with energies greater than hvy = 13.6 eV is

-3

Gion & 00 (vi) . 00 = 6.3 x 10718 cm?, (5.30)

o

(Note, for comparison, that this cross section is 107 times larger than the Thomson cross
section posed by a free electron. Thus, neutral hydrogen atoms are very easily ionized by
photons with an energy of 13.6 eV.) Photons with energies hv > 13.6 eV will generally be
in the exponentially falling Wien tail of the spectral distribution produced by the central
star (see below). It is therefore safe to make the approximation that all of the ionizing-

photon rate, Q,, consists of photons with hv &~ 13.6 eV, and we can adopt oy for oip.
Thus,

Rion = 43:2 n(1 — x)oo. (5.31)
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In a steady state, at every point in the gas there will be a balance between the ionization
rate per unit volume and the recombination rate per unit volume, Rion = Riyec, OF

T)xtn? = -2 n(1 — x)op. 5.32
a(T)x“n yry— n( x)oo ( )
This defines a quadratic equation for the ionization fraction x,

:b,bﬂ

1—x Axrlan’

(5.33)
or

x* + bx — b, (5.34)
with a positive solution (the negative solution is physically meaningless)

x=1(-b+ VB +4b). (5.35)

Let us estimate x at a typical location, say, r = 0.1 pc, inside the Stromgren radius of 0.2 pc
that we found previously. For that particular choice of parameters,

b _ Q*JO
4rrian
3 x 10¥ s7! x 6.3 x 10718 cm?
- =6 x 10% (5.36)
47 (0.1 x 3.1 x 10 cm)? 2.6 x 107 cm? s~ 1 10* cm—3
and
x =1 (—b + VT 4b) —0.999983, 1—x=17x 1075 (5.37)

Thus, we see that, indeed, the gas interior to the Strémgren radius is almost completely
ionized.?

5.2.3 Gas Heating and Cooling Mechanisms

The rate at which energy is fed by the star into the H 11 region is called the heating rate. To
calculate it, consider a free electron (called a photoelectron) that has just been liberated from

2 In this derivation, we have assumed that the ionizing flux decreases only by geometrical dilution, as 47 r2.
This assumption must obviously fail as we approach rstrom, and the ionizing photons are depleted by the
cumulative absorption of the small, but nonzero, neutral fraction of the gas between r = 0 and retrom. The
thickness of the transition zone between ionized and neutral gas is of order the mean free path of an ionizing
photon, d ~ 1/nag =5 x 107° pc.

In contrast to the result above, a large neutral fraction within the Stromgren radius can arise in situations
where the ionizing source has a “hard” spectrum, i.e., a large fraction of the ionizing photons have energies
significantly larger than 13.6 eV. Because of the v—3 dependence of the photoionization cross section, the
ionization rate is then low, the ionization fraction x can be correspondingly low, and the transition zone is no
longer small compared to rstrom. Such conditions arise, e.g., in the gas that is photoionized by the X-ray photons
from accreting objects such as X-ray binaries and active galactic nuclei (see chapters 4 and 6).
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an atom by photoionization by an O star. Suppose the star has an effective temperature of
Tr = 20,000 K. The peak of a blackbody distribution at this temperature is at

Wmax = 2.8kT = 2.8 x 0.86 x 107" eV K™' x 2 x 10* K = 4.8 eV. (5.38)

Only photons with energy hv > 13.6 eV, i.e., in the Wien tail of the distribution, can ionize
the hydrogen atoms, and all of these photons will be absorbed within the Strémgren sphere.
The electrons liberated by the photoionization of hydrogen will have an energy equal to the
ionizing photon energy, minus the 13.6-eV binding energy of atomic hydrogen. The total
heating rate, integrated over the whole H 11 region volume, will therefore be

F tot _

heating —

(hv — 13.6 eV)
v=13.6 eV hv

oo ] — { K
f bl = 0N &, (5.39)
h

The mean heating rate per unit volume is just F{:’e‘aﬁng divided by the volume of the Strom-
gren sphere. If the gas is dense enough, the photoelectrons quickly collide with the already-
present electrons, protons, and ions in the gas and the photoelectron’s kinetic energy is
redistributed among all the particles, which follow a Maxwell-Boltzmann distribution with
a well-defined temperature.

However, to photons, the rarified, ionized gas is largely transparent. The mean free path

to Thomson scattering is

1 1
nor 10 cm=3 x 6.7 x 10~2% cm?

| = = 1.5 x 10 cm = 50 pc, (5.40)

which is much larger than rgem. Thus, most of the radiation escapes from the H 1
region without scattering. This means that in the H 11 region there may be a thermody-
namic equilibrium between mass particles (which therefore follow a Maxwell-Boltzmann
energy distribution), but not between mass particles and radiation. As a consequence, the
radiation emitted by the 10*-K gas will not have a blackbody spectrum.

Most of the energy deposited in the H 11 gas by ionizing photons is radiated away in the
form of emission line photons at discrete wavelengths. To see how this comes about, let us
return to the hydrogen atom. A recombining hydrogen atom will recombine either to the
ground state or to some excited state, while radiating its excess energy as a “continuum”
photon of energy equal to the difference between the kinetic energy of the free electron
and energy of the atomic state (see Fig. 5.4). The atom will then decay radiatively in one
or more steps until it reaches the ground state, while emitting an emission line photon
at every step, with an energy corresponding to the difference between the atomic energy
levels. The probabilities for the atom to recombine into each of the states, and then to
decay into each of the lower states, can again be calculated from quantum mechanics.
The last decay usually involves emission of a Lyman series photon (i.e., a transition to the
ground level).

The hydrogen inside the Stromgren radius is constantly being ionized and recombin-
ing, and therefore at a given moment, some small fraction of it is in atoms in the ground
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Figure 5.4 Example of a recombination cascade in a hydrogen atom. A free electron
and proton recombine into the n = 4 excited level of hydrogen, emitting the sum
of the kinetic energy of the free electron and the binding energy of the n = 4 level,
in the form of a Brackett continuum photon. The atom then decays radiatively to the
n = 2 level, emitting an HB (Balmer series) emission-line photon. Finally, the atom
decays to the ground level and emits a Lyman-« photon.

state. As already noted, hydrogen in its ground state has a very high cross section for
absorbing Lyman photons and, as a result, the emitted Lyman photon is almost immedi-
ately reabsorbed by some other atom, which again decays in one or more steps ending in
the emission of a Lyman photon. This process is repeated until the excitation energy of
the original state, into which an atom recombined, has been degraded into many lower-
energy hydrogen transition photons (Balmer, Paschen, Brackett, etc.) and one Lyman-«
photon. The lower-energy photons escape readily from the gas, while the Lyman-« pho-
tons execute a random walk of absorption and reemission until reaching the edge of the
H 11 region. If there is dust mixed with the gas (more on dust soon), a Lyman-a pho-
ton may be absorbed by a dust grain before it reaches the edge of the ionized region,
in which case the photon energy is reemitted by the grain as infrared thermal radia-
tion. The escape of photons of this hydrogen recombination emission is one way in which
the ionized gas “cools,”
central star.?

i.e., loses the energy that is constantly being fed into it by the

3 Strictly speaking, recombination lines are not a gas cooling mechanism. By means of the recombination
lines, the gas gets rid of the binding energy of its constituent atoms, but not of its heat (i.e., the kinetic energy of
its constituents). The emitted energy of recombination line photons is always less than the 13.6 eV of ionization
energy per atom that we subtracted in Eq. 5.39, and which therefore does not contribute to the gas temperature.
Only the hydrogen continuum photons (Balmer continuum, Paschen continuum, etc.), minus the binding energy
of their appropriate lower energy levels, contribute to gas cooling via hydrogen recombination emission.
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The luminosity emitted per unit volume in a particular hydrogen emission line, say,
Ha (n = 3 — 2 in the Balmer series), is (using Eq. 5.22)

Lo = apa(T)MhVHa, (5.41)

where a . (T) is the effective recombination coefficient for hydrogen recombinations that
lead to the emission of Ha. A similar equation can be written for, say, Balmer continuum
photons, a fraction of whose energies actually cools the gas. Thus, the rate of energy loss, or
cooling rate of the gas, due to hydrogen recombination is proportional to the gas density
squared. Note that, since most recombinations end with the emission of one Lyman-«
photon, and the rate of recombinations equals the rate at which the central star emits
ionizing photons, the Lyman-« photon emission rate approximates the ionizing photon
rate. Thus, measuring the Lyman-« flux is a practical way of deducing the ionizing flux of
the star (i.e., the flux with hv > 13.6 eV).*

A second cooling mechanism, which is much more efficient than hydrogen recombina-
tion, is by means of line emission from ions of heavier elements. The electrons and ions
(mostly protons) in the gas collide with the ions of various elements, most importantly
carbon, nitrogen, oxygen, sulfur, silicon, and iron (so-called “metals”), that exist in the gas
in trace amounts. These ions have excited energy levels at relatively low energies above
the ground level, similar to the typical kinetic energies of the electrons. An electron—-ion
collision can therefore lead to collisional excitation of the ion, which takes up some of the
kinetic energy of the electron. If another collision does not deexcite the excited ion and
thus returns the energy to the gas, the excited ion will decay radiatively to its lower energy
levels, and the resulting emission-line photons will carry away the energy—there is a low
probability for reabsorption of the photons by other ions, because their abundance is so low.

Even if collisional deexcitation does occur much faster than radiative decay, this cooling
mechanism still operates. Consider a whole population of a particular ion in a gas where,
as before, there is thermodynamic equilibrium between mass particles, but not necessarily
between mass particles and radiation.” The ratio between the population of any two of the
ion’s energy levels is then, by definition, given by the Boltzmann factor,

T2 _ 82 hopt (5.42)
m 81

where hv is the energy difference between the levels, and g; and g; are the statistical
weights of the levels. Thus, as long as hv is not much greater than kT, there will be an
equilibrium population of ions in the excited level, and the constantly ongoing radiative
decay of that population will lead to the loss of thermal energy by the gas, in the form of
emission line photons from the ions.

# Under low-density («10* cm™3) conditions, about one-third of the atoms in the n = 2 state can decay to the
ground state via two-photon decay instead of through Lyman-« emission. The two photons have a total energy that
equals the energy of a Lyman-« photon [13.6 eV(1 — 1/4) = 10.2 eV], but with individual energies distributed in
a continuum between 0 and 10.2 eV and peaked at 10.2 eV/2=5.1 V.

? In the context of the physics of diffuse interstellar gas, this situation is called local thermodynamic equili-
brium. Note that in other contexts, this term sometimes has a different definition. For example, in the context of
stellar structure, local thermodynamic equilibrium refers to a situation in which the temperature may vary with
location in the star, yet at a particular position there is thermodynamic equilibrium, including a radiation field
with a Planck spectrum that corresponds to the local kinetic (Maxwellian) temperature.
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Figure 5.5 Example of a cooling function for interstellar gas, under the assumption that the
ionization is purely collisional at every temperature (i.e., there is no photoionization). The
complex shape of the function is due to the different cooling mechanisms that are dominant at
different temperatures: molecular line emissionat T < 103 K; at T ~ 103-10* K, collisionally
excited lines of neutral and low-ionization species of metals; at T ~ 10*~10° K, hydrogen and
helium recombination; at T ~ 10° K, T &~ 2 x 10° K, T ~ 5 x 10° K,and T & 10° K, far-UV
and X-ray emission lines from highly ionized species of carbon, oxygen, neon, and iron,
respectively; and bremsstrahlung at T > 107 K. Note that heating sources (e.g., stars) will
affect the ionization levels of the different elements, and will therefore influence the form of
the cooling function.

A third type of radiative cooling process, which is efficient mainly under high-density
conditions, is bremsstrahlung (free—free) emission. Bremsstrahlung can also become the
dominant (even if inefficient) cooling mechanism in gas that is both sufficiently hot (hence
fully ionized) and tenuous (so electrons and ions rarely meet and recombine, and therefore
the recombination rate is low—see Eq. 5.22). Such conditions exist in the intracluster
medium of galaxy clusters (see section 6.4).

The total cooling rate of an interstellar gas will thus be a sum of the cooling rates due to
all the various cooling processes. Which processes are dominant will depend on the gas
composition (chemical abundances and ionization fractions), the density, and the tem-
perature. Figure 5.5 shows an example of a cooling function, A(T), of interstellar gas. The
cooling rate per unit volume can be obtained by multiplying the cooling function, which
has units of power times volume, by the gas density squared. The complex form of the
curve is due to the changing dominance of different cooling processes at different tem-
peratures. Note, in particular, that the cooling function reaches a maximum at T ~ 10° K.
Beyond T ~ 107 K, all the elements in the gas are almost fully ionized and bremsstrahlung
remains the only, relatively inefficient, cooling avenue. Because the cooling rate, A ( T)n?,
is very low for a gas that is both hot and tenuous, such a gas may remain “stuck” at a high
temperature for a very long time.
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The efficacy of a cooling process may also depend on the opacity of the gas to radiation at
the wavelengths of the cooling emission—if the gas is opaque, the energy cannot escape.
As in the interiors of stars, the opacity depends on chemical composition, density, and
temperature. The temperature, in turn, is determined under steady-state conditions by the
requirement that the heating rate per volume element equal the cooling rate per volume
element,

1-‘heating = 1—‘cooling- (543)

To examine more quantitatively the relative importance of the various gas cooling pro-
cesses under different conditions, consider a population of hypothetical two-level ions that
can radiate emission-line photons of energy hv. The ions are constantly being excited by
collisions with electrons, and deexcited by both collisional and radiative transitions. The
density of electrons is n., and the densities of ions in level 1 and in level 2 are n; and n,,
respectively. The total density of these ions is n = n; 4+ n,. Some fraction of the gas is in
the ions, as determined by the balance between ionization due to the radiation field and
recombination with electrons, and hence n o« ny o n.. The rate of collisional excitations
from level 1 to level 2 of the ion is proportional to the electron density and to the density
of ions in level 1. Thus,

Rlz.coil = heN1q12 = ne(n' - nz)%z, (544)

where g; is a collisional excitation coefficient that includes the effects of cross section and
temperature. Similarly, the rate of collisional deexcitations from level 2 to level 1 is

Rai,coll = NeNaqa1, (5.45)
where g;; is the corresponding collisional deexcitation coefficient. The rate of radiative
decay between the two levels is

Rairad = m2Aa, (5.46)

where Ay; is the Einstein coefficient for spontaneous radiative emission, i.e., the reciprocal
of the mean lifetime for spontaneous decay to the lower energy level. (We will here ignore
stimulated emission, which is unimportant in most circumstances, but, for an exception,
see the discussion of masers in the next section.) In equilibrium, the rate of excitations
must equal the rate of deexcitations, i.e.,

ne(n — n2)q12 = naneqga1 + N2Aa1. (5.47)
[solating n, gives

nend2
ny, = . 5.48
: ne(q21 + q12) + Az i)

The luminosity in emission-line photons per unit volume is just

Asih h
Lot = o i = hengi2 A1V _ hengianv
ne(q21 +q12) + A1 (14 qu2/qu)neqa1/An + 1
nengrzhv

- ' 5.49
(1 + q12/921) 10/ Perie + 1 (5-49)
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where we have defined a critical density, nqi; = Az1/421. The ratio between the collisional
excitation and deexcitation coefficients is related by the statistical weights, g; and g, of the
levels and by the Boltzmann factor®,

2 _ 8 kot (5.50)
q21 &1

and therefore for any temperature, this ratio is of order 1 or less. Looking at the right-
hand term in Eq. 5.49 we see that, if n, < ngq, the first term in the denominator can be
neglected, and the luminosity depends on electron density as

L ~ n.n nZ‘. (5.51)
However, when n, > ng;, the second term in the denominator can be neglected and then
.C21 ~ N X N, (552)

i.e., the luminosity grows only linearly with density. Since cooling by hydrogen recom-
bination and by bremsstrahlung is proportional to n? at all densities, cooling by heavy-
element-ion line emission becomes inefficient compared to cooling by hydrogen when the
density is above the critical density of the major cooling lines.

A good example of a collisional-excitation line coolant is the [O 111]AX 4959, 5007 doublet,
emitted by doubly ionized oxygen, which is one of the main coolants of H 11 regions. (The
square brackets indicate that these are “forbidden” quantum transitions, which have low
probability and hence a long lifetime for radiative decay.) It is emitted by the transition of an
O’" ion from an excited level to the fine-split ground level (see Fig. 5.6). At densities lower

than its critical density for collisional deexcitation, n ~ 10® cm >

, a collisionally excited
O%* ion has enough time between collisions to release its energy in photons of these
two wavelengths. These photons give H 11 regions (e.g., the Orion nebula), when viewed
through the eyepieces of small telescopes, their greenish hue. When these emission lines
were first discovered in the 19th century, they could not be identified with any known
atomic transition, and it was thought that they came from a new, unknown element,
dubbed “nebulium.” The [O 111]Ax 4959, 5007 doublet is difficult to observe in the laboratory
because, even in the best achievable laboratory vacua, the density is higher than the critical
n ~ 10° cm™3. At the low gas densities of H 11 regions, the [O 111]A% 4959, 5007 doublet is
one of the primary avenues by which the gas gets rid of the energy being deposited into it
by the central star via photoionization.

Remarkably, not only are the rare “metals” the main coolants of H 11 regions, but they
also serve as natural thermostats that keep H 11 gas always at about 10* K, regardless of the
effective temperature of the ionizing star. If the star is hot and deposits a lot of energy into
the gas, this raises the collisional excitation rate of the metals, and hence the rate at which
they radiate away the energy in emission lines, preventing a rise in the temperature. If the
star is relatively cool, there will be less collisional excitation of the metal ions, and hence

6 This is a consequence of the fact that, if collisions dominate the level populations, then in equilibrium we
have n1q12 = n2421. However, under such conditions Eq. 5.42 holds (by definition), and the stated result then
follows.
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Figure 5.6 Part of the energy-level structure of the O?* ion, an important cooling
agent of interstellar gas. Radiative decay from the ! D; state to two of the sublevels of
the triply split ground state produces the emission-line doublet [O 111] 214959, 5007.
(Decay to the third sublevel, Py, is strongly forbidden.) For clarity, the spacing
between the split levels has been greatly exaggerated. The [O 11] 14363 emission
line, resulting from radiative decay from !Sq to ! D;, can become strong in gas with
a temperature high enough to excite a significant fraction of the ions to the 1S
state.

less loss of energy via emission lines. The gas temperature will then rise up to about 10* K,
at which point heating and cooling will balance out. This equilibrium temperature is set
mainly by the atomic properties of the metal coolants.

Figure 5.7 shows a typical optical spectrum of an H 11 region. A qualitatively similar
spectrum is also emitted by a planetary nebula, where the ionizing source is a newly form-
ing white dwarf, instead of a massive young star, and the ionized gas is the ejected stellar
envelope from the red-giant phase, rather than the star-forming cloud. A detailed analysis
of the relative and absolute strengths of the emission lines in such spectra can reveal a
wealth of information about the physical conditions—the temperature, the density, and the
chemical abundances of the gas, as well as the form of the ionizing spectrum of the source.
For example, the O** ion emits not only the [O 111]Ax 4959, 5007 doublet, by transition
from level 'D; to the fine-split ground level, but also the singlet [O 111]A 4363 by decaying
from level 'S, to level 'D, (see Fig. 5.6). The flux ratio of f(4363) to f(4959) + f(5007)
provides a direct probe of the excitation level of this ion, which depends mainly on the gas
temperature. Measurement of this ratio is therefore a useful thermometer.

Note that, although we have considered only heating by stellar radiation, the interstellar
gas can be heated by other processes, including shock waves from stellar winds and super-
novae, energetic charged particles called cosmic rays, and various “background” radiation
fields that are not associated with a particular source. Some of these are discussed in later
chapters.
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Figure 5.7 Typical optical spectrum of an H 11 region, with the main emission lines
marked—the Balmer series from hydrogen recombination, and the collisionally excited
“metal” lines.

5.3 Components of the Interstellar Medium

Beyond the Stromgren sphere of H 11 gas, photons from the ionizing source with energies
11.1 < hv < 13.6 eV can photodissociate molecular hydrogen’ into neutral hydrogen
atoms, i.e., H 1. At some larger radius, all of these photons will also be used up (or
absorbed by interstellar dust—see below), and the molecular gas will therefore be fully
shielded from the stellar radiation. In reality, star-forming regions do not have perfect
spherical geometries because the clouds have irregular shapes, inhomogeneous densities,
and unevenly distributed ionizing stars and star clusters within them.

An observationally important emission line from the neutral H 1 gas is the hyperfine
splitting 21-cm radio emission line, at a frequency of 1.421 GHz. The ground state of
hydrogen is split in energy due to the spin—spin interaction between the electron and
the proton (see Fig. 5.8). The upper level corresponds to parallel spins (total angular
momentum F = 1) and the lower level to antiparallel spins (F = 0). The upper level can
be populated by collisions with other atoms, by absorption of photons of this wavelength
from background radiation (the cosmic microwave background, to be discussed in chapter 9,
is one such background), and by previous decays of the atom to the ground level via
one of the Lyman transitions, which populate both hyperfine levels according to their
statistical weights (3 to 1). Radiative decay from the F =1 to the F = 0 level is “highly
forbidden.” The timescale is therefore 107 yr for the electron to do such a “spin-flip,”

7 Although the binding energy of molecular hydrogen is only 4.5 eV, the cross section for direct photodis-
sociation from the ground state (e.g., by absorption of an hv > 4.5 eV photon) is very low. Instead, molecular
hydrogen photodissociates in a two-step process, first by radiative absorption of an hv > 11.1 eV photon to an
excited electronic energy level. Part of the excited electron state’s energy then unbinds the molecule, and the rest
of the energy goes to continuum radiation and kinetic energy of the atomic fragments.
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Figure 5.8 The hyperfine-split ground state of hydrogen. The lower level has angu-

A 21 cm

F=0

lar momentum F = 0, corresponding to antiparallel electron and proton spins,
and the upper level has F = 1, with the two spins parallel. In a radiative decay
between the levels, the spin of the electron flips, and a A = 21 cm (v = 1421 MHz,
hv = 5.9 x 10~% eV) photon is emitted.

with the accompanying spontaneous emission of a 21-cm photon. The long timescale
means that the 21-cm line does not play a significant role in gas cooling.® Nevertheless,
the large amounts of atomic hydrogen in many astronomical settings, and the relative ease
of sensitive radio observations, make the 21-cm emission a bright and useful tracer of this
phase of the interstellar medium.

The molecular-gas phase of the interstellar medium radiates primarily in transitions at
IR through radio wavelengths. The main constituent of this gas, the H, molecule, is an
inefficient radiator and its emission is therefore quite weak. In its place, the molecular
phase can be traced in emission (or absorption of a background source) by the next most
common molecules: CO (carbon monoxide), OH (hydroxyl), NH; (ammonia), and others.
Although CO is only ~107° as abundant as H,, in many cases it is the dominant coolant of
the molecular gas, and thus determines the temperature of the molecular gas phase. As was
the case for atomic lines, analysis of the fluxes in different lines and their ratios provides a
diagnostic of physical conditions in the gas (temperature, density, abundances) and of the
embedded stars. Apart from the molecules already mentioned, hundreds of different types
of molecules have been identified in the ISM by their spectra. Some of these molecules
are fairly complex, for example, CH3;CH;OH (ethanol—drinking alcohol), which consists
of nine atoms.

The complex energy-level structures of molecules allow, in some molecules, the creation
of a population inversion, in which a meta-stable level (i.e., one having a long lifetime for
spontaneous radiative decay) is populated in many molecules. Given the appropriate gas
geometry, radiative decay by stimulated emission from this level to a lower energy level can
produce amplification of the radiation corresponding to the transition. The amplification
grows exponentially with the path length. Many such astronomical masers (microwave
amplification of stimulated emission radiation) have been discovered for transitions in
OH, H;0, and CH30H (methanol—*“wood alcohol”). Observationally, one sees a compact
region in a molecular cloud radiating in the masing transition with a huge intensity.
Astronomical masers achieve the large path lengths required for amplification by means

8 The main coolant of H 1 gas is usually a far-infrared line of singly ionized carbon, C 11 A158m, that is
collisionally excited by impacts with neutral atoms. Warmer (~10*K) neutral gas is cooled primarily by Lyman-a
emission from collisionally excited hydrogen atoms.
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Figure 5.9 Images of the “dark cloud” Barnard 68 in optical light (left) and in the near infrared

(right). The dust in a molecular cloud on the line of sight obscures the optical light from the gas and
the stars behind it, while the IR light suffers less extinction by the dust. The cloud is at a distance
of 120 pc, and is about 0.1 pc across. Photo credits: J. F. Alves et al., and the European Southern
Observatory.

of the large distances available in astronomical settings. This is in contrast to lasers and
masers in the laboratory, which generally achieve large path lengths by means of multiple
reflections between mirrors.

The last important component of the ISM, to which we have already alluded several
times, is interstellar dust. Dust consists of solid grains containing mainly Fe, Si, C, H,0
ice, and CO; ice, with a range of grain sizes, but typically r ~ 0.001-0.1 um. Given these
grain sizes, a more appropriate name would be “interstellar smoke”—the particles of famil-
iar tabletop dust are much larger. The formation and detailed composition of interstellar
dust are not fully known yet. Dust is produced in the photospheres of evolved stars and
in supernovae, and is expelled by stellar winds and by supernova explosions. Its presence
is detected in astronomical observations either by the attenuation it causes in background
light sources via scattering and absorption, or by the reemission of the absorbed energy as
thermal infrared radiation. Attenuation of background light by dust is called interstellar
extinction. In images of star-forming regions, dust extinction produces dark patches that
obscure stars and fluorescing gas (see Fig. 5.9). As seen in Fig. 5.10, extinction increases
steeply with decreasing wavelength in the IR through UV range. As a result, the short-
wavelength emission from a source will be attenuated more than the long-wavelength
emission, and dust will also cause the so-called reddening of background sources of light.
Over most of the wavelength range shown, the extinction behaves roughly with an exponen-
tial dependence on wavelength, as [log E(A)] ~ [log E(A¢)]Ao/A. The “bump” at 2200 A is
likely due to absorption by a graphite-like component in the dust particles. Comparison of
the observed color and brightness of a light source to its intrinsic color and brightness (as
deduced, e.g., if the source is a star, from its absorption line spectrum) allows deducing
the amount and properties of the dust along the line of sight. Apart from their observa-
tional effects, dust grains play an important physical role as sites to which atoms, ions,
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Figure 5.10 A typical curve of extinction—the attenuation factor produced by interstellar
dust—as a function of wavelength, from the UV (1300 A) to the near-IR (3 um). The case
shown is set to have a factor of 10 extinction at 5500 A. Note the large extinctions in the
UV, compared to the moderate values at IR wavelengths. Data credit: J. Cardelli et al.
1988, Astrophys. J., 329, L33.

and simple molecules can temporarily attach, interact with other attached particles to form
more complex molecules, and then return to the ISM. Furthermore, electrons released
from dust grains by UV photons via the photoelectric effect are the main heating source
of atomic gas.

5.4 Dynamics of Star-Forming Regions

In the preceding discussion of the ISM and H 11 regions, we have repeatedly invoked
steady-state conditions. However, in some situations, dynamical evolution needs to be
taken into account. When a new massive star “turns on,” the ionization front it produces
in the surrounding gas advances (relatively slowly; see Problem 4), from zero radius until
equilibrium is reached at the Stromgren radius. Stars, both in their pre-main-sequence
stage, and after they evolve off the main-sequence, when they are giants or supergiants,
shed their outer envelopes and drive winds and dust into the surrounding ISM. These
winds drive shocks into the ISM, affecting its temperature and density structure, as well
as enriching the ISM with newly synthesized heavy elements.

The massive stars that end their evolution as core-collapse supernovae release in the
explosion of order 1M, or more of highly enriched ejecta, which plow through the pre-
viously shed stellar envelopes and through the ISM, at supersonic velocities of order
10°~10* km s~ . The ejecta drive strong shocks, which heat the ejecta and the surround-
ing material to keV temperatures, making supernova remnants bright X-ray sources (even
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when the remnant is no longer powered by the rotational energy of the neutron star, as
in the case of the very young Crab nebula). At the shocks, electrons are accelerated to rel-
ativistic energies and spiral around magnetic field lines, emitting synchrotron radiation
from radio to optical bands. Finally, the shocks from supernovae may initiate compres-
sion of the gas in neighboring molecular clouds, and thus set off new generations of star
formation.

In any interstellar environment, many of the numerous processes we have discussed
in this chapter, both in and out of equilibrium, play a role and are interdependent. As
a result, the prediction of observables that can be compared to actual measurements,
such as emission-line luminosities and ratios, generally requires numerical calculations
that take into account all the relevant processes. The physical conditions in the ISM—
temperature, density, chemical abundances, and heating sources—can then be deduced
by comparing the measurements to the results of model calculations using grids of these
physical input parameters. Knowledge of the physical conditions in different environments
and at different stages can, in turn, lead to further understanding of star formation.

Problems

1. The oceans on Earth have a mean depth of 3.7 km and cover 71% of the Earth’s surface. It
has been suggested that this water was brought to Earth by comets (which are composed
mainly of frozen water and CO,).

a. Calculate the kinetic energy of a spherical comet of radius 4 km, composed of water
ice, which arrives from far away to the region of the Earth’s orbit around the Sun.

b. Estimate the radius of the cylindrically shaped crater that such a comet creates when
it strikes the Moon. Assume that the crater, of depth 10 km, is formed by heating
to 3500 K, and thus vaporizing, a cylindrical volume of moon rocks. Moon rocks are
made of silicates, which have molecular weights around 30 (i.e., a typical molecule
has 30 times the mass of a hydrogen atom), and mean solid densities p ~ 2 g cm~—>.
Ignore the latent heat required to melt and vaporize the rocks, and the energy involved
in vaporizing the comet itself.

Hint: Equate the kinetic energy of the comet with the thermal energy of the vaporized
rocks.
Answer: 51 km.

c. The number of craters per unit area in the relatively smooth “mare” regions of the
Moon, which trace the impact history over the past ~3 Gyr, indicate a total of about 10
impacts, leaving 50-km-radius craters, during this period. Based on the assumptions
in (b), these would be impacts of objects with radii > 4 km. From geometrical consid-
erations alone (i.e., the relative target sizes posed by the Earth and by the Moon, and
ignoring gravity) estimate how many such objects have struck the Earth, and what is
the mean time interval between impacts. How does the interval you found compare
to ~60 Myr, the typical interval between large extinctions of species on Earth? (The
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most recent large extinction, 65 Myr ago, eliminated the dinosaurs, and marked the
rise of the mammals.)

Answer: 140 Earth impacts, 21 Myr mean interval. The impact rate was higher in the
past, and declined as the comet reservoir was depleted, mainly by captures on Jupiter
and the Sun.

. Assume that comets have a mass distribution dN/dm o m—3, with radii ranging from

0.2 to 4 km. Based on the number of 4-km comet impacts, show that the total comet
mass, if composed mainly of frozen water, is sufficient to make Earth’s oceans.

2. Consider a newly formed globular cluster, with a total mass 10°M, and an initial mass
function dN/dm = am~%% in the mass range 0.1-20M, where m = M/M,.

a.

Find the constant a.

Answer: 1.9 x 10°.

Find the total luminosity of the cluster, assuming that all its stars are on the main
sequence, and a mass—luminosity relation L ~ M*. What fraction of the luminosity is
contributed by stars more massive than 5M,?

Answers: 2.0 x 108L; 0.98.

Find the mean mass of a star in the cluster.

Answer: 0.33Mg,.

. Assume that the main sequence lifetime of a 1M, star is 10 Gyr, and main sequence

lifetime scales with mass as M~2. What is the mass of the most massive main-
sequence stars in the cluster after 1 Gyr? What is the total luminosity of the cluster at
that time?

Answers: 3.2Mg; 1.5 x 108L.

3. Assume that the Milky Way, the galaxy in which we live, is composed of 5 x 10'°M,, of
gas, and ~10"" stars, which were formed with an initial mass function dN/dM o« M~233
in the range 0.4-100M,.

a.

What fraction of the stars formed with a mass above 8 M, the lower limit for eventual
core collapse? How many neutron stars and black holes are there in the galaxy, and
roughly how much mass is there in these remnants?

Answers: 0.018; 1.8 x 10° remnants; and ~3 x 10°M,,, assuming a typical remnant
mass of 1.4M.

. Assume that every stellar core collapse, and the supernova explosion that follows it,

distribute 0.05M of iron into the interstellar medium. What is the mean interstellar
mass abundance of iron in the Galaxy? Compare your answer to the measured mass
abundance of iron in the Sun, Zg, 5 = 0.00177, and explain how this shows that
the Sun is a “second-generation” star, that was formed from preenriched interstellar
material.

Several systems of “binary pulsars” are known, consisting of two neutron stars in
close orbits. If half of all stars are in binaries, and members of binaries are formed by
a “random draw” from the initial mass function (i.e., P(m) o« m~23%), then how many
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pairs of stars in the Milky Way were formed in which both companions were more
massive than 8M?
Answer: 7.7 x 10°.

d. Due to asymmetries in the supernova explosion, neutron stars are born with a “kick”
that gives them a typical velocity of 500 km s~'. What is the maximal initial separation
that will allow a binary to remain bound?

Hint: Equate the binding energy between two 8M, stars at separation r to the kinetic
energy of two 1.4Mg, neutron stars, each having typical kick velocity.

e. Ifbinaries form with an initial separation distributed uniformly between 0 and 0.01 pc,
how many neutron stars binaries have survived the formation kick?

Answer: 600.

Note: Actual measurements indicate that the secondaries in binaries are drawn not
from a Salpeter mass function, but rather from a mass distribution that is approxi-
mately flat. Also, the measured binary separation distribution is not flat, as assumed
in this problem, but rather flat in logarithmic intervals (or, equivalently, dN/da o 1/a,
where a is the separation).

4. A new star lights up inside a cloud of atomic hydrogen with a constant number density
of n atoms per unit volume. The star emits ionizing photons at a rate of Q, photons
per unit time. The ionizing photons begin carving out a growing “Strémgren sphere” of
ionized gas inside the neutral gas.

a. At adistance r from the star, what is the timescale 1., over which an individual atom
gets ionized, if the ionization cross section is ojon?

b. Ifthe recombination coefficientis @ = (ov), what is the timescale .. for an individual
proton to recombine with an electron?

c. Ata position close to the star, where the ionizing flux is high, and therefore 7ion < Trec,

show that the velocity at which the ionization front that bounds the Strémgren sphere
advances is vif = Q. /(47 rn).
Hint: Assume, as usual, that the gas is completely ionized within the front, and
completely neutral beyond it. Consider a slab of neutral gas behind the ionization
front, with area AA and thickness Ar, and find the volume of neutral gas that is
ionized during an interval At.

d. Evaluate vif for Q, =3 x 10 s, n = 10* cm 3, and for r = 0.01 pc, 0.05 pc, and
0.1 pc, respectively. From vi¢(r), obtain and solve a simple differential equation for
rstrom(t), and find roughly how long it takes the ionization front to reach the final
Strémgren radius (0.2 pc for these parameters; see Eq. 5.27).

Answers: At r = 0.01 pc, vif = ¢; at 0.05 pc, vif = 0.3c and at 0.1 pc, 2.5 x 10* km s7';
about 10 years to reach rgom.



6 The Milky Way and Other Galaxies

Galaxies are concentrations of 107 to 10'" stars, and are essentially the only places where
stars exist.! The Sun is a star in the Milky Way, a large spiral galaxy. Stars are, however,
just one of several components that make up a galaxy. In this chapter, we examine the
properties of the Milky Way, of other galaxies, and of systems of galaxies.

6.1 Structure of the Milky Way

Figure 6.1 shows optical-band images of spiral galaxies from different perspectives.
Figure 6.2 shows schematically the various components of the Milky Way and of other spi-
ral galaxies. The components, which we will describe in more detail below, are a flattened
circular stellar disk, which has spiral-shaped density enhancements in it; a thinner, gas-
and-dust disk, within the stellar disk; a stellar bulge or spheroid; an extended, spheroidal,
halo of gas, stars, and globular clusters; a central supermassive black hole; cosmic rays—
energetic protons, nuclei and electrons that are trapped by the magnetic fields in the
disk; and a dark halo of unknown composition, which extends far beyond the visible
components.

The Sun is in the disk of the Milky Way (often referred to as “the Galaxy,” with a capital .
G). The diffuse band of light known by this name, and visible in the night sky, is composed
of individual stars. Its appearance is the result of our vantage point inside the plane of the
disk (see Fig. 6.3). The Sun’s distance to the Galactic center is

Ry = 8.0+ 0.5 kpc. (6.1)

The distance can be found, e.g., by measuring distances to globular clusters and determin-
ing the centroid of their distribution. (A more recent determination utilizes the observed

! An exception is a recently discovered population of intergalactic stars in galaxy clusters, comprising of order
10% of the stellar population in that environment. Also, the first stars formed in the Universe probably preceded
the first galaxies.
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Figure 6.1 Three examples of spiral galaxies, each with its disk at a different angle to our line of sight, from
face-on (M51, top left), through inclined (NGC 3370, top right), to nearly edge-on (NGC 4594, bottom). Note
the spiral pattern traced by star-forming regions and, in the edge-on case, the thin gas-and-dust disk that is

discernible by its extinction of the starlight behind it. Note also the varying domination of the disk and bulge
components among the three galaxies, and the spheroidal population of globular clusters, evident as numerous
compact sources, in the edge-on case. Image scales are of order 20 kpc in each picture. Photo credits: S. Beckwith,
A. Riess, NASA, ESA, and the Hubble Heritage Team.

angular sizes of orbits of stars of known velocity near the Galactic center). From the dif-
ferential motion of stars in the solar neighborhood (as determined by proper motions
and Doppler line-of-sight velocities), the orbital velocity of the Sun around the Galactic
center is

vo =220km s, (6.2)



142 | Chapter 6

globular

clusters i N

dark
halo

bl . * bulge,

Figure 6.2 Schematic edge-on view of the main components of a spiral galaxy. The location of the
Sun in the Milky Way is indicated.

The orbital period is therefore

ZJTR@
T =

~ 2 x 108 yr. (6.3)
Yo

For a spherical mass distribution, the mass M(Ry) internal to a radius Ry obeys

GM(R v2
¥ = -2 (6.4)
R Ro
or
M(Ry) ~ Rovd  8kpe x 3.1 x 102! emkpe™' x (2.2 x 107 em s71)?2
®T e T 6.7 x 1078 cgs
= 1.8 x 10" g~ 10" M, (6.5)

Although the mass distribution in the Milky Way is highly nonspherical, Eq. 6.4 is a good’
approximation also for a circular flattened mass distribution, in which v(r) = constant,
which is roughly true for the Milky Way. About half the mass interior to Ry, is in stars, and
the typical stellar mass is about 0.5Mg,, so there are about 10'! stars interior to the solar
orbit.

6.1.1 Galactic Components

6.1.1.1 The Disk
The Galactic disk has a mass distribution that falls exponentially with both distance r from
the center and height z above or below the plane of the disk:
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Figure 6.3 Top: An optical-light image in the direction of the Milky Way's center. Although the Galactic disk is
visible as a broad swath of light, the center of the Galaxy is obscured by the dust in the disk. Bottom lefi: A half-sky
image (i.e., 27 steradians) with the Milky Way overhead. The disk + bulge structure can be seen. The region

shown in the top panel is indicated. Bottom right: Optical image of the nearby edge-on spiral galaxy NGC 891.
Note how similar the Milky Way and NGC 891 appear. Photo credits: Wei-Hao Wang; and C. Howk, B. Savage,
N. A. Sharp, WIYN/NOAO/NSF, copyright WIYN Consortium, Inc., all rights reserved.
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The scale length of the disk, r; = 3.5 + 0.5 kpc, and hence at r = 8 kpc the Sun is in the outer
regions of the Galaxy. The characteristic scale height is hy = 330 pc for the lower-mass
(older) stars in the disk and h; = 160 pc for the gas-and-dust disk. The Sun is located at
z = 30 pc above the midplane of the disk. The mass of the disk within one scale radius is

Maisk ~ 10'°Mo, (6.7)

most of it in stars (and about 10% in gas). This implies about 2 x 10'° stars, and a mean
density

2 x 10'°
7 (3500 pc)? x 2 x 330 pc

Hstars ™

~1pc> ~3x107¢cm™. (6.8)

The mean distance between stars is then
d=n"1"3~1pc (6.9)

Ignoring gravity for a moment, the mean free path for a star to physically collide with
another star (i.e., for the centers of the stars to pass within two stellar radii of each other) is

1

ﬁageom

| = : (6.10)

where the geometric cross section is ogeom = 7(2 ro)?, for astar of solar radius. The random,
noncircular, velocity of stars in the disk is typically viz, ~ 20 km s™!. For a given star, the
time between collisions is then

! 1
Teoll = ="=
Vran nageom Vran
1
3x107%cm™3 x 7 x (2 x7 x10%cm)? x 2 x 10° cm s™!
=2x10%s=7x10%yr. (6.11)

Thisis ~5 x 108 times the age of the Universe, and thus, accounting only for the geometric
cross section, most stars never collide (in a galaxy with 10! stars, there will be of order 100
collisions in the course of 10'° yr). In reality, gravitational focusing—the fact that nearby
stars attract each other—increases the effective cross section for a physical collision as

VZ
Oeff = Ogeom (1 o o= ) ; (6.12)

2
Vian

where v, is the escape velocity from the surface of the star (see Problem 2 for a derivation).
The escape velocity is defined as the velocity of a particle that has equal kinetic and potential
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1 and hence the

energies, and is therefore not bound. For a Sun-like star, v, = 620 km s~
effective collision cross section is ~1000 times larger than the geometrical one. This factor,
however, does not change the fact that stellar collisions in the disk are extremely rare. In the
innermost regions of the galaxy, where the density and random velocities are the highest,
the probability for a stellar collision is significant. Also, if we consider the cross section
to be that of a planetary system of radius 20 AU, the collision time goes down by a factor
10007 to about 10'? yr (gravitational focusing becomes unimportant in this case, because
the escape velocity from 20 AU in only v, ~ 10 km s7!). Thus, about 1% of all disk stars
undergo, during their lifetimes, a disruption of their planetary systems (if they have such
systems) by the close passage of another star.

The gas-and-dust disk has a smaller scale height than the stellar disk. From our van-
tage point near the midplane of the Galactic disk, extinction by dust makes it extremely
difficult to see most of the Galaxy at optical wavelengths (and to a lesser degree, also at
IR wavelengths). The extinction to the Galactic center at visible wavelengths amounts to a
factor of about 10'!. The view perpendicular to the disk, looking at the halo of the Galaxy
and beyond our galaxy, is essentially unattenuated.

The spiral arms in the disk are the sites of slightly increased gas density. The con-
spicuous appearance of spiral arms is due to the fact that star formation is significantly
enhanced along the arms, and the luminosity of young, massive stars is high. It is often
remarked that O and B stars and H 11 regions trace out the spiral arms in the Milky Way and
other spiral galaxies like “beads on a wire.” The fact that there is ongoing star formation
in the disk means that the stellar population in the disk has a large range of ages, includ-
ing old stars (10 Gyr), intermediate age stars like the Sun (5 Gyr), and recently formed
stars.

It is important to realize that the spiral arms are almost stationary features, through
which stars move in and out as they orbit a galactic center, or transient features that
appear and disappear at different locations in the disk. Recall the Sun’s orbital period
around the Galactic center, of 2 x 108 yr. Stars at half the galactocentric distance orbit the
center with about the same velocity of 200 km s™!, and so have a period that is half as
long. If the spiral pattern were moving with the stars, the pattern would have wound about
50 times over 10'° yr, and would have been washed out. Instead, the spiral patterns are
observed to wind just a few times, at most. One of the mechanisms proposed to explain
spiral arms involves density waves, regions of higher stellar and gas density. A common
example of a density wave is a traffic jam through which cars pass at lower speed, leading to
a density enhancement along the road. The traffic jam can be stationary, or move backward
or forward at some speed, which is unrelated to the speed of the cars going through it.
A traffic jam can also disappear at some location along a road and appear at another. In
a spiral galaxy disk, density waves can result from particular shapes of the orbits of the
individual stars and the gas, which spend longer times during their orbits at the locations
of the peaks of the density waves. Other mechanisms have also been suggested to produce
spiral arms, such as interactions between galaxies. It is possible that several effects are
at play.
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6.1.1.2 The Spheroid
The spheroid of the Galaxy consists of a spheroidal stellar bulge of typical size 1 kpc, with
a density proportional to radius as

p~r, (6.13)

and a stellar and gas halo with a similar profile out to about 50 kpc. About 200 globular clus-
ters are also members of this halo population and they follow the same spatial distribution.
The instrinsic three-dimensional shape of the spheroid, which at the arbitrary projection
of any particular galaxy appears circular or elliptical, is probably that of a body of revolution
obtained by rotating an ellipse about its minor axis. This is called an oblate spheroid.

The starsin the bulge and in the halo are old (10-14 Gyr). The age of the stellar population
in a globular cluster, which is a system of stars that formed together at about the same
time, can be deduced from its H-R diagram, by the location of the turnoff from the main
sequence to the giant branch (see Fig. 4.1). Stellar models are used to predict at what age
the spectral types at the observed turnoff point complete their main-sequence lifetimes.
The spectra of the stellar atmospheres also reveal the element abundances that the stars
had when they formed. The old stars comprising the halo population formed from material
that underwent relatively little heavy-element enrichment by the winds from giants and
the ejecta from supernovae, following previous stellar generations. For example, in halo
stars the iron-to-hydrogen mass fraction, relative to solar, is

[Fe/H]

S ——— 1 —45 1 _0'5, 614‘
[Fe/H]o 0 to 10 ( )

6.1.1.3 The Galactic Center

The Galactic center has been studied intensively in recent years at IR, radio, X-ray, and
y-ray wavelengths, which are less affected than optical light by the large amounts of dust
on our line of sight. The Galactic center region has a large density of stars, and includes
several young star clusters, supernova remnants, and a complex assortment of atomic and
molecular gas (see Fig. 6.4). Radio and X-ray observations reveal a compact, stationary
source named Sagittarius A* at the location of the kinematic center (i.e., the center as
determined from stellar orbits). The high angular resolution possible with radio-telescope
interferometers reveals a size of ~1 AU for this object. Observations over the past decade
of the actual orbits of stars around the center (see Fig. 6.5) have allowed a fairly accurate
measurement of the mass of this object, M &~ 4 x 10°M,. The concentration of such a
large mass within such a small region, with little luminosity to show for it, is strong
evidence for the presence of a supermassive black hole. The radio and X-ray emission are
the result (in a manner that is not yet fully understood) of the release of gravitational
energy of matter being accreted by the black hole. Such objects appear to be present in
the centers of all large galaxies, based on the observed motions of stars and gas in the
central regions. The black-hole masses are roughly proportional to the stellar masses of
the bulges, and have a range of about 10°~10° M. It is currently not known whether
central black holes are by-products of galactic formation and evolution, or perhaps play an
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Figure 6.4 Left: A radio-wavelength (90 cm) image of ~1 kpc around the Galactic center. The Galactic plane goes
from top-left to bottom-right (compare to Fig 6.3). The central source radio source, Sagittarius A, is marked. The
unresolved radio source at the kinematic center of the Galaxy, Sagittarius A*, is within it. A number of other
structures are also identified, mainly supernova remnants emitting synchrotron radiation and H 11 regions that
emit free-free radiation. Right: Radio image at a wavelength of 1.3 cm of the central parsec around Sagittarius A*,
which is at the center of the image, surrounded by diffuse emission from ionized gas. Photo credits: NRAO/AUI
and N. E. Kassim, Naval Research Laboratory; NRAO/AUI, Jun-Hui Zhao, and W. M. Goss.
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Figure 6.5 Left: Near-infrared (2.2-um-wavelength) diffraction-limited image of the central arcsec-
ond (0.04 pc) around the Galactic center, obtained in June 2005. Right: Positions of the seven stars
marked in the left panel, as traced with such images between 1995 and 2005, and the best-fitting
elliptical orbits. The orbits indicate an enclosed mass of ~4 x 10° Mg within a radius of <45 AU
(the closest approach achieved by star S0-16), presumably a supermassive black hole at the position
of Sagittarius A*. Figure credit: A. Ghez and . R. Lu, see Astrophys. J. (2005), 620, 744.
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important role in regulating galaxy growth. We will return to supermassive black holes in
section 6.3.

6.1.1.4 Cosmic Rays

Cosmic Raysis a term for energetic matter particles that arrive at Earth from space. They can
be detected directly using high-altitude balloon experiments, or by tracking the showers of
secondary particles (mainly muons) that they produce when they hit Earth’s atmosphere.
Cosmic rays consist of electrons, protons, and heavier nuclei, with all of the elements
present. Some cosmic rays are of solar origin, from particles carried out with the solar wind.
Other cosmic ray particles are Galactic, and are thought to be produced and accelerated
mainly in supernova explosions. They are then trapped by the magnetic field of the Milky
Way’s disk. Finally, some cosmic rays are probably of extragalactic origin, and come from
active galactic nuclei (see section 6.3) and from gamma-ray bursts.

6.1.1.5 The Dark Halo
The last galactic component we will discuss, and in some detail, is the dark halo. The
evidence for dark halos in galaxies is kinematic, based on the measurement of rotation
curves, i.e., the circular velocity, v(r), of test particles in orbit around the center of a galaxy,
as a function of radius r. The circular velocity is found by observing material (e.g., gas)
that is orbiting in the gravitational potential of the galaxy and measuring the line-of-sight
velocity from the Doppler shift of a known transition, seen in the spectrum in emission or
absorption. The measurement then needs to be corrected for various observational effects,
such as inclination, motion of the observer, and projection (since the observer sees only
the velocity component along the line of sight), to obtain the intrinsic circular velocity.
Rotation curves are often measured using the 21-cm emission line of H 1, the Balmer He
emission line from H 11 regions, the absorption lines in the integrated light from stars, and
the molecular emission lines from CO. Figure 6.6 shows a typical galactic rotation curve.
A remarkable finding that has few or no exceptions is that, at large enough radii, galaxy
rotation curves are “flat,” i.e., v(r) = constant. This holds even in the very outer parts of
galaxies, far beyond the regions where most of the emission from stars and from gas is
concentrated, and where only trace amounts of luminous matter exist (some luminous
matter is generally needed, in the role of test particles, to make the kinematic measure-
ments). If the mass distribution followed the light, one would expect that, at some radius,
most of a galaxy’s mass would be within, and hence the rotation curve would fall in an
approximately Keplerian fashion, v ~ r~1/2 as for a point mass. Since

i< TF 6.15
(=" (6.15)
v(r) = constant implies

M(r) ~r. (6.16)

Thus, the flat rotation curves mean that, far beyond the exponentially dimming disk and
the spheroid with its steeply falling light distribution, the mass enclosed within a radius r
continues to grow linearly with r, out to the largest radii that can be measured. This dark
halo constitutes much of the galaxy’s total mass, the exact fraction depending on where
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Figure 6.6 Schematic example of a spiral galaxy’s rotation curve—its circular velocity
as a function of radius. Outside the inner few kiloparsecs, rotation curves invariably
become “flat,” i.e., approach a constant velocity, suggesting the presence of a halo of
dark matter. The dashed curve shows the ~r~'/2 Keplerian falloff that would be expected,
in the absence of dark matter, beyond a radius that includes most of the visible luminous
matter.

the dark halo ends. For example, in the Milky Way, the flat rotation curve is seen to extend
out to ~30 kpc, of order 10 disk scale lengths. Thus, the total mass is about 10 times the
mass inside a scale length, and 80-90% of the Galaxy’s mass, of order 10'?M,,, is dark.
The luminous parts of galaxies are just the “tip of the iceberg,” while the majority of the
mass is dark and extended. Combining Eq. 6.16 and the scaling relation between mass,
density, and radius, we get

r~ M(r) ~ pr?, (6.17)

and hence in the outer regions of a galaxy, where the dark matter is dominant, the mass
density profile of the dark matter must be

1
p(r) ~ I (6.18)

6.1.2 The Nature of the Dark Matter

Let us consider the possible nature and forms of this ubiquitous dark matter.

Gas: If the dark matter were a gas of normal baryonic matter, it could be one of the
following:

atomic gas—but it would then radiate strongly at 21 cm.
molecular gas—possible, in principle, but the gas would have to be un-enriched in heavy elements

(to avoid emission from CO), and very cold (to avoid H; emission). It could still be detected by
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the effects of H, absorption and scattering of background UV sources, and some first attempts
to see such an effect have not succeeded, making this option questionable. However, this
dark matter candidate has not been fully ruled out yet.

ionized gas—a hot ionized gas is a strong emitter in X-rays of thermal free-free radiation?, which

is not observed.

Dust: Dust would emit IR radiation, and would produce visible extinction of background
objects by the halos surrounding other galaxies. Furthermore, dustis composed of “metals”
(i.e., elements heavier than helium), and on average only about 2% of baryonic matter is
composed of metals. One would have to somehow drive away from the galaxy a mass of
hydrogen and helium gas that is 50 times greater than the mass of the dust making up
the halo.

Massive Compact Halo Objects (MACHOs): This category includes all gravitationally bound,
star-like, objects, including planets and black holes. The various possibilities are as follows:

main-sequence stars—cannot comprise the dark halos of galaxies since they would be visible, not
dark.

giant stars—are even more luminous than main sequence stars, so are certainly not an option.

neutron stars—their formation is accompanied by supernova explosions, which produce large
amounts of heavy elements. If much of the dark halo were composed of neutron stars, the
metal abundances in the halo gas would be very high, but they are measured to be low.
Furthermore, only a fraction (about 1/10) of the initial mass of a massive star ends up in a
neutron star, and the rest would have to be blown away from the galaxy.

black holes—the same argument as for neutron stars can be made. However, so little is known
about the supernova explosions (if any) that accompany black hole formation that the argu-
ment does not carry so much weight. The distribution of binary separations observed in the
halo can also be used to argue indirectly against a dark halo composed of black holes, since
encounters with the black holes would disrupt the binaries.

white dwarfs—if dark halos are composed of white dwarfs, the winds from the giants that
preceded their formation would have produced a large enrichment in intermediate-mass
elements (He, N, Ne, C, O) of the halo gas, which is again not seen. Furthermore, one
would expect to see luminous red halos, composed of the red-giant precursors of the white
dwarfs, when looking at distant galaxies (corresponding to large lookback times, before the
white dwarfs formed), and these are probably not seen. Due to the incomplete theoretical
understanding of element enrichment by stellar winds, and the difficulty of observing very
distant galaxies, this option is not completely ruled out.

brown dwarfs and “planets”—such objects, with masses in the range between the planet Jupiter
(M; = 0.001M,) and the stellar ignition limit (Mpyi, & 0.07Mg = 70M)), emit little radi-

ation and cause no enrichment of the interstellar medium. They were therefore leading

% Thermal bremsstrahlung is emitted by the electrons in an ionized gas that has a Maxwell-Boltzmann velocity
distribution, even if the gas is tenuous enough for the radiation to escape freely with few scatterings, and hence
the radiation is not in thermal equilibrium with the gas.
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contenders for MACHO-type dark matter, until they were ruled out by the gravitational

lensing experiments we will describe below.

Elementary Particles: This category includes any type(s) of elementary particles, known or
unknown. The following are some options:

electrons and protons—this is just ionized hydrogen, which we already excluded based on the
low observed level of X-ray emission from galactic halos.

neutrons—{ree neutrons decay in about 15 min into electrons and protons (plus neutrinos),
which are excluded.

massive neutrinos—although it now seems likely that neutrinos have mass, it is not clear if
they are massive enough to be a significant component of the dark matter. Their relativistic
speeds also pose a problem in models of galaxy formation if the neutrinos constitute the
main dark-mass component. However, this option has not been fully excluded.

cold dark matter—this subcategory refers to a broad class of currently undiscovered, but theoret-
ically proposed, particles. These particles come from extensions to the “standard model” of
particle physics but are not present in the standard model itself. They all share the property
that they are “weakly interacting” (like neutrinos), i.e., they are affected only by the weak and
gravitational interactions, and hence do not emit electromagnetic radiation. Furthermore,
they have a high mass per particle, and since they are bound in a galaxy potential, they move
at nonrelativistic speeds and are thus “cold” (as opposed to the “hot” neutrinos). Some can-
didate particles are “axions” and particles that are predicted to exist in the framework of a
theory called supersymmetry. The whole zoo of plausible particle dark matter candidates is

sometimes called WIMPS, weakly interacting massive particles.

Reviewing the above list of dark matter candidates, two categories are neither excluded
nor arguably unlikely: cold dark matter and sub-stellar-mass MACHOs. The MACHO
option has been recently tested experimentally via the phenomenon of gravitational lens-
ing. To understand how this was done, let us digress and develop the theory of gravitational
lenses.

6.1.3 Gravitational Lensing Basics

General relativity predicts that space is curved by the presence of mass. As we have seen
in the example of the Schwarzschild metric, in a gravitational field, as seen by a distant
observer, light can be thought of as moving at a speed less than c, and the field thus acts
effectively as an index of refraction. Therefore, a light ray traversing a region where the
gravitational field has a gradient (e.g., near a point mass) will bend toward the mass, in
accordance with the Fermat principle (of which Snell’s law in optics is an example).
Consider, then, a light ray from a distant source approaching a point mass M and being
bent as a result of this effect (see Fig. 6.7). Denote the distance of closest approach of the
ray to the mass (the impact parameter) as b, and the bending angle of the ray as «. Let us
assume that the following two conditions apply: the gravitational field is weak, even at the
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Figure 6.7 Gravitational deflection of a light ray from a distant source passing a
point mass M to within a distance b, and continuing in the direction of a dis-
tant observer. In the weak-field limit (i.e., if, at the closest point of approach the

gravitational potential ¢ < ¢Z, or equivalently, b > r;), the deflection angle is o =
4GM /c?b.

location of the ray’s closest approach to the mass—this means that b is much larger than
the Schwarzschild radius, or

g_ﬂ;f & 1: (6.19)
and the radius over which the mass has significant bending influence on the the ray,
namely ~b, is much less than the other relevant distances in the problem, namely the
distances between the observer, the source, and the point mass. This is called the thin-
lens approximation, again in analogy to optics. Similarly, we shall refer to the point mass
as the “lens” due to the same analogy. A calculation (which we will not pursue) of a photon
trajectory in the Schwarzschild metric under these limiting conditions gives a simple
formula for the bending angle,

4GM 27
=— =7 (6.20)

Note that « is proportional to M and inversely proportional to b.
For example, for a light ray coming from a distant star projected near the limb of the Sun,

b=ry =7 x 10" cm. (6.21)

The weak-field and thin-lens approximations certainly apply (b &~ ri, ~ 10°r, and dg, ~
200b), and therefore Eq. 6.20 gives

2r,  2x3x10°cm Byos i 1 622
= —= — = 1. ICSeC, .
* b 7 x 101%m 7 r ares ( )

where we have converted radians into arcseconds, by multiplying by 3600 x 180/n (recall
that an arcsecond is 1/3600 of a degree). Thus, light rays from stars projected near the
solar limb will bend by this angle, and will appear to an observer on Earth to be arriving
from a direction further from the limb. In other words, when the Sun is near the line
of sight to these stars their positions on the sky will appear to shift away from the limb,



The Milky Way and Other Galaxies | 153

relative to their positions when the Sun is elsewhere.’ This phenomenon is an example
of lensing of stars by the Sun’s gravitational potential.

The first attempts to measure the lensing effect were carried out in 1919, during a
total solar eclipse, when the Moon covers the Sun and thus reduces its glare, allowing
stars to be seen projected near the limb in daytime. These were the first experimental
tests of general relativity. Although the results were not conclusive due to the difficulty of
measuring such a small angular shift under transient and difficult conditions, the results
were widely publicized by the popular press, and turned Einstein overnight into a celebrity.
Since then, this and many other predictions of the weak-field limit of general relativity have
been confirmed experimentally to great accuracy.

To proceed, consider now the following three elements: a point light source, a point
mass (i.e., a “lens”), and an observer, with all three on a straight line (see Fig. 6.8). In
optical terms, the source is on the “optical axis” of the lens. Clearly, only rays with a par-
ticular impact parameter b will reach the observer—rays with larger b will not be deflected
enough, and rays with smaller b will be deflected too much. Thus, all rays emitted at
a certain angle to the optical axis will reach the observer, and by symmetry, the source
will appear deformed into a ring, called an Einstein ring, with an angular radius 6, and
physical radius Rg in the plane of the lens. Let us label the observer—source distance
D,s, the observer—lens distance D}, and the lens—source distance Dj,. Since we assumed
the weak-field approximation, GM/c’b <« 1, then o = 4GM/c?b < 1, i.e., a is a small
angle. Similarly, the thin-lens approximation, b <« Dy, implies 6z < 1. Looking at the
line segment SI, we can therefore write

ST = aDjs = 0g Dos. (6.23)

Substituting Eq. 6.20 for «, with b = Rg = Dg 0, gives

4GM
EZ—]DOED]S - BEDOS, (624)
or
4GM Dy, \'*
6 = ; 5
£ ( ¢ DOIDOS) (6 25)

The Einstein angle sets the angular scale of the problem. For example, if we take a lens
approximately halfway between the observer and source, then Djs/Dos & 1/2, and

Or = 0.64 x 102 arcsec M\ ( Dol o 6.26
S M, 10 kpc ' (6.26)

3 Atmospheric refraction produces a similar effect on the setting Sun, giving it a flattened shape, and making
it visible above the horizon when in reality it has already set. Note, however, that contrary to atmospheric
refraction, gravitational light deflection does not depend on the wavelength of the photons, i.e., it is achromatic;
the equivalence principle of general relativity, which states that a reference frame in a gravitational field cannot
be distinguished from an accelerated reference frame, dictates that photons of all energies will be deflected by
the same angle given by Eq. 6.20.
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Figure 6.8 Geometrical configuration in which a point source of light (S), a lensing
point mass, and an observer (on the right-hand side) are on a straight line, with
distances as marked. For a particular lensing mass, M, only rays passing by the lens
at a specific impact parameter b will reach the observer. By symmetry, the image of
the source will be deformed into a ring, of angular radius 6 (see Eq. 6.27), called an
Einstein ring. The large angles drawn are only for the sake of clarity, and in practice
all angles are extremely small. Light rays are shown to bend at one point along their
path, in keeping with the “thin-lens” approximation.

Figure 6.9 Geometry in which the point source of light (B), is off the “optical axis”
(A) defined by the lens and the observer. In this case, two lensed images are seen
by the observer. One image is at position C in the source plane, at an angle 6 from
the lens. The second lensed image is on the opposite side of the lens, at position D
in the source plane, separated from the lens by an angle 6_.

Thus, a stellar-mass object halfway on our line of sight to a star at a distance of
20 kpc will gravitationally lens and deform the light from the star into an approximately
1-milliarcsecond Einstein ring. If the lens is a stellar-mass object in a galaxy ata “cosmolog-
ical” distance of 1 Gpc (10° pc), then the Einstein angle becomes of order a microarcsecond.
This is the reason why lensing by stellar-mass objects is often called microlensing (a name
that is retained also when the lens is closer, and the angular scale is actually larger).

Consider now a more general case, where the light source is not on the optical axis
of the lens, but rather at some angle B to it (Fig. 6.9). As before, @ < 1, and the thin-
lens approximation, b <« D, implies 6 < 1. Since < 6, 8 is also a small angle. From
Fig. 6.9, we can see that AB + BC = AC. Considering the small angles projected on these
line segments, we can write

Do + DosfB = Dog6. (6.27)
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Figure 6.10 Schematic illustration showing the actual location on the sky of an
unlensed source, at an angle 8 from the lens, and its two apparent lensed images,
at positions #4 and #_, demonstrating the calculation of the magnification of the
lensed images. The source has an extent df in the radial angular direction and gy
in the tangential direction. The lensed image at position 6 is tangentially stretched
by the ratio # /8. The lensed image can also be either stretched or shrunk in the
radial angular direction, by the ratio d64 /dB. The magnifications, i.e., the ratios of
solid angles subtended by the images and by the source, are therefore 6+ d6. /Sdp.
Since surface brightness is conserved, the magnification of each image is also its
amplification.

Isolating 8, we find

D D, 4GM 9%
D Dys ¢2 D10 o
or,
6% — BO — 62 = 0. (6.29)

Solving this quadratic equation for 8, the angle of the lensed image relative to the lens, we
find two solutions,

0y = 3[B + (B* +467)']. (6.30)

Thus, there will always be two lensed images for a point-mass lens (except when the
source is on the optical axis, 8 = 0, in which case we recover the single-image, Einstein-
ring solution). The two images have 6 with opposite signs, and hence they will straddle
the lens on both sides.

Next, let us calculate the appearance of the lensed source on the sky. The source, were
it not lensed, would subtend a tangential angle y relative to the origin at the position of
the lens, and a radial angle dB (see Fig. 6.10). The lensing effect shifts the images of the
source on the sky radially, relative to the lens, and therefore produces tangential stretching
of the images, by factors 6. /8. These ratios can be calculated directly from Eq. 6.30. At the
same time, the radial angular width of the source can be stretched or shrunk in the lensed
images relative to the original size, by a factor df, /dB. These derivatives are, again, easily
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obtained from Eq. 6.30. The relative increase in the angular size, or magnification, of each
image will therefore be

_ 04dOy  6: p
“TTgap 28 [1 * (B +49§-)”2]' &30

Surface brightness (i.e., flux per solid angle of sky) is conserved by gravitational lensing,

and therefore the magnification implies amplification, i.e., a magnified image will appear
brighter. Microlensing occurs on angular scales such that the individual images cannot
be resolved (i.e., discerned individually) by optical telescopes. However, one can measure
the total magnification (or amplification), relative to the unlensed solid angle (or flux), as
a result of the lensing:

wt 42
Otot = A4 +a_ = W, (632)
where
w=L. (6.33)
Ok

i.e., the angular separation between source and lens in units of the Einstein angle. When
u is large (i.e., the source is far, in projection, from the lens), we can see that a,, tends to
1, as expected. When u = 1 (i.e., the source is at a position on the sky through which the
Einstein ring would run, if the source were on the optical axis), then

3
Gor(u = 1) = —= = 1.34, (6.34)

V5

i.e., the source will be magnified (amplified) by 34%. We can also see from Eq. 6.32 that
for small u,

~

£

: (6.35)

Gtot

and formally becomes infinite when u = 0. This simply reflects the fact that a point source
is being stretched into a circle, and there are an infinite number of points on a circle. In
reality, there are no true “point sources”; every source of light has a finite physical (and
hence angular) extent, and only one point in the source, which has zero area and hence
emits zero flux, will be exactly at u = 0. The magnified flux in the observed Einstein ring
will therefore be finite.

Now, let us add to the problem a relative transverse motion between the source and
the lens, as viewed by an observer (such motion can be due mainly to the motion of the
observer), with a velocity v measured in the plane of the lens. The simplest case is apparent
motion along a straight line on the sky. From Fig. 6.11, we see that the source angle will
now be a function of time,

2 1/2
B(t) = [ﬁé + ot - to)z] ; (6.36)

ol
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source

Figure 6.11 Relative motion on the sky of a lens (center, with its Einstein angle
0 indicated) and a source that is projected behind it. Projected to the plane of the
lens, the source moves at a constant transverse velocity v in a straight line, with an
angle of closest approach B at time tj. From the Pythagorean theorem, the time
dependence of the lens—source separation, 8(t), is given by Eq. 6.36.

where B, is the angle of closest approach and t, is the time of closest approach, or

t t—tg)27"?
u(t) = %) - [ug + (—Tz"—)] : (6.37)
where
Ug = ég, T = QE‘IIDOI (6.38)

Thus, the total magnification as a function of time, a.(t), is obtained by putting u(t) from
Eq. 6.37 in place of u in Eq. 6.32. Since u is an even function of (t — ty), aw(t) describes
a curve that is symmetric in time with respect to ty, starting and ending at ait(t) = 1 for
t = o0, and rising on an “Einstein-ring crossing timescale” t to the maximum at t = t,
(see Fig. 6.12).

If such a microlensing magnification curve is observed in a source undergoing transient
lensing, one can deduce the parameters describing the curve: uy, ty, and r. The parameter
7 is a function of v, 6g, and D, and therefore of v, M, and D, (assuming the source
distance, D,s, is known). Thus, given v and D,), one can deduce the mass of the lens by
measuring the characteristic time, 7, of the total magnification curve.

6.1.4 The Magellanic Cloud Microlensing Experiments

The discussion above shows that it is possible, in principle, to detect the presence of
dark moving compact masses, and to deduce their properties, by virtue of their transient
gravitational magnification effect on background sources. This led Paczyriski in 1986 to
propose an elegant experiment, which would test if the dark halo of the Milky Way is
composed of MACHOs, as follows. Consider the Large Magellanic Cloud (LMC), which is
a small satellite galaxy of the Milky Way, at a distance of I = 50 kpc. A virtue of the LMC
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Figure 6.12 Theoretical microlensing curves, obtained by combining Eqs. 6.32 and 6.37,
and showing the total magnification of a microlensing event as a function of time. Curves
are shown for three different Einstein-angle-normalized impact angles ug. The time of
maximal approach is tp = 100 and the Einstein-crossing timescale is 7 = 20 (both in
arbitrary time units). Note how the peak magnification rises with decreasing ug, and

equals approximately ual, as expected from Eq. 6.35.

is that it is near enough that many of its constituent stars can be discerned individually in
telescope images (see Fig. 6.13). Assume that the Milky Way’s dark halo, with a total mass
Mpw, extends out to the LMC and is composed of MACHOs, each of mass m. The mean
MACHO number density is then

Mpm

= . 6.39
" miml3 (6.39)

Ata given moment, a star in the LMC will be amplified by >1.34 if ithappens to be projected
within the Einstein angle 65 of an intervening MACHO. We can therefore define a lensing
cross section, for amplification by a factor of 1.34 or more, of

4Gm Dy _,

g :JT(GEDOI)Z =7 62 ID—I ol
(o]

(6.40)

The number of such “targets” that will be crossed by any line of sight to a star in the
LMC is

N =~ nol. (6.41)
(In reality, both n and o change with distance, so the accurate expression is
1
N = ] n(r)o (r)dr, (6.42)
0
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Figure 6.13 Optical image of the Large Magellanic Cloud (LMC), a “dwarf irregular” galaxy that is a satellite
galaxy of the Milky Way. At a distance of 50 kpc, the LMC is close enough that the individual stars in it can be
resolved from each other in ground-based telescope images, despite the limited resolution due to blurring in the
Earth’s atmosphere. Image width is about 5 kpc. Photo credit: NOAO/AURA/NSF.

but the approximate expression is sufficient for our purposes.) Inserting the expressions
for n and o into Eq. 6.41 gives

MDM 4Gm D]s 2
N ~ wiab” Dy D1, (6.43)

After canceling and taking the typical MACHO to be about halfway between us and the
LMC, so that Dig ~ Dy ~ 1/2, we find

GM Vo \2
Na = () (6.44)
In the last equality we have used the fact that GM(r)/r equals [v(r)]?, and, since the rotation
curve is flat, v(r) is just vo. We thus get the elegant result that, if the dark halo of the Galaxy
(which constitutes most of the Galaxy’s mass) is composed of MACHOs, the number of
MACHOs along the sightline to an outside light source, and that are passed to within an
Einstein angle, is just (v /c)?. Since this number is obviously much smaller than one, it

is actually the fraction of stars that are lensed, or the probability that a particular star is
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lensed. Note that N depends on the total mass Mpy (or alternatively, on the circular velocity
Vo), but not on the individual MACHO masses m. Taking vy = 220 km s~!, we find

220 x 105 cm s~ 1\’ 3
. ( s ) ~ 105, (6.45)

In other words, at any given moment, one in a million stars in the LMC should be
significantly lensed (i.e., amplified by more than 1.34) by a MACHO in our dark halo.

The Einstein angle of a solar-mass MACHO located at half the distance to the LMC
(Eq. 6.26) is O ~ 2 x 107, and the apparent motion on the sky between the MACHO and
the LMC star is due mainly to the Sun’s orbit around the Galaxy center, v = 220 km s~
The Einstein diameter crossing timescale of a lensing event due to such a MACHO
is then

20gDy 4 X 1072 x 25 x 3.1 x 10’1 cm
- 220 x 10° cm s~1

= 1.4 x 10’ s &~ 6 months. (6.46)

7(1Mp) =

Alternatively, if the halo is composed of Jupiter-mass MACHOs of mass 1073 Mg, then 6,
and hence 7 will be about 30 times smaller:

7(1M;) = 6 days. (6.47)

The proposed experiment is then the following. Monitor regularly the brightnesses of
about 107 LMC stars for about 5 years. If the Milky Way dark halo is made of MACHOs,
regardless of their masses, at any given moment about 10 of the monitored stars will
be undergoing a lensing event. If, for example, the MACHOs are of about solar mass,
about 10 x 5yrs x 2yr~! = 100 lensing events with 6-month timescales will be discovered
in the course of the 5-year survey. [fthe MACHOs are Jupiters, about 10 x 5yr x 52yr~! =
2600 week-long lensing events will be found. If the dark halo is not made of MACHOs,
few lensing events will be found.

In 1991, several observational groups began carrying out just such experiments on ded-
icated ~1-m-diameter telescopes. The experiments had just become feasible thanks to
two technological developments. Large-area electronic CCD cameras allowed recording
simultaneously the images of many LMC stars in a single frame. Computing power made
it possible to automatically measure the light from millions of individual stars in these
images and to search for the handful undergoing amplification by lensing, with the time
dependence given by Eqs. 6.32 and 6.37. After the first year, two of the experiments
reported the discovery of the firstlensing events, having the expected time dependence. The
Einstein-crossing timescales were t = 35-230 days, corresponding to MACHO masses of
m ~ (0.1-1) M, assuming typical Galactic velocities and lenses about halfway along the
line of sight to the sources. However, after 6 years of monitoring about 10 million stars,
only 15, or so, lensing events had been found by each experiment, as opposed to the ~100
that would have been expected, given these timescales.

MACHOs can therefore constitute no more than a small fraction of the Milky Way dark
halo. A more thorough calculation, accounting also for the detection efficiencies of each
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Figure 6.14 Example of a microlensing event observed in the direction of the Galac-
tic bulge, involving a foreground star that temporarily magnifies the light from
a background star projected behind it. Note the excellent fit (solid curve) to the
data provided by Egs. 6.32 and 6.37 during most of the event. However, the small,
day-long, perturbation in the curve of magnification vs. time on its falling side
(enlarged in the inset) reveals the presence of a planet around the lens star. A
detailed model (solid curve in the inset) indicates an approximately 5-Earth-mass
planet at an orbital radius of several AU from the main lens star. The single-lens
model (short-dashed curve) and a model assuming a binary source star (long-dashed
curve) are both ruled out by the data. Figure credit: PLANET, OGLE, and MOA
collaborations, see ].-P. Beaulieu et al. 2006, Nature, 439, 437.

survey, indicated that about 20%, or less, of the dark halo is composed of MACHOs. If true,
a 20% fraction in compact, about-solar-mass, objects poses a new and additional problem.
It is much more than expected from the known stellar halo population of the Galaxy, and
putting even this fraction in any of the known types of objects that have such masses
(main-sequence stars, white dwarfs, neutron stars, black holes) raises similar problems
to those already pointed out for the case that the entire halo were made of such objects.
However, it is also possible, within the experimental and theoretical uncertainties, that
the small number of observed microlensing events were all due to lensing by the known
stellar populations in the Milky Way’s disk and bulge and by stars in the LMC itself. The
bulk of the dark matter must be made of something other than MACHOs, with cold dark
matter now being the prime contender.

We note in passing that, although few microlensing events in the direction of the LMC
have been seen, thousands of events toward the Galactic bulge have been recorded, due
to lensing of a star by another star along the line of sight. Because of the large density of
stars in this direction, the probability of star—star lensing is relatively high (see Problem 5).
Figure 6.14 shows an example of data for such a microlensing event. A major motivation
for discovering and closely following these events is a search for extrasolar planets around
the lensing stars. Under some conditions, such a planet, even one with a small mass, can
reveal its presence by means of the perturbation it causes in the magnification curve of
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the event. To date, a number of extrasolar planets have been discovered via microlensing,
one of them in the event shown in Fig. 6.14.

6.1.5 Modified Physics Instead of Dark Matter

A perhaps more radical solution of the dark matter problem is that there is no dark mat-
ter, and it is the physics (which we are using to deduce kinematically that dark matter
exists) that needs to be modified. Several such modifications to Newtonian mechanics have
been proposed. Most notable among them has been Milgrom’s and Bekenstein’s modified
Newtonian dynamics (MoND), which proposes that Newton’s second law, F = ma, may
not be applicable in the regime of the weak accelerations existing in galaxy halos. New-
ton’s laws have been tested only in the Solar System, where, e.g., the Earth’s centripetal
acceleration is

o ve (30 x 10° cms™1)?
® " ds 15x 102 cm

=0.6cms™2 (6.48)

By comparison, the acceleration of the Sun around the Galactic center is

vy (220 x 10° cms™)?
" Rp,  8x3.1x102cm

ac =Zx 102 ecm 572, (6.49)
more than seven orders of magnitude smaller than Solar System accelerations. In MoND,
F = mais replaced by a modified acceleration law. The modified form includes a character-
istic acceleration, ag &~ 1 x 1078 cm s2, which is determined empirically by observations
of galaxy rotation curves. At accelerations much smaller than ay, the MoND version of the
second law approaches the form

Fo = (6.50)
which leads to flat rotation curves (see Problem 7). MoND succeeds remarkably well in
phenomenologically reproducing the rotation curves of galaxies. Relativistic versions of
the theory (required, e.g., for making predictions of gravitational lensing phenomena)
have been devised, but their observational implications are still being worked out. It is
also debated whether or not the theory works well in all observed astronomical environ-
ments.

6.2 Galaxy Demographics

Three types of galaxies are observed to be common in the Universe. The dominant mass
components of spiral galaxies, which we have discussed at length, are a bulge, a disk, and
a dark halo. Different spiral galaxies have varying degrees of prominence of their bulges
and disks, from those with a dominant bulge (often called “early-type” spiral galaxies) to
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Figure 6.15 Several examples of elliptical galaxies (M49, M60, and M86), all at distances of ~15 Mpc. Photo
credits: NOAO/AURA/NSF.

those with little or no bulge component (called “late-type” spirals).* Many spiral galaxies,
perhaps including the Milky Way, also have a central stellar bar.

Elliptical galaxies resemble in many ways the bulges of spiral galaxies, but are devoid of a
disk (see Fig. 6.15). The stars in elliptical galaxies are therefore predominantly old, as is the
case in spiral bulges. As opposed to the stars in the disks of spiral galaxies, which move in
approximately circular orbits in a well-defined plane around a galaxy’s center, the stars in
ellipticals move in “random” orbits, having a large range of inclinations and eccentricities.’
The intrinsic shape of elliptical galaxies is not clear yet, and could be either a spheroid (i.e.,
the body of revolution obtained by rotating an ellipse around one of its axes) or a triaxial
ellipsoid, of the form x? /a® + y*/b? + 2?/c* = 1. Being devoid of disks, ellipticals also have
a low gas and dust content. The most massive known galaxies are ellipticals.

The most common galaxies are irregular galaxies, which constitute the third main type.
The prototypical irregular galaxy is the LMC. Irregulars have ongoing star formation, and
therefore young stellar populations. Both ellipticals and irregulars do not have well-formed
disks, and it is therefore more difficult to determine whether they possess dark halos. It
is not yet clear why these three main galaxy types exist, or how galaxy properties are
established or evolve during galaxy formation, but various possible scenarios have been
proposed.

Galaxies of all types come in a range of luminosities, masses, and sizes. Among these
parameters, the total stellar luminosity of a galaxy can be measured most directly. The
distribution of galaxy luminosities, or luminosity function, is described approximately by
a Schechter function, giving the number, ¢ (L), of galaxies per unit volume with luminosity
in an interval dL about L:

L\ L
¢(L)dL =~ ¢(L.) (L_) exp (_L_) dL. (6.51)

*

* This nomenclature has a historical, rather than a physical, origin, and is quite unfortunate since “early-type”
galaxies consist of mostly “late-type” stars (i.e., low-mass stars), and “early-type” stars (i.e., massive stars) are
found preferentially is “late-type” galaxies that have disks with ongoing star formation.

> It is important to point out here that closed Keplerian orbits are a rule only around spherically symmetric
mass distributions. Galaxy potentials are, in general, not spherically symmetric, and therefore stars follow
unclosed orbits that trace out a “rosette” that never repeats itself exactly.
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Thus, there are fewer galaxies as one goes to higher luminosities, up to some characteristic
luminosity, L, & 2 x 10'°L,. The exponential cutoff above L, means that galaxies with
more than a few times L, are very rare.

The Milky Way, as well as the nearest large galaxy, M31 in Andromeda, both have
luminosities of roughly L,. The mean density of galaxies with luminosities in the range
L, + L,/2is about

#(L,) ~ 107 Mpc . (6.52)

Thus, there is, on average, about one ~L, galaxy per 100 Mpc?, or an average distance of
about 5 Mpc between large galaxies. We can use Eq. 6.11, which we derived to estimate
the time between collisions of stars in a galaxy, to find roughly a typical time for physical
collisions between galaxies. Taking a galactic radius of 50 kpc, a relative velocity between
nearby galaxies of 500 km s~!, and ¢(L.) for the density of galaxies,

1
Teoll = —
naov
_ 1
© 1072 x (3.1 x 10 cm) 3 x (2 x 50 x 3.1 x 1021 cm)? x 500 x 105 cm s~!
~ 5 x 107 yr. (6.53)

Thus, over the age of the Universe (about 10'° yr, which is also a typical age for most
galaxies), about one in 500 large galaxies would undergo a collision with another large
galaxy. In reality, the fraction is higher because galaxies are clustered in space (see below),
and because of gravitational focusing. Furthermore, as we will see in chapter 8, in the past
the density of galaxies, n, was higher than today. Several examples of such collisions are
shown in Fig. 6.16. During a galaxy—galaxy collision, the constituent stars never physically
collide with each other, for the same reason that the stars inside a given galaxy rarely
collide—the cross sections are too small and the densities too low. Thus, in effect, colliding
galaxies can “pass” through each other.

Note that, if a galaxy is in free fall toward a second galaxy, so are all of its constituent
stars, gas, and dark matter, and therefore these components would not “feel” the pull
of the second galaxy, were they all at similar distances from it. (For the same reason, a
person on Earth does not feel the mean attraction of the Sun or the Moon, and an astronaut
in orbit is weightless). However, the stars and the gas in one galaxy will feel the spatially
varying gravitational field of the other galaxy, and will therefore experience tidal forces that
can disrupt the stellar orbits, or tear away the stars completely from their parent galaxy.
Examples of such tidal streams of stars and gas are seen in many colliding galaxies. This
tidal work can take up enough of the kinetic energy of the relative motion between the
galaxies that a collision can sometimes end as a merger of two galaxies. In fact, one idea for
explaining the existence of different galaxy types is that ellipticals have resulted from the
mergers of pairs of spirals. Furthermore, galaxy collisions apparently set off the collapse
of gas clouds inside the galaxies, leading to vigorous bursts of star formation that are often
observed in such interacting systems.
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Figure 6.16 Two examples of pairs of galaxies in the process of collision, with “tails” of stars and gas that are
drawn out of each galaxy by the tidal forces exerted by the other galaxy. Top left: The galaxy pair NGC 4038/9 in
a montage of an optical image, tracing the stars, and a radio image in 21 cm, showing emission from neutral
hydrogen. Top right: Zoom on the central region of NGC 4038/9, where the optical light output is dominated
by H 11 regions and massive young stars formed as a result of the collision. Bottom: The colliding galaxy pair
NGC 4676. Photo credits: NRAO/AUI and . Hibbard; the European Southern Observatory; and NASA, H. Ford,
G. Illingworth, M. Clampin, G. Hartig, the ACS Science Team, and ESA.

6.3 Active Galactic Nuclei and Quasars

We have seen that massive black holes, of 10°~10° M, are common in the centers of
large galaxies. There is no shortage of gas in these regions—abundant material is shed by
normal stars during their evolution, and likely also by stars that have passed close to the
black hole and have been tidally disrupted by it (see chapter 4, Problem 7). We therefore
expect these black holes to be accreting matter. Although the sources of accreted matter
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are different from those in interacting binary systems, which we studied in section 4.6,
the physical arguments concerning the accretion process are the same. We can therefore
expect the centers (or “nuclei”) of galaxies to also display phenomena similar to those
in interacting binaries, but scaled according to the larger accretor masses. For example,
recalling the Eddington luminosity (Eq. 4.142),

47¢GM M
Ly = 207 13 % 10% erg s~ —, (6.54)
ar M@

for M ~ 10°-10° M, we can expect nuclear luminosities of up to ~10*” erg s~!, outshining
an entire large galaxy by many orders of magnitude.

Indeed, some 1-10% of large galaxies can be classified as having active galactic nuclei
(AGN), which can be defined as nuclei with a significant amount of luminosity that is
of nonstellar origin. The range in the above fraction is, to some degree, semantic—it
depends on what is defined as a large galaxy, what kind of galaxies one examines, and
what is considered a significant amount of nonstellar activity.

There is much evidence for nuclear activity that is not produced by stars. Some or all of
the following phenomena are seen in different AGN: large luminosities emerging from
compact regions that are unresolved by telescopes, implying sizes less then a few pc;
this luminous energy has a spectral distribution that is distinct from that produced by
stellar populations, namely, large luminosities at radio, X-ray, and sometimes gamma-ray
frequencies; jets of material emerging from the nucleus, often at relativistic speeds, and
emitting synchrotron radiation (these jets are thought to be one possible source of the
highest energy cosmic rays detected on Earth); emission lines in the IR to X-ray range,
with a spectrum indicating excitation of surrounding gas by a powerful source with a
nonstellar spectrum; the emission lines are Doppler-broadened to velocities of up to tens of
thousands of km s™!, suggesting motion in a deep gravitational well; and large-amplitude
variability in luminosity at all wavelengths, and on all timescales, from minutes to decades.
Figures 6.17-6.20 show examples of some of these phenomena.

Each of the above phenomena is difficult to explain by processes other than accretion
onto a central supermassive black hole. For example, we could invoke a large population
of X-ray binaries to explain the nonstellar spectra, but we would then be hard pressed
to understand how all these individual systems could vary in phase to produce the large
amplitudes of variability. To be more quantitative, from considerations of causality, a
significant change in luminosity (say, a doubling) on a timescale of At ~ 1 hr implies a
size less than 1 light hour:

R<cAt=3x10"cms™! x3600s=1.1x 10" cm =7 AU. (6.55)

Thus, a huge luminosity, comparable to, or outshining, that of an entire galaxy, is produced
in a region smaller than the Solar System.

As another example, some AGN display long and spatially continuous radio jets
of material moving at relativistic speeds (~0.1c—c), with lengths sometimes reaching
~1 Mpc = 3 x 10° ly. This requires that the nucleus has been continuously active for
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Figure 6.17 Images of several AGN. Top lefi: UV-optical image of the center of M87, an elliptical galaxy in the

nearby Virgo cluster of galaxies. M87 contains a relatively low-luminosity active nucleus, evidenced here by
the bright unresolved central source, and the jet of material emerging from the nucleus at relativistic speeds. The
numerous point sources are globular clusters. Top right: Optical image of the quasar 3C273. The light from the
nucleus overwhelms the light from the host galaxy, which is barely visible, surrounding the nucleus. A jet can be
seen in the lower right quadrant. (The spikes energing from the quasar are artifacts due to diffraction.) Bottom:
Radio image at 6 cm wavelength of the galaxy Cygnus-A, which has a double-sided jet extending 100 kpc in each
direction. Photo credits: NASA and the Hubble Heritage Team; NASA and ]. Bahcall; NRAO/AUI, R. Perley,
C. Carilli, and J. Dreher.

T ~ 3 x 107 yr, and therefore has produced a total energy Lt. This energy must equal the
radiative efficiency times the rest energy of the mass M involved in the process:

Eot ~ LT = nMc?*. (6.56)

Therefore,

Lt 107 ergs™! x 3 x 107 x 3.15 x 107 s 59X 10’ Mg
net n (3 x 1019 cm s-1)2 B n '

(6.57)
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Figure 6.18 Typical UV-through-optical spectrum of an active galactic nucleus. Note the
blue continuum, topped by broad emission lines, with the main ones indicated. The emis-
sion lines are most probably Doppler broadened by the bulk velocities, 103-10* km s~ 1,
of the emitting gas clouds in the potential of the supermassive central black hole. Data
credit: D. Vanden Berk et al. 2001, Astron. J., 122, 549.
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Figure 6.19 Typical spectral energy distribution of an active galactic nucleus, from radio
to X-ray frequencies. The vertical axis shows vL, (v), which has units of luminosity, and
which is convenient for visualizing the relative luminosities in different frequency bands.
The much-narrower spectral energy distribution of stars in a typical galaxy is shown
for comparison. The indicated “bump” in the optical-to-UV range in the AGN spectral
distribution may be due to thermal radiation from an accretion disk around the central
black hole. The dashed section of the curve is an interpolation in the extreme-UV band,
where observations are difficult, because of strong absorption of light from extragalactic
sources by neutral hydrogen in the interstellar medium of the Milky Way. Data credit:
M. Elvis et al. 1994, Astrophys. J. Suppl., 95, 1.
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Figure 6.20 Flux variations in the 2- to 10-keV X-ray band of the active galactic nucleus
NGC 3516, over several days. Note the large variation amplitudes on timescales of hours,
and the nonperiodic, random nature of the variability. Data credit: A. Markowitz and
R. Edelson 2005, Astrophys. J., 617, 939.

If AGN were somehow powered through stellar processes by a continuous supply of mate-
rial undergoing nuclear reactions, which have n = 0.007 or less, the mass required would
be at least M ~ 10'°M,, comparable to the stellar mass of an entire galaxy. On the other
hand, if the energy source is accretion onto a black hole, with n = 0.057, the required
mass is M ~ 10 M. This is just the mass of the compact central objects (presumably
black holes) found in the nuclei of some massive nearby galaxies.

AGN have been classified into a large zoo of different types, according to the combina-
tions and the details of the properties, listed above, that they display. A few of the common
types are Seyfert galaxies, radio galaxies, BL-Lacertae objects, and quasars, and these types
are further separated into subcategories (e.g., Seyfert 1 and 2, radio-loud and radio-quiet
quasars). The physical distinctions between the different classes and subclasses are still
being debated, i.e., what causes the different appearance and properties of different types
of AGN. Some of the differences are likely due to orientation effects. The accretion disk,
and probably other surrounding AGN components as well, are not spherically symmetric.
Their contribution to the total light output and their ability to obscure other components
therefore depend on the inclination of the system to the observer’s line of sight. It is also
yet unclear why the majority of central black holes in galaxies (including the 4 x 10°M,
black hole at the center of the Milky Way) are not active, and display only feeble signs of
nonstellar activity. One possibility is that the gas in the central regions of a galaxy, perhaps
by virtue of its high angular momentum or low viscosity, avoids falling into the black hole.
Alternatively, perhaps it falls, but in a radiatively inefficient way, and carries most of its
kinetic energy with it into the black hole.
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The most luminous AGN are quasars, roughly defined as AGN with luminosities of
10* erg s~! or more. Among quasars, the most energetic objects reach luminosities of
order 10% erg s~!, similar to the Eddington limit estimated above for the largest black-hole
masses. Assuming quasars are powered by accretion disks around black holes with inner
radii at the last stable orbit, r;, = 3r, = 6GM/c?, we saw (Eq. 4.133) that the luminosity is

_1GM M B Mc?

Lm = , (6.58)
2 FTin 12

and, after accounting for general relativistic effects,

L = 0.057Mc>. (6.59)
For a quasar to shine at the Eddington luminosity, its accretion rate M must be large
enough that

M
L=ILp=13x10%ergs™ — (6.60)

Mg ’
and therefore

o 13X 108 ergs ! x3.15x 107 syr'' M

M
=4 x108M, yr 1 —. 6.61
0.057¢2 Mo T (6.61)

Thus, a 10° M, black hole radiating at the Eddington luminosity must accrete 40M, per
year.
The temperature at the inner radius, r, = 6GM/c?, is (Eq. 4.135)

> 1/4
GMM\"*
T(rin) = ( 810 ) rin

32 174 1/4

M
= =3x10°K{ ———
6 Bro) /M GMZ " (M@ yr—l)

M\ 12
(F@) . (6.62)

For the above black-hole mass and accretion rate, the inner temperature will thus be
T =3 x 10° K x 40* x (10°)7"2 = 2.4 x 10°K, (6.63)

producing thermal radiation that peaks in the extreme UV, between the UV and the X-ray
ranges. Quasars, in fact, have such a UV “bump” in their spectral energy distributions
(see Fig. 6.19), which is thought to be the signature of the accretion disk.

Since quasars are 10'-10* times brighter than an L, galaxy with ~10'° stars, the host
galaxies of quasars are often difficult to detect under the glare of the nucleus, especially
since the most luminous quasars are generally distant.® Owing to the finite speed of light,
a large distance means a large lookback time. The large distances of luminous quasars
therefore imply that quasars are rare objects at present. Apparently, most central black
holes in present-day galaxies are accreting at low or moderate rates, compared to the rates

® The name “quasars” evolved from the acronym QSRS, for “quasi-stellar radio source”—the first quasars
were discovered in the 1960s as radio sources that, at visual wavelengths, have a spatially unresolved, “stellar”
appearance. Quasars are often also called QSOs, for “quasi stellar objects.” It is more recently, using high-
resolution observations in the IR and from space, that the host galaxies of quasars are routinely detected.
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that would produce a luminosity of Lg. Quasars were much more common in the past,
and their space density reached a peak about 10 Gyr ago. The reasons for this “rise and
fall” of the quasar population are unclear. However, there likely is a connection between
the growth and development of galaxies and of their central black holes. We will briefly
return to these questions in chapter 9.

6.4 Groups and Clusters of Galaxies

Rather than being distributed uniformly in space, galaxies are “spatially correlated”—near
a location where there is a galaxy, one is likely to find another galaxy. In other words,
galaxies are often found in groups consisting of a few to ten members, and sometimes
in rich clusters, containing up to about 100 luminous (of order L,) galaxies. We are part
of a group of galaxies called the Local Group, consisting of the Milky Way, M31 (the
Andromeda galaxy), M33, and some smaller “dwarf” galaxies. The nearest rich cluster is
the Virgo cluster, at a distance of about 15 Mpc. The typical radius of a galaxy cluster is
about rq ~ 1 Mpc. Galaxy clusters have a high proportion of elliptical galaxies, compared
to regions with a lower space density of galaxies. In fact, most of the stars in rich clusters
are in ellipticals. Figure 6.21 shows optical and X-ray views of a massive galaxy cluster.

Based on the Doppler line-of-sight velocities measured for the individual galaxies in
clusters, it is seen that the galaxies in clusters move on orbits with random inclinations
and eccentricities, reminiscent of the stars in elliptical galaxies and in spiral bulges. The
typical velocity dispersion, i.e., the root-mean-square velocity of the cluster galaxies about
the mean velocity, is about & ~ 1000 km s™!. A typical cluster crossing timescale—the time
it takes for a galaxy to cross the cluster—is therefore

ra 3.1 x10* cm

ry o — 16 ¢ _ 109
Tec - 10° cm o1 3x107" s =10"yr. (6.64)

Several lines of evidence indicate that clusters are old systems, with ages comparable to
the age of the Universe, ~10!° yr. One example of this evidence is the fact that most of
the stars are in elliptical galaxies, which consist of old stellar populations.

With a cluster crossing time of a billion years, most galaxies in a cluster have had time
to perform a few orbits in the cluster potential, and a cluster is therefore a gravitationally
bound system. Note that, with 100 galaxies within a radius of 1 Mpc, the mean galaxy
space density in clusters is 10* times higher than the average for galaxies in general, and
relative velocities between galaxies are a few times higher than between unbound “field”
galaxies. The time between collisions (Eq. 6.53) is therefore reduced to a few billion years,
and most galaxies in the central regions of clusters have undergone collisions with other
galaxies. This may be the reason for the preponderance of ellipticals in clusters.

We can estimate a cluster’s virial mass, assuming the galaxy velocities trace the cluster
potential, as

o%rg _ (108 cm s71)? x 3.1 x 10** cm

M ~ -
G 6.7 x 1078 cgs

=4 x 10" g =2 x 10" M,, (6.65)
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Figure 6.21 Opticalimage of the central region of the massive galaxy cluster Abell 2218. Note the preponderance of

elliptical galaxies. The conspicuous arcs are gravitationally lensed images of distant background galaxies projected
near the center of the cluster. The arcs are effectively partial Einstein rings, which allow a measurement on the
total mass projected internal to them. Image width is about 0.6 Mpc. Inset: Contours showing the X-ray intensity
from the cluster, superimposed on an optical image. The area within the inner three contours corresponds
approximately to the area shown in the main high-resolution image. The X-ray emission is bremsstrahlung from
hot intracluster gas bound by the gravitational potential of the cluster. The gas mass is an order of magnitude
greater than the stellar mass of the cluster. The gas temperature provides an independent measure of the total
cluster mass. Photo credits: NASA, A. Fruchter, and the ERO Team; and F. Govoni et al. 2004, Astrophys. J., 605,
695, reproduced by permission of the AAS.

where we have used the typical velocity dispersion and radius given above. Galaxy clusters
are the most massive bound systems known. An independent estimate of cluster mass can
be obtained for many clusters via gravitational lensing. Some rich clusters display large
gravitationally lensed arcs (see Fig. 6.21). These are the tangentially stretched images
of distant galaxies projected almost directly behind the clusters. When the arcs subtend
a substantial angle, they are effectively partial Einstein rings, and their angular radius is
approximately the Einstein angle. A typical lensed arc can have a radius of about 0.5 arcmin.
Clusters with such arcs are usually at distances of order D ~ 1 Gpc, so the Einstein angle
corresponds to an Einstein radius of

Rp = 0D~ — > 1Gpec=15 x 10~ Gpc = 0.15 Mp. (6.66)

60 x 180/7

Equation 6.25, which we developed for the Einstein angle of a point mass, also holds for
any spherical mass distribution, in which case it gives the total mass projected inside the
Einstein ring. Let us take 8 ~ 0.5 arcmin, and assume again the “halfway” location of the
lens (i.e., the cluster) relative to the source (the lensed galaxy), so D,; = Djs = Dys/2. Then
Eq. 6.27 gives for the cluster mass projected within 0.15 Mpc:



The Milky Way and Other Galaxies | 173

GéCZZDol
M ~ ZEC 270
4G
2
(i) x (% 100 cms7')? x 10° x 3.1 x 10 em
2 x 6.7 x 1078 cgs

=4 x 107 g =2 x 10" M. (6.67)

This is of the same order of magnitude as the virial mass estimate we obtained using
the galaxies as kinematic trace particles. (Note, however, that the two mass estimates are
measuring somewhat different things; the virial estimate gives the mass within a spherical
region of radius 1 Mpc, while the lensing estimate gives the mass enclosed in a long cylin-
drical volume of radius 0.15 Mpc, with the long axis of the cylinder pointed at the observer.)

Recall now, that a rich cluster consists of about 100L, galaxies, i.e., a mass of about
101* M, in stars. Thus, stars constitute at most a few percent of the mass of a cluster.
X-ray observations have revealed that a mass that is about ten times the mass in stars
resides in a hot ionized gas of temperature T ~ (2-10)x 107 K (i.e., kT ~ 2-10 keV), which
constitutes the intracluster medium. The gas is approximately in hydrostatic equilibrium
in the cluster potential and radiates thermal bremsstrahlung at X-ray photon energies (see
Fig. 6.21, inset). The gas temperature can be derived from the form of the bremsstrahlung
spectrum. The intracluster gas provides yet a third estimate of the total mass of a cluster.
To see this, assume that the gas has a roughly spherical distribution with radius rg,s ~
0.5 Mpc, and recall the equation of hydrostatic equilibrium (Eq. 3.19) from stellar structure,
now expressed as an approximate scaling relation:

GMp
P~ . (6.68)

Fgas

Note that P is the pressure of the gas, but M is the mass contributing to the potential, i.e.,
it is the total mass due to all the cluster constituents. Equating to the classical ideal-gas
equation of state,

p=Lkr, (6.69)
m

we obtain
Gm
~0.5x3.1x10* cm x 10* eV x 1.6 x 1072 erg/eV
B 6.7 x 108 cgs x 0.5 x 1.7 x 10~24 g

=2 x 10" My, (6.70)

as found via galaxy kinematics and lensing. Here we have assumed the gas has a spatially
constant temperature (this is indicated by the X-ray observations) of 10 keV and a fully
ionized (appropriate at these temperatures), pure hydrogen, composition.

The total mass in “visible” baryons, including the hot gas and the relatively small amount
in stars, still accounts for only about 15% of the total mass of a typical cluster, as determined
from galaxy kinematics, lensing, or gas temperature. As in galaxies, the majority of the
mass in clusters is therefore also in dark matter of unknown composition.
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Figure 6.22 Top: The space distribution of galaxies, as observed in two thin slices that are centered on
our location in the Universe (every dot represents a galaxy). The figure was produced by measuring the
two-dimensional positions of the galaxies in two narrow, diametrically opposed, strips on the sky, and
the distance to each galaxy. Note the large aggregations of galaxies which surround relatively empty
“void” regions. Every tick mark in the radial direction corresponds to ~150 Mpc. The “thinning out” of
points beyond ~400 Mpcis an observational effect—at these distances, only the rare, more luminous,
galaxies are bright enough to have their distances measured accurately. Bottom: A slice through the
volume of a numerical N-body simulation in which 1019 particles move under the influence of their
mutual gravitational attractions. Each particle in the calculation represents a mass of ~10° Mg, and
the image width is about 500 Mpc. Note the web-like distribution of particles, which is reminiscent
of the observed galaxy distribution in the top figure. Figure credits: The 2dF Galaxy Redshift Survey
team, see M. Colless et al. 2001 & 2003, http: //arXive.edu/abs/astro-ph/0306581;and
V. Springel and the Millenium Simulation team, see Nature, 435 (2005), 629.

At scales of 10-100 Mpc, galaxies are still not evenly distributed in space. Attempts
to map the distribution of galaxies indicate that galaxies are preferentially distributed
along large structures with a variety of morphological descriptions: “walls,” “sheets,” “fila-
ments,” and “bubbles,” which surround regions of lower-than-average galaxy density called
“voids” (see Fig. 6.22). The emerging picture is of a “cosmic web” or “foam-like” galaxy
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distribution, with clusters, and aggregates of clusters (called “superclusters”) concentrated
at the junctions of several bubble walls. Numerical models that attempt to reproduce the

formation of these structures via the action of gravity alone have had a fair amount of

success (see Fig. 6.22 for an example).

The hierarchy of progressively larger and larger structures ends at ~100 Mpc. Beyond

these scales, the Universe appears homogeneous. This means, e.g., that the total mass

included within spheres having a 100 Mpc radius is nearly the same at all locations in
space. This fact will form one of the foundations for the next chapters.

Problems

1.

Even when distances to individual stars are not known, much can be learned simply by
counting stars as a function of limiting flux. Suppose that, in our region of the Galaxy, the
number density of stars with a particular luminosity L, n(L), is independent of position.
Show that the number of such stars observed to have a flux greater than some flux f;
obeys N(f > f,) o« fy>'?. Explain why the same behavior will occur even if the stars have
a distribution of luminosities, as long as that distribution is the same everywhere. If you
observed that the numbers do not grow with decreasing f, according to this relation,
what could be the reason?

Hint: N(f > f,) is proportional to the volume of the sphere centered on us, with a radius
at which the flux from a star with luminosity L is f;. The relation between luminosity, flux,
and distance then gives the stated result.

Derive the expression for gravitational focusing, the increase in the effective cross section

for a physical collision between two objects due to their gravitational attraction (Eq. 6.12),

as follows. Consider a point mass approaching an object of mass M and radius ro.

When the distance between the two is still large, their relative velocity is v,,, and the

impact parameter (i.e., the distance of closest passage if they were to continue in relative

rectilinear motion) is b. Due to gravitational attraction, the point mass is deflected toward

the object and, at closest approach, grazes the object’s surface at velocity Viay.

a. Invoke energy conservation to show thatv? =vZ2_ —vZ_, whereve, = (2GM/r)'/?
is the escape velocity from the surface of the star.

b. Show that angular momentum conservation means that bv,,, = roVmax.

c. Combine the results of (a) and (b) to prove that gravitational focusing results in an

effective cross section for a collision that equals the geometrical cross section of the
2

ran/*

object times a factor (1 +v2 /v

In the solar neighborhood, the Milky Way has a flat rotation curve, with v (r) = v., where
V¢ is a constant, implying a mass density profile p(r) ~ r~2 (Eq. 6.18).
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a. Assume there is a cutoff radius R, beyond which the mass density is zero. Prove that
the velocity of escape from the galaxy from any radius r < R is

R
v =2v? (l—f-ln—).
r

b. The largest velocity measured for any star in the solar neighborhood, at r = 8 kpc, is
440 km s~'. Assuming that this star is still bound to the galaxy, find a lower limit, in
kiloparsecs, to the cutoff radius R, and a lower limit, in units of M, to the mass of
the galaxy. The solar rotation velocity is v, = 220 km s~

Answers: R > e x 8 kpc = 22 kpc, M > 2.4 x 10" M.

4. Agravitational lens of mass M is halfway along the line between a source and an observer,
at a distance d from each, and produces an Einstein ring. Find the angular radius of the
ring, in terms of M and d. For a one-solar-mass lens, at what distance d will the Eintein
ring’s radius appear larger than a solar radius? (i.e., the ring will not be hidden behind a
Sun-like star acting as the lens).

Answer: 1.6 x 10'® cm = 0.0052 pc.

5. We calculated (Eq. 6.41, and below it) the probability that a star in the LMC is gravita-
tionally lensed by MACHOs composing the Galaxy's dark halo. Repeat this calculation,
but for star—star lensing in the direction of the Galaxy center, i.e., estimate, to an order
of magnitude, the probability that a star in the bulge of our Galaxy will be gravitationally
lensed by another star in the galactic disk, close to our line of sight to the bulge star.
Assume that we are at a distance r = 8 kpc to the bulge, a typical stellar mass is 0.5M,
the stellar mass in the disk interior to the solar radius is 5 x 10'°M, and the thickness
of the disk is h = 1 kpc.

Hint: To simplify the calculation, find the mean number density of stars in the disk, and
use this as your “target” density. For the lensing cross section, use the area of a circle
formed by the Einstein radius of an 0.5M, star at half the distance to the bulge. The
distance covered by the line of sight is our distance to the bulge. The product of the three
numbers gives the number of disk stars that are passed to within an Einstein radius by
a random line of sight to the bulge. If this number is «1, it gives the probability of such
an encounter.

Answer: 2.4 x 107°.

6. A point source directly behind a galaxy, at double the observer—galaxy distance d, is grav-
itationally lensed by the galaxy's potential into an Einstein ring. The galaxy is spherically
symmetric, and has a flat rotation curve, v(r) = v,. The bending angle of a light ray pass-
ing through a spherical mass distribution with impact parameter r from the distribution’s
center is

4GM(<r)
o= ——
cir

where M(<r) is the mass enclosed within r.
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Find the angular radius 6 of the Einstein ring, in terms of v, assuming small angles.
Calculate 6, in arcseconds, for v, =300 km s~'. At d = 0.5 Gpc, to what physical
radius, Rg, will this 6¢ correspond?

Answers: O = 2(v./c)%; Re = 1 kpc.

Distant light sources (e.g., quasars, see also chapter 9), are distributed at random
on the sky. It turns out that those of them that are projected behind a galaxy within
O of that galaxy will be noticeably lensed. Assume a Euclidean space with a constant
number density of galaxies, n = 1072 Mpc >, R¢ from item (a), and a typical distance
tothe sources of 2d = 1 Gpc. Write an expression for the fraction of the distant sources
that is lensed by intervening galaxies, and evaluate it numerically. Actual surveys that
measure the fraction of distant sources that are lensed can probe the properties of
the lensing galaxy population, even when those galaxies are not directly observed by
means of their light.

Hint: Find the number of “targets” with density n, and with cross-sectional area R,
that are “hit” by a random line of sight going out to the source distance. Alternatively,
consider the fraction of the sky that is covered by the total solid angle within the
galaxies’ Einstein rings.

Answer: 3.1 x 107°.

7. Modified Newtonian dynamics (MoND) proposes that, for small accelerations, Newton’s

second law, F = ma, approaches the form F = ma?/ag, where a is a constant (see Eq.
6.50).

a.

Show how such an acceleration law can lead to flat rotation curves, without the need
for dark matter.

Alternatively, propose a new law of gravitation to replace F = GMm/r? at distances
greater than some characteristic radius rp, so as to produce flat rotation curves without
dark matter. Make sure your modified law has the right dimensions.

Modify further the gravitation law you proposed in (b) with some mathematical for-
mulation (many different formulations are possible), so that the law is Newtonian on
scales much smaller than ry, with a continuous transition to the required behavior at
r> ro.



7 Cosmology: Basic Observations

In previous chapters, we have dealt with progressively larger structures. In this chapter,
we review the basic observational facts that need to be accounted for by any theory of
cosmology—an attempt to describe the nature, history, and future of the Universe as a
whole. In chapter 8 such a theory is developed.

7.1 The Olbers Paradox

As we consider more and more distant objects and structures in the Universe, a natural
question that emerges is, “Does the Universe have an end?” Due to the finite speed of
light, distant objects are seen at large lookback times, leading to another question: “Does
the Universe have a finite age, so that light from objects beyond some distance has yet
to reach us?” These questions are closely related to the so-called Olbers paradox. Olbers’s
paradox poses the more practical question: “Why is the night sky dark?” The reasoning
behind this question is as follows.

Let us assume, naively, that space is Euclidean and that its constituents are static (we will
see later that at least the latter assumption is incorrect). Assume furthermore that the
Universe is infinite and eternal (i.e., has existed forever). Then every line of sight in the
sky must, at some point, reach the photosphere of a star. If f, is the flux emerging at
the star’s photosphere, then the flux reaching us from that star will be

4rr? aQ

:j;—, (7‘1)

Jobs :f*4n D? T

where r, is the stellar radius, D, is the star’s distance, and d€2 is the solid angle subtended
on the sky by the star. Now, since all sightlines eventually hit some stellar surface, the total
flux reaching us from all 47 steradians should be

fror = 4f. (7.2)
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In other words, the whole sky should radiate like a blackbody at a temperature of a few
thousand degrees—not only should the night sky be bright, but we would be grilled night
and day! Dust along the way does not solve the problem, as every dust particle would also
be inside this blackbody radiator and would quickly be heated to the same temperature.

The solution to the Olbers paradox is that at least one of the assumptions must be
wrong—the Universe must be finite in extent or in age. To quantify this statement, let
us calculate how far we need to look along some random sightline until we encounter a
stellar disk. With a mean density of L, galaxies of about 1072 Mpc 3, and about 10'° stars
per L, galaxy, the mean density of stars in the Universe is

108
.~ 10°* Mpc™* = ~10"% cm™ 3

" PC = 31 x 102 cm)’ cm i#+3)
The cross section of a stellar disk is

o & rrré = (7 x 10! cm)? ~ 10% cm?. (7.4)
The mean free path until we “hit” a stellar surface is therefore

| = ~ 10" cm = 10°° ly. (7.5)

N0

The fact that the sky is dark means that either the size of the Universe

] < 10% ly, (7.6)
or the age of the Universe

! 26
by = E & 107 yr, (7.7)

and therefore the light from those stellar surfaces has yet to reach us. The distance beyond
which light has yet to reach us is called our particle horizon. Actually, the limit is weaker
than what we found above, since stars live for a limited time on the main sequence, and
then collapse to neutron stars or white dwarfs. However, this does not solve the paradox,
as every line of sight would eventually still reach the surface of such a remnant, if not that
of a star that is still on the main sequence. Thus, the conclusion that the Universe must
be finite in age, extent, or both, still holds.

7.2 Extragalactic Distances

In previous chapters, the distances to, and the sizes of, galactic and extragalactic objects
were assumed to be known. In practice, measurements of distance are among the most
difficult in astronomy. Broadly speaking, distances are found by many different methods,
which comprise a distance ladder, going from nearby to distant objects. An overlap in
the range of applicability of two different methods allows calibrating the more “distant”
method with the more “nearby” method. An obvious shortcoming of such a procedure is
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that errors in the calibrations of the nearby methods will propagate, and may accumulate
to become very large errors in the distant methods. Fortunately, there are a few “direct”
methods that skip over several, or all, rungs in the distance ladder, and that serve as a
check on the procedure.

Some of the main methods, listed according to the objects and the distance ranges over
which they are applicable, are as follows.

a. Nearby stars, within <1kpc, canhave their distances measured by trigonometric parallax,
as described in chapter 2. Fairly accurate parallax distances can be obtained currently out
to ~100 pc. The luminosities of nearby main-sequence stars with parallax-based distances
Dpar and observed fluxes f can be found from

Lms = f x 4w D, (7.8)

One can then observe young open star clusters and identify the main sequence in their
H-R diagrams. The observed fluxes of the open-cluster main-sequence stars are compared
to the known, parallax-based, luminosities of nearby stars of the same spectral type to
determine the distances to the clusters:

Da =/ Lms/(47f). (7.9)

This technique is called main-sequence fitting.

Among the stars in the open clusters there are sometimes pulsating stars called Ce-
pheids. Cepheids are a short-lived phase of some intermediate-mass stars during part of the
helium-core-burning giant stage. The luminosities L., of Cepheids with observed fluxes
f that are in clusters with main-sequence-fitting distances D can again be found from

Leep = f x 4m DA (7.10)

The radial pulsations of a Cepheid lead to periodic variations in the luminosity, with a
period in the range from about 1 to 100 days, that is a function of the mean luminosity
of the star (see Fig. 7.1). One can then calibrate the Cepheid period-luminosity relation.!
Cepheids are our first example of a standard candle, a source of known luminosity that
can serve as a distance indicator, by comparison of its flux to its intrinsic luminosity.

b. The Large Magellanic Cloud (LMC), Local Group galaxies, and Virgo Cluster galaxies, at
<20 Mpc, are near enough that individual luminous Cepheids can be detected, and their
periods measured. The deduced Cepheid luminosities can then be compared to their
observed fluxes to determine the distances to the galaxies:

Dga = +/ Leep/ (47f). (7.11)

In the LMC and in the Local Group one can also find, and measure the parameters
of, detached, double-lined, spectroscopic eclipsing binaries. Measurement of the orbital
velocities of the two components around the center of mass from the radial velocity curve,

! About a dozen Cepheids are near enough to permit direct parallax measurements. These measurements
confirm the calibration of the period-luminosity relation.
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Figure 7.1 Illustration of Cepheid properties. Lefi: Schematic time series for
Cepheids of different luminosities. Right: Schematic Cepheid period-luminosity
relation. Once the relation is calibrated for nearby Cepheids, it can be used to
determine the luminosity of Cepheids with measured periods in another galaxy.
Comparison of the derived luminosity to the observed Cepheid flux then yields the
distance to the galaxy.

and of the durations of the eclipses from the light curve, gives the physical radius, r, of
each of the two stars (see chapter 2, Problem 5). The observed spectral energy distribution
yields the effective temperature, Tg, of each star. The luminosity of each star is then
just L = 47r’o Ty, and the combined luminosity of the system can be compared to the
observed flux, to derive directly the distance to the system.

Another direct method to obtain the distance to the LMC utilizes a supernova light
echo that was observed around Supernova 1987A in this galaxy. About 240 days after the
explosion, a ring of circumstellar material, ejected by the supernova progenitor star during
previous stages in its evolution, became photoionized by the flash of UV radiation from the
explosion (see Fig. 7.2). The ring began to shine in emission lines typical of photoionized
gas, and is slowly fading as the atoms recombine. The ring is observed to have an angular
radius # = 0.85 arcsecond. The 240-day delay, At, was due to the light-travel time from
the supernova to the ring, which has a physical radius R:

R 6D
At = — = =€ (7.12)

c c

(Actually, the ring is inclined to our line of sight, and therefore the front side of the ring
was seen to light up earlier than 240 days, and the rear side later, but this geometric effect
can be accounted for.) The distance to the LMC is therefore

CAt 3 x 10" cm s7! x 240 x 24 x 3600 s

= =15x102 cm =50kpc, (7.13
6 0.85/3600 x 77/180 el s pe,  (7.13)

Dlmc =

in good agreement with Cepheid-based measurements.
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Figure 7.2 The rings around Supernova 1987A. The rings arise in gas that was expelled by the star prior to the
supernova ‘explosion. The gas in the bright “equatorial” ring was excited by the flash of UV radiation from the
explosion. A delay of 240 days between the explosion and the “lighting up” of the ring was due to the light travel
time from the supernova to the ring, indicating a ring radius of 240 light days. Comparison of this physical scale
to the angular scale of the ring provides a direct distance measurement to the supernova, and hence to the LMC.
Photo credit: C. Burrows, ESA, and NASA.

One Virgo galaxy, NGC 4258, has a direct distance measurement based on the observed
proper motions of water masers that are moving in circular orbits, with known velocity,
around the galaxy’s central black hole. See Fig. 7.3 and its caption for details.

c¢. Galaxies within about 100 Mpc can have their distances estimated by means of sev-
eral techniques that are calibrated in nearby galaxies (Virgo and closer). The Tully-Fisher
relation is an empirical correlation between a spiral galaxy’s luminosity L and the asymp-
totic circular velocity, v,, reached at large radii by its (flat) rotation curve:

L&v,; (7.14)

c
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Figure 7.3 Masers in the sub-parsec-scale molecular-gas disk in the center of the galaxy NGC 4258,
as observed by radio interferometry using the H;O 22-GHz emission line. The positions of the
masing clumps are shown as they appear on the sky, and superimposed on a model of a nearly
edge-on warped disk. The radio (continuum) emission from the inner parts of the jet, emerging
from the active nucleus of the galaxy, is also indicated. Based on their measured emission-line
Doppler shifts, the velocities of the clumps on the right (approaching) and on the left (receding)
follow precisely a Keplerian r~1/2 curve, indicating a mass of 3.8 x 107 Mg, for the central black
hole. The proper motions of the clumps near the line of sight to the center can be tracked over time as
they move from right to left on their circular orbits. At the same time, their centripetal accelerations
can be measured through their changing Doppler shifts. Comparison of their angular velocities
to their physical velocities gives a direct measurement of the distance to the galaxy. Figure credit:
adapted from J. R. Herrnstein, et al. 2005, Astrophys. J., 629, 719, by permission of the AAS.

where the index « depends on the bandpass through which L is measured. Thus, by
measuring the rotation velocity of a distant galaxy, one can deduce its luminosity, compare
with the observed flux, and derive a distance. Similar relations, called the Faber-Jackson
relation, the D,o relation, and the Fundamental Plane, exist for elliptical galaxies. How-
ever, these relations involve the stellar velocity dispersion, rather than v.—the circular
velocity v, is difficult or impossible to measure directly in most ellipticals, in the absence
of a disk of trace particles. Globular clusters and planetary nebulae in nearby galaxies are
observed to have luminosity distributions with a well-defined peak. By measuring the flux
distribution of such objects in a distant galaxy, determining the flux corresponding to the
peak of the distribution, and comparing to the luminosity of the peak of the distribution
in local galaxies, one can deduce the distance.

Another method in this distance regime is the measurement of surface brightness
fluctuations. Suppose the light from a small solid angle covering part of a galaxy is produced
by N stars (see Fig 7.4). The galaxy is distant, and therefore the angular separation between
the stars is below the resolution limit of the telescope, and the individual stars cannot be
discerned as such. An adjacent small area in the galaxy will include a number of stars
that is similar, up to Poisson fluctuations of +/N. The relative fluctuations in surface
brightness (flux per solid angle) measured over a sample of many small regions in a galaxy
will therefore be

1
o =—. 7.15
/N )
The number of stars included per unit solid angle obviously depends on distance—if a
galaxy were moved further away, more stars would be included within the same solid

angle, or
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Figure 7.4 Schematic illustration of distance measurement by means of surface brightness

fluctuations. On the left, the light output from a small region in a galaxy, e.g., one pixel in
the array shown, is contributed by N stars that are not individually resolved as such. The
fluctuations in intensity from pixel to pixel will trace the Poisson fluctuations in the number
of stars per pixel. On the right, the same galaxy is at a larger distance. As a result, more stars
are included in every pixel, and the relative fluctuations, o, in flux from pixel to pixel will
be smaller. Since the amplitude of the relative fluctuations is proportional to distance™!

(Eq. 7.17), the fluctuation ratio gives the distance ratio of the galaxies.

N o DZ,. (7.16)
Therefore,
1
o (7.17)
Dgal

The proportionality constant can be calibrated in nearby galaxies, and the relation then
allows deducing the distance to other galaxies for which surface brightness fluctuations
are measured.

d. Galaxies out to ~1 Gpc—Observations of type Ia supernovae that have exploded in galax-
ies that already have distance measurements show that the luminosities of such supernovae
at the time of their maximum brightness are approximately the same. A correction to the
luminosity based on the rate at which the supernova brightness declines with time makes
these supernovae even more reliable standard candles. Measurement of the flux at peak
brightness of such a supernova in a distant galaxy then yields the distance to the host galaxy
of the event. Owing to the large luminosity of supernovae, this method can be applied to
very large distances.

e. Galaxy cluster distances out to ~1 Gpc can be estimated directly via the Sunyaev-Zeldovich
effect. The hot electrons in the intracluster medium cause inverse Compton® scattering,
and therefore a boost in energy, to background photons passing through the cluster

2 Compton scattering, like Thomson scattering, is scattering of photons on electrons, but for the case that
the electrons are relativistic, or the photons have energies > m,c2, or both. With typical intracluster medium
temperatures of kT ~ 10 keV, the electron velocities are v ~ (10~ 8erg/m)1/? ~ 0.1c, i.e., mildly relativistic.
When the electrons are more energetic than the photons, the scattered photons receive an energy boost, and the
process is sometimes called inverse Compton scattering.
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Figure 7.5 Schematic illustration of the principle of galaxy—cluster distance measurement
via the Sunyaev-Zeldovich effect. On the left, a photon from the cosmic microwave back-
ground passes through the hot gas of the intracluster medium, is slightly boosted in energy
through inverse Compton scattering on the electrons in the gas, and continues in its path
to the observer. The distortion in the spectral energy distribution of the background pho-
tons is proportional, among other things, to the path length x through the cluster. On the
right, the emission from the same hot gas, as viewed in X-rays by the observer, subtends
an angle 6 on the sky. Assuming that the cluster is spherical (and hence its transverse and
radial diameters are the same), the distance to the cluster is D = x/6.

(see Fig. 7.5). A prodigious and well-characterized source of such background photons is
the cosmic microwave background, which we will discuss in chapter 9. The energy boost
is proportional to the physical path length of the photons through the cluster, and thus
the cluster size along the line of sight can be deduced. From the thermal bremsstrahlung
X-ray emission of the same hot electron gas, one can also measure an angular size on
the sky for the cluster. Comparing the line-of-sight size to the angular size of the cluster,
and assuming the cluster is spherical (i.e., not flattened or elongated along our sight line),
the distance can be derived (see Problem 3). In reality, clusters are not spherical, but are
spherical on average (i.e., they are not all showing us their flat sides or their elongated
sides). Therefore, this method can be used to derive the distances to a sample of clusters
that are known to be all at about the same distance. The applicability of this will become
evident when we learn the concept of cosmological redshift.

7.3 Hubble's Law

The methods outlined above can be used to measure distances to galaxies. The line-of-sight
velocity of each galaxy can be measured from the Doppler shift of emission or absorption
features in the galaxy spectrum. Since the 1920s, it has been clear that, if one looks at
galaxies beyond the nearest ones (e.g., beyond Virgo), all galaxies are receding from us.
Furthermore, the recession velocity is linearly proportional to the distance, and follows
Hubble’s law,

v = HoD. (7.18)

The proportionality coefficient is the Hubble parameter, Hy = 70 & 10 km s~!Mpc™!
(often called the Hubble constant, though we will see that it is not truly a constant). Hy has
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Figure 7.6 A Hubble diagram, showing the recession velocities of galaxies vs. their distances.
The distances are deduced from the observed fluxes at maximum light of type Ia supernovae that
exploded in the galaxies. The straight line is Hubble’s law, v = Ho D, with Hy = 70km s~ Mpc~ 1.
Data credit: S. Jha, A. Riess, and R. Kirshner, 2007, Astrophys. J., 659, 122.

dimensions of [velocity]/[distance] = [time]~!. Figure 7.6 shows an example of a “Hubble
diagram” displaying this behavior.

Note that the particular type of relative motion embodied by Hubble’s law is of a form
such that observers living in any galaxy see the exact same pattern of recession of the other
galaxies surrounding them, with the same proportionality coefficient that we measure. To
see this, consider us, at a point O, observing galaxy 1 at vector position r; and galaxy 2 atr;
(see Fig. 7.7). According to Hubble’s law, galaxies 1 and 2 have recession velocities

V1 = Hol'l (7.19)
and
V) = Horz, (7.20)

respectively. Observers on galaxy 2 will, of course, see our galaxy receding from them at
velocity v,, but they will also see galaxy 1 receding from them at velocity

Vizg =V —V, = Ho(l’l — I'z) = Horlz, (7.21)

which is just Hubble’s law from their point of view. (For the vector subtraction of velocities,
we have assumed a Euclidean space and nonrelativistic velocities, but the result obtained
is general.)

There are several immediate consequences to the observation of Hubble’s law. First,
all galaxies are moving away from each other, i.e., the Universe is expanding. Second,
there is no center to this expansion since, as we have seen, observers in all galaxies see
the same expansion. Third, in the past, the Universe must have been denser. Finally,
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Figure 7.7 An observer at O sees galaxies at vector positions ry and rp receding
according to Hubble’s law. Observers in each of those galaxies will see the other
two galaxies receding from them according to the same Hubble law.

if the expansion has been going on for long enough, there was a particular time when
the distances between all galaxies was zero—this follows from the linear dependence of
velocity on distance. Thus, the Universe (at least as we know it) has a finite age. If galaxies
do not accelerate or decelerate, then that age, the time since all galaxies were “here,” is
just

1 1 3.1 x 10** cm

= = =44 x 10" s = 14 Gyr. 7.22
%= Ho~ 70kms Mpc! 70 x 105 cm s s . i)

As we will see in chapter 9, it turns out that this Hubble time is close to the current best
estimates of the age of the Universe.

7.4 Age of the Universe from Cosmic Clocks

An independent confirmation of the finite age of the Universe comes from several “natural
clocks.” As we have seen, all elements heavier than oxygen are produced almost solely in
stars that undergo supernova explosions. Many of the isotopes produced are radioactive,
with known mean lifetimes. Measurement of present-day abundance ratios of various
isotopes can reveal when they were produced. For example, from modeling the nuclear
reactions that take place during a supernova explosion, it is found that the nuclei of the
two isotopes of uranium, **U and **®U, are produced in similar initial numbers, Nip,
with a number ratio in the range

K= [Ninit(BSU)

= 1.16-1.34. 7.23
Nimt(mU)LN W=

The 235 isotope has a shorter decay lifetime than the 238 isotope, and therefore the ratio
becomes smaller with time. As measured on Earth today, the ratio of the isotopes is

K= NEPUT _ 000723 794
- [Feg), -0 .
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where the zero subscript indicates the present value. The number of nuclei of each isotope
decreases from the initial value with time according to

N(¥U) = Nipie(P* U)e /s, (7.25)
and
N(P3U) = Nip(B8U)e /2, 7.26
(

where 1,35 and 7,33 are the characteristic lifetimes of the two isotopes, which can be
measured in the laboratory. Dividing the two equations,

K = Kp exp (L - i) t. (7.27)

T238 T235

From the measured values of Ky, 735, and 1,33, the uranium on Earth was produced about
6.2 Gyr ago, if one assumes it was produced all at once from pristine material (that did
not contain previously synthesized uranium that had already been decaying). The age
resulting from this assumption is, in effect, a lower limit on the age of the Universe,; if the
Universe had existed for less time, there is no way Ky could have reached a value as low
as observed. A more sophisticated calculation, which takes into account continuous metal
enrichment by several generations of star formation and the ensuing supernovae, raises
the lower limit to about 10 Gyr.

White dwarf cooling is another cosmic clock. As we saw in section 4.2.3.3, white dwarf
temperature is a slow, monotonically decreasing function of time, which detailed models
can predict. Thus, the coolest known white dwarfs can provide a lower limit on the age
of the Universe. If we assume that stars formed soon after the formation of the Universe,
and the first white dwarfs formed shortly thereafter,? this is also an estimate (rather than
just a lower limit) for the age of the Universe. The coolest white dwarfs give a lower limit
of about 10 Gyr for the age of the Universe.

Finally, age dating of globular clusters is possible by identifying the mass corresponding
to the main sequence turnoff currently observed in their H-R diagrams (see Fig. 4.1). Stellar
structure and evolution models then give the main sequence lifetime of stars of such mass,
and this is the age of the cluster. Again, assuming an early formation of globular clusters,
this is a lower limit to, or approximately the value of, the age of the Universe. For most
globular clusters, ages in the range of 10-15 Gyr are found.

7.5 Isotropy of the Universe

A final, fundamental observation that will guide our development of a cosmological theory
is that, at large enough scales, the Universe appears isotropic (meaning “the same in all
directions”), i.e., there is no preferred direction in space. This is seen in the distribution
on the sky of distant galaxies, as well as of other extragalactic sources, such as gamma-ray

3 Stars of initial mass ~ 8M(, at the border between the initial masses leading to either eventual core collapse
or to white-dwarf formation, have lifetimes of ~40 Myr.
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bursts and quasars. Isotropy is also demonstrated to the extreme by the phenomenon,
which we will discuss in chapter 9, called the cosmic microwave background.

Problems

1. Assume that there is a constant ratio between stellar mass and light in the disks of spiral
galaxies, and that disks have a constant surface brightness. Use the scaling with radius
r, of the stellar mass within such a radius, and the scaling of circular velocity, v, with
enclosed mass (ignoring dark matter), to “explain” the Tully-Fisher relation, L o< v?. The
fourth-power dependence is indeed what is observed at infrared wavelengths, at which
light traces stellar mass relatively well. In reality, however, dark matter cannot be ignored,
and spiral disks do not have a constant surface brightness.

2. Measurements of the radial recession velocities of five galaxies in a cluster give velocities
of 9700, 8600, 8200, 8500, and 10,000 km s~'. What is the distance to the cluster if the
Hubble parameter is Hy = 70 km s~ 'Mpc™'? Estimate, to an order of magnitude, the
mass of the cluster if every galaxy is projected roughly half a degree from the cluster
center.

Answers: 130 Mpc; 10 M,

3. In the Sunyaev-Zeldovich effect, photons from the cosmic microwave background radia-
tion are Compton scattered by hot electrons in a cluster along the line of sight. Assume
0.001 of the photons are scattered, and the mass of the cluster is 2 x 10" M, of which
15% is in the hot gas (fully ionized hydrogen).

a. Usethe Thomson cross section to represent the cross section for Compton scattering,
and assume the cluster is spherical and of constant density, to find the diameter of
the cluster (assume the photons pass through one diameter).

b. If the angular diameter of the cluster is 1°, what is its distance?

c. If the cluster velocity of recession is 8400 km s~

units of km s=' Mpc™'?

Answers: diameter 2.1 Mpc; distance 120 Mpc; Hp = 70 km s Mpc~'.

, what is the Hubble parameter, in



8 Big Bang Cosmology

A successful cosmological theory should reproduce the basic observations outlined in the
previous chapter, as well as make testable predictions. In this chapter, we develop such a
theory.

8.1 The Friedmann-Robertson-Walker Metric

We will start with the cosmological principle, as formulated by Einstein, which postulates
that the Universe is isotropic and homogeneous. The observed isotropy has just been
discussed in the previous chapter. Homogeneity is evidenced by the form of Hubble’s law,
which is such that every observer sees the same expansion. Furthermore, homogeneity
takes to the extreme the Copernican principle that we do not hold a special place in the
Universe—no one, anywhere in the Universe, holds a special place, and there is full
equality of all observers. Note that homogeneity does not necessarily imply isotropy, or
vice versa. For example, a spherically symmetric Universe with a radially varying density
is not homogenous, but will appear isotropic to an observer at the center. A rotating
Universe may be homogeneous, but is not isotropic since it has a preferred direction,
along the rotation axis. The requirements that the Universe be isotropic and homogeneous
is equivalent to the requirement that it appear isotropic from all locations.

The linear form of Hubble’s law, v = HyD, leads (naively, at least) at large enough
distances to velocities v > c. This suggests that, to describe the dynamics of the Universe,
we require a relativistic theory of gravity, namely general relativity. As already discussed in
section 4.5, in the context of black holes, general relativity relates the density of mass and
energy, which are the sources of gravity, to the curvature of spacetime. The curvature is
described by a metric tensor, which specifies the line element of the curved spacetime. Our
first task is therefore to find the metric of the Universe that corresponds to the cosmological
principle of isotropy and homogeneity.
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If space is homogeneous, it must have the same curvature everywhere. There are
only three possible geometries that have constant curvature: flat, positively curved, and
negatively curved. In two dimensions, these three geometries correspond, respectively, to
a plane, the surface of a three-dimensional (3D) sphere, and a surface that at every point
has the geometry of a saddle (the latter surface cannot be visualized). All points on the 2D
surface of a 3D sphere with radius R (which obviously has constant curvature everywhere,
as required) obey

x?+y2+ 22 =R, (8.1)
and taking the derivative gives

xdx + ydy + zdz = 0. (8.2)
The line element, giving the distance between two close points, is

(xdx + ydy)?

di? = dx? +dy’ +d2* = dx* + dy* + ————.
X" +ay" +az x+Y+R2—x2—y2

(8.3)
Note that the z coordinate is not needed to describe this curved 2D space embedded in a
3D space. In spherical coordinates, the constraint that we must remain on the surface of
a sphere simply means that, in the usual 3D line element in spherical coordinates, we set
r = Rand dr = 0, and thus

dI> = R?d#* + R*sin’ ode’. (8.4)
Note also that no point on this curved 2D surface is preferred, and it has no bound-
ary. It could therefore correspond to a 2D homogeneous and isotropic Universe that is
unbounded but finite.

Since we live in a world with three space dimensions, we must extend these concepts
to a hypersphere, i.e., a positively curved 3D surface, or 3-sphere of radius R, embedded in a
Euclidean 4-space having coordinates x, y, z, and w. The fourth space dimension along the

w axis is fictitious and will not be needed to describe the properties of this curved space.
In analogy to the 2-sphere,

x* +y + 22 +w? =R, (8.5)
and the line element is

(xdx + ydy + zdz)?

2 _ 4.2 2 2
al* = dx* + dy” + dz° + Rl stz

(8.6)

Recalling that x? + y? + 22 = r2, where r’ is the usual 3D radial coordinate, we can write
dl? in spherical coordinates as
rrZ drIZ RZ drIZ

di? = dr’? + r'*de? + r”* sin? 6d¢? + e w—at r2do* + r'% sin® 0d¢?

2
=—= + r2d6? + r'? sin® 6d¢?

R2
dr!Z/RZ rIZ rlZ )
" (m S e =%
R
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In the last equality we have introduced a curvature parameter, k. For the case we have
considered, of a hypersphere, k = +1. Taking k = 0, we recover the usual 3D Euclidean
relation, and this corresponds to “flat” 3D space. Taking k = —1 gives the line element for
a negatively curved 3D space of constant curvature, called a 3-hyperboloid. Finally, if we
define a new dimensionless coordinate,

r=—, dr=—, (8.8)

and add the time dimension to the line element, we get the spacetime interval between
two adjacent events:

dr?
1 — kr?

ds? = c2dt? — dI*> = *dt?> — R ( + r2d6? + r*sin’ 9d¢2) : (8.9)

The coefficients of this interval constitute the Friedmann-Robertson-Walker (FRW) metric.
The meaning of the time coordinate we have introduced here (i.e., time as measured by
whom?) will be elucidated soon.

Note that the factor R that multiplies the dimensionless spatial part of the FRW metric
is a scale factor. For example, if R(t) grows with time, every observer sees other points
in the Universe receding radially, just as in the observed Hubble expansion of galaxies.
Thus, a galaxy at coordinates (r, 6, ¢) remains at those coordinates, and it is the coordinate
system which is “locked” onto the galaxies that expands according to R(t). The coordinates
(r,0, ¢) are therefore called comoving coordinates.

The instantaneous distance from us to a galaxy at coordinate r (as would be measured,
e.g., by an imaginary taut running tape measure, with one end held at the galaxy and the
other end held by us—this is called the proper distance) is

Rsin'r ifk=+1

r r d
J f dl = R(t)f —rkg ={ rr ifk=0 . (8.10)
=0 B AL — Rsinh'r ifk=—1

For k = +1, r = sin (I/R). The coordinate r reaches a maximum of 1 at a proper distance
| = 7 R/2, and galaxies beyond this point have smaller r, reaching r = 0 at | = 7 R, which
is our antipode. If we travel continuously in one direction, we will pass the antipode, and
after traversing a distance 2z R, we will come back to the point of origin, facing the same
direction. Similarly, the area of a sphere centered on us and passing through a galaxy at
coordinate r, which corresponds to a physical radial coordinate r’ = Rr, is

l
A = 47r? = 47 R*r? = 47 R*sin’ = (8.11)

Beyond | = wR/2, the area of the sphere decreases, and at the antipode at | = 7R, the
sphere centered on us and enclosing all the previous spheres has zero area. This geometri-
cal behavior is the 3D analog of traveling in a certain direction on a 2-sphere, or of drawing
concentric circles on a 2-sphere—once a circle passes through a point at a distance (as
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measured on the surface of the sphere) of | = 7 R, its circumference is zero, even though
it encloses all the previous circles.
Since

r=0 1 - krz ,

= [ a= R(t)er (8.12)
0

and r is a comoving coordinate and therefore is independent of time, the velocity of a
galaxy at r is
I = Ret) f L E;
V== —_—_— ],
o V1—kr2 R
If we identify the ratio R/R = H(t) with the Hubble parameter, we recover Hubble’s
law. Indeed, Hubble’s parameter must depend on time, since we saw it is roughly just the

(8.13)

reciprocal of the age of the Universe, and the age increases with time. Stated differently,
if, e.g., the galaxies used to measure Hubble’s law do not accelerate or decelerate, their
distances grow linearly with time, and therefore the Hubble parameter H = v/D becomes
smaller with time.

8.2 The Friedmann Equations

We have seen that the FRW metric can describe the three possible constant-curvature
geometries of an isotropic and homogeneous Universe, and allows for a Hubble-like expan-
sion described by a scale factor R(t). To proceed and obtain the equations of motion that
describe the behavior of this scale factor, we need to specify the mass—energy distribution
and relate it to the FRW metric through the Einstein equations of general relativity,

B 87 G

Guv
K C4

Ty (8.14)

Let us see, even if only schematically, how this is done.
As we saw in chapter 4 (Eq. 4.109), the spacetime interval ds is determined by the metric
tensor g, as

(ds)> = gudx,dx,. (8.15)
e
The Einstein tensor G, is a combination of first and second derivatives of, in this case,
the FRW metric tensor, g,,,. Note that the matrix representing the FRW metric tensor is
diagonal (there are no cross terms in Eq. 8.9), greatly simplifying G,,,. The nonzero terms
of g,, are

R? .
go=1 gn=- e g2 = —R*%2, g33 = —R**sin?0. (8.16)

1-k
To find the Eintein tensor G, starting from g,,,, (readers unfamiliar with tensor calculus
can skip down to Eq. 8.22), one needs to calculate the affine connections,
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1 08sp |, 98vp  9gov
l-'pL — _ghtP p (d — : 817
o = 38 (Bx” i ax°  0x” ) (8:17)

the Riemann tensor,

aTe,  Are
o — B By 1Y a P .
Bvs = 5ry  aad T Levibs — Toslgys (515

the Ricci tensor,

Rpy = 8 Risys; (8.19)
the Ricci scalar,

R =g"Rs,, (8.20)
and finally the Einstein tensor,

Gy = Ry = 780 Ro (8.21)

In all these relations, the index summation convention is implied, in which summation
over all four coordinates is carried out whenever the same index appears jointly as a
subscript and a superscript. The first two diagonal components of the Einstein tensor are

3
c2R?

2RR+ R? +k

Gag =
0 c2(1 — kr2)

(RZ + kCZ), G11 = —

(8.22)

In general, the components of the energy-momentum tensor T,,, which is always
symmetric (or can be symmetrized), are

Ty =energy density
Toi = momentum flux
T;; =isotropic pressure

T = anisotropic pressure (stress and strain)

where the 0 index refers to the time coordinate and the indices i,j to the three spatial
coordinates. For an isotropic and homogeneous Universe, T, is diagonal and

vV
Tuw = (P + p€) =5~ — Pluy, (8.23)
where v, is the 4-velocity, P is the pressure, and pc? is the mass—energy density. Further-

more, for a comoving observer, v = (c, 0,0, 0), and therefore

PR
1 —kr?

Too = pc?,  Tn (8-24)
Substituting the (0, 0) and (1, 1) components of G,,, and T}, into the Einstein equations
gives the two equations:

R+ ke* 87

= Gp, ]
= = Gp (8.25)



Big Bang Cosmology | 195

and

2R R®+kc? 8

—+—m =5GP (8.26)
(The equations resulting from the two other nonzero components of G,, and T,, are
redundant with these equations. This is a consequence of the isotropy inherent to the
FRW metric.) Subtracting the two equations from each other, and slightly rearranging the
first equation, gives the first and second Friedmann equations,! which relate the first and
second time derivatives of the scale factor R to the energy density, pressure, and curvature

of the Universe:

22
R 8 kc?
—) =—Gp - —, 8.27
( R) 3 P R (8.27)
and
R 4nG .,
2= 32 (pc” + 3P). (8.28)

The Friedmann equations are two coupled differential equations for the three unknown
functions R(t), p(t), and P(t). Given an equation of state, P(p), and suitable boundary
conditions, they can be solved. However, even before we solve them, some immediate
consequences are apparent. The first consequence of the Friedmann equations is that the
Universe must be expanding or contracting. We know that the Universe has some nonzero
mass density p, and therefore Eq. 8.27 tells us that R is nonzero. (Even if the right-hand
side of Eq. 8.27 is momentarily zero, Eq. 8.28 guarantees that this is only momentary.)
Equation 8.28 says the acceleration is always negative, i.e., the Universe is decelerating, and
always has been. Since the Hubble law shows us that the Universe is currently expanding,
the Universe was expanding in the past too, and even faster than now.? Thus, if the assump-
tions of homogeneity and isotropy are valid, and the formulation of general relativity that
we have presented is correct, it is unavoidable that the Universe began in an infinitely
dense state not more than 14 Gyr ago, the Big Bang, and has been expanding since.

The two Friedmann equations imply a third useful relation, obtained as follows. Eq-
uation 8.27, slightly rearranged, is,

. 8
R = THG,ORZ — ke?. (8.29)
Taking the time derivative of both sides gives
T . 8
2RR = THGpZRR + T”G;iRz. (8.30)

! The second equation is often called the acceleration equation.

2 In section 8.5, we will find a more general formulation of the Friedmann equations that actually does allow
for positive acceleration of R. In chapter 9, we will see that such an acceleration, under the influence of a
yet-unexplained form of “dark energy,” is likely taking place now, and probably also occurred in the very early
Universe.
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Substituting Eq. 8.28 for R we get

2R [—AﬂggR(pcz + 3P)] = BT”szRR + ~83£ch2. (8.31)
This simplifies to

—R(pc? + 3P) = 2pc*R + pe’R. (8.32)
Collecting like terms gives

—3R(pc® + P) = pc?R, (8.33)
or

pct = —3%(,0& + P), (8.34)

which, as we will see, expresses the conservation of energy, and which is often called
the third Friedmann equation, the fluid equation, or the energy conservation equation. Note
that, in the three equations, p is a mass density and pc? is an energy density. Thus, if
the dominant source of energy density is not the rest mass density (e.g., if it is mainly a
radiation density, pr.q4), then we will replace p with pr,q/¢? in each equation.

8.3 History and Future of the Universe

Solving the Friedmann equations for R(t) can give a description of the history and future
of the Universe. First, however, an equation of state, P(p), needs to be specified. There
are two important cases. In the matter-dominated case, the pressure from all sources is
much less than the matter density,

P « pc’. (8.35)
Setting P = 0 in Eq. 8.34, we find

p__3R (8.36)

which has the solution
p o R73. (8.37)

A second important case is when the dominant energy density comes from ultrarelativistic
particles (e.g., photons), which have a pressure that is 1/3 of their energy density (see
Eq. 3.74),

P =ju=3ipct. (8.38)

In this radiation-dominated case, Eq. 8.34 becomes

P 4R (8.39)
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with the solution
p o R (8.40)

Let us consider now the history of the scale factor R(t). Since p behaves as R™3 to R™*,
in Eq. 8.27 one can always find an early enough time, when R was small enough, such
that the second term, which goes as R~? can be neglected,

kc?
R2

8
—Gp >

3 . (8.41)

In the matter-dominated era, when p ~ R~3, Eq. 8.27 then becomes approximately

2

R 1

RY2dR ~ dt. (8.43)

or

Integration gives

R/ « t, (8.44)
and
R(t) oc t¥3. (8.45)

Since the energy density of radiation falls faster with R than that of matter, at an early
enough time there must have been a radiation dominated era, during which p ~ R™*. At
that time

2

(%) ~ %, (8.46)
or

RdR  dt, (8.47)

R*  t, (8.48)
and

R(t) oc 12, (8.49)

Note that the reason why the expansion is slower during the radiation-dominated phase,
compared to the matter dominated phase (R oc t!/2 vs. R oc t2/3, respectively) is because
the gravitating effect of the radiation pressure, in the former case, contributes to slowing
down the expansion.

As we look back to the earliest times, as expected, we find that

lim R(t) = 0, (8.50)

t—0
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and
i =lim R * = o0. 51
T ®51)

This singularity in density as t — 0 is the Big Bang.’ By now we can also see what is
the meaning of the time coordinate t. It is simply a universal, or “cosmic,” time that
can be measured by all comoving observers since the Big Bang. Since the Universe is
homogeneous and isotropic, all comoving clocks advance at the same rate. All observers
could, in principle, synchronize their clocks by, e.g., agreeing that t = t; will occur when
the local mean density measured by an observer reaches a particular value, po.

Looking to the future, at some point we can no longer ignore the curvature term in
Eq. 8.27. We then need to consider separately the three possibilities, k = 0, £1. If space is
flat (k = 0), Eq. 8.27 becomes

2

R 8
— ) =—Gp. 8.52
() =5ce 852
Recalling the definition of the time-dependent Hubble parameter as
R
H=—, 8.53
- (853)
this can be rewritten as
3H?
= . 8.54
P = 8rG i524)

In other words, a flat Universe implies a particular critical density for every moment,
including now. We previously saw (Eq. 7.22) that, for a current value of the Hubble
parameter, Hy = 70 km s~ Mpc™!, 1/Hy = 4.4 x 10" s, and therefore in cgs units Hy =
2.3 x 10718 571, At present, the critical density is

_ 3H}
871G
323 x 107 #5712
~ 87 x 6.7 x 1078 cgs

Peo (8.55)

=92x10* gem™ = 1.4 x 10" My, Mpc™>.

Recall that the typical density of L, galaxies (see section 6.2) is 1072 Mpc~2, and that such
galaxies, including their dark halos, have masses of ~ 10'?M,. The matter density due
to galaxies is therefore of order 10 times less than the critical density. It is convenient to
express the actual matter density of the Universe in units of the critical density, by means
of the parameter

0
Q, =—. 8.56
Pc ( )

3 It is a common misconception that, as t — 0, all the matter in the Universe “was concentrated in a single
point.” This would imply that the Big Bang occurred at a particular location in space, contrary to the cosmological
principle. In fact, the singularity is in the density, and it occurs everywhere in the Universe at once. Even if the
Universe is infinite (k = 0 and k = —1 cases), and hence has infinite volume and mass, then no matter how
highly compressed is the matter within some volume, there is infinitely more matter outside the volume, and
an equally high density is achievable everywhere else.
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If Q,, =1, then k = 0. If, furthermore, we are now in a matter-dominated era (as we will
see below that we are), then the approximate solution of Eq. 8.27 that we found before is
exact, R o t2/3, and therefore R o t71/3. The scale factor (and hence the distance between
any two galaxies) continues to grow forever while gradually slowing down, stopping only
att = oo.

Proceeding to the fate of the Universe in the second case, of a positively curved space
with k = +1, as R continues to grow and the density p goes down, there will come a time
when the two terms on the right-hand side of Eq. 8.27 are equal,

8m kc?
—Gp = —. 8.5
3 P =R (857)
This will happen when the scale radius
3 2 1/2
R:( . ) , (8.58)
81 Gp

at which time

R 2
(E) —0, (8.59)

i.e., the expansion will halt. However, the deceleration in Eq. 8.28 does not change its
negative sign, and therefore this is the beginning of a collapse, in which the Universe traces
in reverse its past expansion, up to a “Big Crunch.” Recall that, since such a recollapsing
Universe has positive curvature, its volume is finite but unbounded. It is called a closed
Universe.

Finally, if k = —1, after sufficient time the curvature term will dominate over the density
term in Eq. 8.27, so that

R\ @ 8.60
R RZ’ (' )

or
R=c. (8.61)

In other words, the expansion continues forever at a constant, “coasting,” rate. The k = —1
universe is an open universe that is infinite and forever expanding (as is the k = 0 case).
Figure 8.1 shows examples of the time dependence of R(t) for each of the three curvature
possibilities.

When is the transition from a radiation dominated Universe, with p ~ R™*, to a matter
dominated Universe, with p ~ R™3? The energy density in radiation at any time, pa4, is
related to its value today, pr.d,0, by

4
Prad = prad,Ohﬁ‘%' (8.62)
Similarly for the mass energy density,
2 2 Ry

3
Pmt” = PmoC i (8.63)
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Figure 8.1 Examples of the time dependence of the relative scale factor, R/Rp, for various
cosmologies. At early, radiation-dominated times, R grows as t!/2, and during early
matter domination, R ~ t2/3 for all models. The t2/3 behavior continues forever in the
flat (k = 0), critical-density model. In the open, curvature-dominated (k = —1) model, the
Universe reaches a final “coasting” phase, with R ~ t. In the supercritical, k = +1, case,
R attains a maximum and the Universe then recollapses to a singularity, retracing its past
evolution symmetrically in reverse. The asymmetric appearance of the k = +1 curve is
due to the logarithmic scale of the plot (the logarithmic scale is useful for visualizing the
early-time behavior and the various power-law dependences).

The two energy densities were equal when

Ry pmoc’

R Prad,0 .

(8.64)

As we will see, the Universe is filled today with a radiation field, the cosmic microwave
background, that has the spectrum of a blackbody at a temperature Ty, = 2.73 K. The
radiation energy density today is therefore

prado = aTy =7.6 x 107 ergem ™ K™* x (2.73 K)*

3

=42x 10" ergem™. (8.65)

We saw that the present-day matter density is not far (within an order of magnitude) from

the critical closure density p.. We will see later on that it is actually about 0.3 of the critical
density. Thus,

Pmoc® & 0.3pc0c> =03 x9.2x 107 gem™ x (3 x 10" cm s71)2

3

=2.5x 10" ergcm . (8.66)

Therefore, today we are clearly in a matter-dominated era. The transition from domination

by relativistic particles to the present, matter-dominated, era occurred when the scale factor
R was smaller than its present value Ry by



Big Bang Cosmology | 201

s G0 2.5 x 107° =3
Ro _ Pmoc” _ a cecm = 3500. (8.67)
R 1.7prad0 1.7 x4.2x 1073 ergem—3

(The factor 1.7 accounts for the energy density due to the cosmic neutrino background,
another component of the Universe that must exist, although it has not yet been detected—
see chapter 9, Problem 9. At early times these neutrinos, even though they have a nonzero
mass, were relativistic, and therefore behaved just like the radiation, with a density pro-
portional to R™*. It can be shown that their energy density then was 0.68 times the photon
energy density.) Recall that under matter-dominated conditions R grows as t*/* (Eq. 8.45),
and therefore

2/3
R (5) . (8.68)
R t

Thus, the time of transition to matter domination was

b o B 8.69
©(3500)%2 2 x 105 (8.69)

In other words, the Universal expansion has been matter-dominated for all but a small
fraction of the age of the Universe.

To calculate the age of the Universe, we can therefore safely make the approximation
that we have had p ~ R~ throughout the history of the Universe. Let us examine the
various possibilities. First, if pg = pc o, so that k = 0, we saw that Eq. 8.27 gives

2

H2(t) = (%) = 5’-’3—(5;) o R™. (8.70)

Then
)

(%) = Hgﬁ—‘z, (8.71)

which after separating the variables and integrating becomes
1 (R RY2dR %

- fo = [o d, (8.72)
or

to=2Hg". (8.73)

If we consider an empty Universe with p = 0, which is the extreme case of k = —1,
Eq. 8.28 becomes

R=0, (8.74)

R = const. (8.75)
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But
H=X (8.76)
R
SO
R = HR = HyRy, (8.77)
Ro to
/ dr__ [ d, (8.78)
o HoRo 0
and
to = Hy . (8.79)
Thus, for
1> Qo >0, (8.80)

the age of the Universe is in the range
ZH," <ty < Hy'. (8.81)

We already saw that, for Hy = 70 km s~ 'Mpc~!, H; ! = 14 Gyr. The age of the Universe
is therefore between 9 and 14 Gyr, for this range of values of the density parameter 2, .
The transition from a radiation-dominated to a matter-dominated expansion occurred at
a time

ko bo
P= s T axas o000 BA3

after the Big Bang, assuming the larger age.

8.4 A Newtonian Derivation of the Friedmann Equations

A more intuitive understanding of the Friedmann equations can be obtained from an
approximate derivation based on local Newtonian arguments. Consider a spherical region
of radius R, total mass M, and constant density p (see Fig. 8.2). A galaxy of mass m is at
the edge of the region, at a radius R from an observer at the center. Energy conservation
means that

1 GMm

EmRZ -— =& (8.83)

where the total energy, E, is a constant. Replacing M with

4 3
M=—FRp, (8.84)
we obtain

R 87 G 2E
(—) = o+ ) (8.85)
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P

Figure 8.2 A galaxy at the edge of a spherical mass distribution of constant density
p and radius R, as viewed by an observer at the center. Energy conservation and
Newtonian kinematics lead to approximate versions of the Friedmann equations.

By identifying 2E/m with —kc?, we recover the first Friedmann equation, Eq. 8.27. We
thus see that this equation basically says that the sum of the kinetic and potential energies
of the Universe is locally conserved.

The equation of motion for the galaxy, again using Eq. 8.84, is

. GMm 4
mR = — = ——ErrGRpm, (8.806)
or
R 4n
— =——Gp. 8.87
% 3 6P (8.87)

This is the second Friedmann equation (Eq. 8.28), except for a missing 3P/c? term—
missing since Newtonian gravity does not account for the gravitating effect of pressure.
The second Friedmann equation is thus just the equation of motion under the influence
of gravity.

The third Friedmann equation (Eq. 8.34) can be obtained from a thermodynamic argu-
ment involving only special, rather than general, relativity. Conservation of energy implies
that, in a system undergoing adiabatic compression or expansion (i.e., with no net heat
flow into or out of the system), the energy U, pressure P, and volume V obey

dU = —PdV. (8.88)

The adiabatic condition is consistent with the cosmological principle, since in a homoge-
neous and isotropic Universe there can be no net energy flow from one region to another.
Substituting

U=pc’V (8.89)
and taking the time derivative on both sides,

d(pc’V) _PdV

= — (8.90)
we obtain
dv dv
pctV + pct— = —P— (8.91)

dt dt’



204 | Chapter 8

which simplifies to

1%
pct = —V(,ocz + P). (8.92)
Since V o R?,
\%
av._49R (8.93)
% R

Substitution in Eq. 8.92 then gives the required result,
2_ 3R
pc” = —3E(pc + P). (8.94)

The third Friedmann equation, which we previously derived by combining the first two
equations, is thus basically a restatement of energy conservation. We can also see now that
the above derivation holds separately for each of several cospatial systems of particles with
no net exchange of energy between the systems (so that the adiabatic condition holds for
each system). This can occur if there is no interaction between the systems, or if they are in
full thermodynamic equilibrium. For example, in a gas composed of matter and radiation
in thermodynamic equilibrium, Eq. 8.94 will hold separately for the matter density and its
associated pressure, and for the radiation density and its pressure.

8.5 Dark Energy and the Accelerating Universe

We have derived above the dynamics of a universe that is controlled solely by the gravity
due to matter and radiation. However, it is possible, in principle, to add a term, Ag,.,
to the Einstein equations, which, we will see, can act as a repulsive force that counter-
acts the conventional attractive gravity. Such a term, called a cosmological constant, was
first introduced by Einstein to his equations to allow the existence of a static Universe
(which, as we saw, is not possible in the formulation we have developed so far). After the
Hubble expansion was discovered, Einstein discarded the cosmological constant, but it
has resurfaced several times over the years, by way of attempts to explain a number of
different observations. In recent years, evidence is mounting that a A-like term may, in
fact, be required to describe the dynamics of our Universe. The cosmological constant is
one possibility among a class of such terms that can be added to the Einstein equations,
which are generally referred to as dark energy or vacuum energy.

With the addition of A, the Friedmann equations that result by writing the Einstein
equations for the FRW metric are modified, and become

R Z_SHG k02+A % 55

R) ~ 3P RT3 (5:33)
and

R IFC  2iapy B 8.96

R™ 3z 3 (8.99)
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The third Friedmann equation,

R
pc = —3E(pcz + P), (8.97)

remains unchanged (see Problem 4).

From Eq. 8.96, it is clear that a large enough positive value of A can cause R to become
positive, i.e., to make the Universe accelerate, as opposed to the deceleration that always
exists without such a term. Note that A has dimensions of [time] 2. From Eq. 8.95, we can
see that the cosmological constant acts effectively as an additional energy density,

CZ

~ 871G

However, if A is constant, €, is an energy density that remains constant, rather than

€A (8.98)

falling, when R grows with time.* Thus, after R has grown enough, it is guaranteed that
the A term will dominate the right-hand side of Eq. 8.95. We can then write Eq. 8.95 as

2

B e (E) e (8.99)
R 3
or
1/2
R~ (%) R, (8.100)
which has the solution
AN 12
R(t) o exp [(;) t | = exp(Ht), (8.101)

where the Hubble parameter H has actually become a constant. In other words, once
the cosmological constant term comes to dominate, the Universe enters an accelerating,
exponentially expanding, phase. If A remains constant, this phase lasts forever. During
the exponential expansion phase, the particle horizon—the most distant point an observer
can, in principle, see—tends to a constant comoving coordinate r;, (see Problems 1 and 2).
Thus, as opposed to a Universe without a cosmological constant, in which more and more
of the volume becomes visible as time progresses, there is a fixed limit beyond which
light will never reach us (since, at the time of emission, galaxies beyond that distance are
receding from us faster than the speed of light). Galaxies within the particle horizon will get
more and more redshifted with time, and therefore an observer in such a universe will see
more and more of the light sources around him “blinking out” (actually, getting redshifted
to infinity). Finally, observers in an exponentially expanding Universe are surrounded also
by an event horizon, similar to that around a black hole, that bounds the region of space
with which they can communicate or interact causally. The comoving radial coordinate

4 This counterintuitive behavior results from the strange equation of state associated with the cosmological
constant, which relates a negative pressure to €5: P = —ep (see Problem 5). When a volume element in the
Universe grows due to the expansion, the work done by the negative pressure maintains the energy density
constant.
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of the event horizon, re,, shrinks exponentially with time, and therefore all observers
eventually lose contact with each other (see Problem 3).

It turns out observationally that a model that is particularly relevant to the real Universe
is one with a nonzero cosmological constant and a flat space. In this case, setting k = 0 in
Eq. 8.95 and dividing both sides by HZ, we obtain

H?> 8=n A

Z T Gpt ——. 8.102
12 3H2 C 3R (8.102)

Recalling our definition of the present critical density for closure,

B 3HZ
T 887G’

this can be written as

. (8.103)

H* A
Pl Loy YT A (8.104)
H(} Pc,0 3H0
If we recall also the definition of the density parameter,
Q, =2, (8.105)
P
and define an analogous dimensionless parameter for A,

A
Qp = —, 8.106

then Eq. 8.104 at the present becomes
1= Qmo + Do (8.107)

However, the same argument can be made at any time, and therefore, if k = 0,

Qm +Qp =1 (8.108)

always. Thus, as opposed to the flat, zero-A, universe, in which the mass density always
equals exactly the critical closure density (i.e., 2,, = 1), in a flat, nonzero-A, universe, it is
only the sum of Q,, and €, that is constant and equal to 1. In a closed, positive-curvature
Universe, 2,, + Q4 > 1, and in an open, negative-curvature Universe, 2,, + Q, < 1. In
the next chapter, we review recent measurements indicating that Q,, + €2, is very close
to 1 (i.e., space is nearly flat/Euclidean). As k = 0 marks the border between a closed and an
open Universe, it may be difficult to find out whether space has a finite or infinite volume.

Problems

1. Show that the current proper distance to our particle horizon, defined as the most distant
place we can see (in principle), for a matter-dominated k = 0 universe with no cosmo-
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logical constant, is r,Ry = 3cto, where ry, is the comoving radial coordinate of the particle
horizon, Ry is the scale factor today, and tg is the present age of the Universe. Thus,
more and more distant regions of the Universe “enter the horizon” and become visible
as time progresses. Why is the answer different from the naively expected result cty?
Hint: Light moves along null geodesics, defined as paths along which ds = 0, and therefore
in the FRW metric, light reaching us from a comoving coordinate r will obey

dr?

— 2di2 — R(1)2 )
0=cdt — R{tf' ——

Replace R(t) with Ro(t/to)?/? appropriate for this cosmology, separate the variables, and
integrate from r = 0 to r, and from t = 0 (the Big Bang) to ty (today).

2. Forak = Ouniverse with Q, = 1, that att = 0 already has a scale Ry, find the comoving
radial coordinate, r,, of galaxies that will be on the particle horizon (see Problem 1) at
a time t in the future. Show that in this case r, approaches a constant, ¢/(HoRy), and
therefore galaxies beyond this r, will never become visible.
Hint: Proceed as in Problem 1, but now with R(t) = Roexp(Hot). (Show why this R(t) is
an exact solution of the Friedmann equations for the cosmological parameters above.)

3. a. For the same cosmology as in Problem 2 (k = 0, Q4 = 1), find the comoving radius
ren of galaxies that will be on our event horizon at a time t in the future, i.e., galaxies
with which we will be unable to communicate. In other words, light signals sent by us
at time t will never reach those galaxies, light signals sent out by those galaxies at time
t will never reach us, and therefore we will never see those galaxies as they appeared
at time t and thereafter. Show that, in this case, re, shrinks exponentially, and we thus
lose the possibility of communication with more and more of our neighbors.

b. Assume that Ho = 70 km s™'Mpc™' and find, for such a universe (which approxi-
mates the actual world we live in), within how many years will the galaxies in the the
nearby Virgo cluster (distance ~ 15 Mpc) reach the event horizon.

Hint: Proceed as in Problem 2, but integrate from r = 0 to r, and from t (future emis-
sion time) to t = oo (the photons never reach us). Then equate re, to the comoving
radius of Virgo, 15 Mpc/R,.

Answer: 79 Gyr.

4. Repeat the derivation of the third Friedmann equation, from the first and second
Friedmann equations, but in the presence of a cosmological constant (Eqs. 8.95 and
8.96), and show that this equation is unchanged. Note that, in this derivation, p and P
still refer to the density and pressure associated with normal matter and radiation, rather
than with the cosmological constant term, which cancels out.

5. Show that the equation of state associated with the energy density of the cosmological
constant is P = —e,, with a negative pressure. Two different ways to do this are as
follows.
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a. Invoke energy conservation and follow the derivation of Eqs. 8.88-8.94 to argue that
Eq. 8.94 holds also for the “dark energy” density component, €,, alone, i.e.,

_ R
EpA = —3§(EA + PA)

The required result follows from noting that A is a constant.

b. Rewrite the Friedmann equations plus cosmological constant (Eqs. 8.95, 8.96), but
absorb the A/3 term, i.e., in Eq. 8.95, define an energy density €, (Eq. 8.98) such that
p is replaced by p + €4 /c%. In Eq. 8.96, replace pc? + 3P with pc? + €5 + 3(P + Pa).
Then eliminate A from the two defining equations of €5 and P, to obtain the required
dark energy equation of state.



9 Tests and Probes of Big Bang Cosmology

In this final chapter, we review three experimental predictions of the cosmological model
that we developed in chapter 8, and their observational verification. These tests—
cosmological redshift, the cosmic microwave background, and nucleosynthesis of the
light elements—also provide information on the particular parameters that describe our
Universe. We conclude with a brief discussion on the use quasars and other distant objects
as cosmological probes.

9.1 Cosmological Redshift and Hubble's Law

Consider light from a galaxy at a comoving radial coordinate r,. Two wavefronts, emitted at
times t, and t, + At,, arrive at Earth at times t; and t, + Aty, respectively. As already noted
in section 4.5 in the context of black holes, the metric of spacetime dictates the trajectories
of particles and radiation. Light, in particular, follows a null geodesic with ds = 0. Thus, for
a photon propagating in the FRW metric (see also chapter 8, Problems 1-3), we can write

2

1—kr2

0 = c2dt* — R(t)? (9.1)

The first wavefront therefore obeys

ftoi 1[r, dr (92)
. R(t) cJo VI—k?Z '

and the second wavefront

fw% - 1[& ﬁ/—‘dr 9.3)
wiar, R cJo VT—krZ :
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Since r, is comoving, the right-hand sides of both equalities are independent of time, and
therefore equal. Equating the two left-hand sides, we find

to+ALy ty
]ﬁ ji—[ oy, (9.4)
wear R(E)Ji, R(E)

Expressing the first integral as the sum and difference of three integrals, we can write

to to+At, to+ Aty to
[
te te to te

and the first and fourth terms cancel out. Since the time interval between emission of con-
secutive wavefronts, as well as the interval between their reception, is very short compared
to the dynamical timescale of the Universe (~1071 s for visual light, vs. ~10'7 s for a Hub-
ble time), we can assume that R(t) is constant between the two emission events and between
the two reception events. We can then safely approximate the integrals with products,

At, _ Aty (9 6)
R(t)  R(to)’
Recalling that
1 A
At,= — =2 (9.7)
Ve c
and
i A
Ay = — = —, (9.8)
Vo C
we find that
At A R(t
O_—_—0=&= (O)El+z, (9‘9)
At,  h v  R(t)

where we have defined the cosmological redshift, z. Thus, the further in the past that the
light we receive was emitted (i.e., the more distant a source), the more the light is red-
shifted, in proportion to the ratio of the scale factors today and then. This, therefore, is the
origin of Hubble’s law.

Just like Doppler shift, the cosmological redshift of a distant object can be found easily
by obtaining its spectrum and measuring the wavelengths of individual spectral features,
either in absorption or in emission, relative to their laboratory wavelengths. Note, however,
that cosmological redshift is distinct from Doppler, transverse-Doppler, and gravitational
redshifts. The cosmological redshift of objects that are comoving with the Hubble flow is
the result of the expansion of the scale of the Universe that takes place between emission
and reception of a signal. In an expanding Universe (such as ours), R(to) > R(t,) always,
and therefore z is always a redshift (rather than a blueshift). Indeed, it is found observa-
tionally that, beyond a distance of about 20 Mpc, all sources of light, without exception,
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Figure 9.1 Optical spectra of four quasars, with cosmological redshifts increasing from top
to bottom, as marked. Note the progression to the red of the main emission lines, which
are indicated. The width of the Balmer lines is the result of Doppler blueshifts and redshifts
about the line centers, due to internal motions of the emitting gas, under the influence of
the central black holes powering the quasars. The [O 1] lines are narrower because they are

emitted by gas with smaller internal velocities. Data credit: S. Kaspi etal. 2000, Astrophys. J.,
533, 631.

are redshifted.! In addition to the cosmological redshift, the spectra of distant objects can
be affected by (generally smaller) redshifts or blueshifts due to the other effects. Figure 9.1
shows the spectra of several distant quasars (objects that were discussed in section 6.3).
Note the various redshifts by which the emission lines of each quasar (hydrogen Balmer
Ha and Hp, and the doublet [O m1jai 4959, 5007 are the most prominent) have been
shifted from their rest wavelengths by the cosmological expansion.

We have seen that the evolution of the scale factor, R(t), depends on the parameters
that describe the Universe, Hy, k, 2,,, and Q4. This suggests that, if we could measure
R(t) at different times in the history of the Universe, we could deduce what kind of a
universe we live in. In practice, it is impossible to measure R(t) directly. However, the
cosmological redshift z of an object gives the ratio between the scale factors today and at
the time the light was emitted. We can therefore deduce the cosmological parameters by
measuring properties of distant objects that depend on R(t) through the redshift. Two such
properties that have been particularly useful are the flux from an object and its angular
size. Models with different cosmological parameters make different predictions as to how

! Nearby objects, such as Local Group galaxies and the stars in the Milky Way, are not receding with the
Hubble flow (nor will they in the future) because they are bound to each other and to us. Similarly, the stars
themselves, the Solar System, the Earth, and our bodies do not expand as the Universe grows. It is a common
misconception that the “driving force” of the cosmological recession is the “expansion of space itself.” In fact,
galaxies are receding from us simply because they were doing so in the past, i.e., they have initial recession
velocities and inertia (although now they are aided by dark energy—see below). A massless test particle placed
at rest at any distance from us would not join the Hubble flow.
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Figure 9.2 A Hubble diagram extending out to redshift z = 1.7, based on type Ia super-
novae, Note that redshift now replaces velocity (compare to Fig. 7.6) and the luminosity
distances to these standard candles are now plotted on the vertical axis. The top and bottom
curves give the expected relations for cosmologies with 2, = 0.3, 2, = 0.7,and Qy, =1,
Qa = 0, respectively. The data favor the top curve, indicating a cosmology currently dom-
inated by dark energy. The calculation of the curves is outlined in Problems 4-7. Data
credits: A. Riess et al. 2004, Astrophys. J., 607, 665, and P. Astier et al., 2006, Astron.
Astrophys., 447, 31.

these observables change as a function of redshift. Measuring the flux from a “standard
candle” to derive a “distance,” and plotting the distance vs. the “velocity,” is, of course,
the whole idea behind the Hubble diagram. Now, however, we realize that cosmological
redshift is distinct from Doppler velocity. Furthermore, in a curved and expanding space,
“distance” can be defined in a number of different ways, and will depend on the properties
and history of that space. Nevertheless, observables (e.g., the flux from an object of a given
luminosity, or the angular size of an object of a given physical size, at some redshift)
can be calculated straightforwardly from the FRW metric and the Friedmann equations
and compared to the observations. We will work out examples of such calculations in
section 9.3, and in Problems 4—7 at the end of this chapter.

In recent years, the Hubble diagram, based on type Ia supernovae serving as standard
candles, has been measured out to beyond a redshift z = 1, corresponding to a time when
the Universe was about half its present age. Figure 9.2 shows an example. The intrinsic
luminosity of the supernovae at maximum light, compared to their observed flux, permits
us to define a cosmological distance called luminosity distance,

[\ /2
DLE(W) . (9.10)

The observed supernova fluxes (or, equivalently, their luminosity distances) vs. redshift
are best reproduced by a model in which the Universe is currently in an accelerating stage,
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into which it transited (from the initial deceleration) at a time corresponding to about
z ~ 1. If one assumes a flat, k = 0, Universe (for which the evidence will be presented in
section 9.3), the data indicate 2, ~ 0.3 and Q, ~ 0.7. If this is true, the dynamics of the
Universe are currently dominated by a “dark energy” of unknown source and nature that s
causing the expansion to accelerate. The cosmological constant case, treated in section 8.5,
is one possible form of the dark energy.

In the derivation of cosmological redshift, above, we considered the propagation of
individual wavefronts of light. Instead, we could have discussed the propagation of, say,
individual photons, or of brief light flashes, but would have gotten the same result: the
time interval between emission of consecutive photons or light signals appears length-
ened to the observer by a factor 1 + z. Thus, in addition to cosmological redshift, light
signals will undergo cosmological time dilation. For example, if a source at redshift z is
emitting photons at a certain wavelength and at some rate, not only will an observer see
the wavelength of every photon increased by 1 + z, but the photon arrival rate will also be
lower by (1 + z). Both of these effects will reduce the observed energy flux, in addition to
the reduction due to geometrical (47 x distance?) dilution (see Problem 3).

9.2 The Cosmic Microwave Background

Since the mean density of the Universe increases monotonically as one goes back in time,?
there must have been an early time when the density was high enough such that the mean
free path of photons was small, and baryonic matter and radiation were in thermodynamic
equilibrium. The radiation field then had a Planck spectrum. Since the energy density of
radiation changes with the scale factor as (Eq. 8.40)

p o< R4, (9.11)
but this energy density also relates to a temperature as

p =aT*, (9.12)
we can consider a temperature of the Universe at this stage, which varied as

1
T o —. L
x - (9-13)

Therefore, early enough, the Universe was not only dense but also hot. At some stage,
the temperature must have been high enough such that all atoms were constantly being
ionized. The main source of opacity was then electron scattering. Going forward in time
now, the temperature declined, and at T ~ 3000 K, few of the photons in the radiation field,
even in its high-energy tail, had the energy required to ionize a hydrogen atom. Most of the

21In principle, models with a large enough positive cosmological constant permit a currently expanding
Universe that had, in its past, a minimum R that is greater than zero, and thus no initial singularity. At times
before the minimum, the Universe would have been contracting. In such a universe, as one looks to larger and
larger distances, objects at first have increasing redshifts, as usual. However, beyond some distance, objects begin
having progressively smaller redshifts, and eventually blueshifts. Such a behavior is contrary to observations.
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electrons and protons then recombined. Once this happened, at a time ¢, = 400, 000 yr
after the Big Bang, the major source of opacity disappeared, and the Universe became
transparent to radiation of most frequencies.’ As we look to large distances in any direction
in the sky, we look back in time, and therefore at some point our sightline must reach the
surface of last scattering, beyond which the Universe is opaque.

The photons emerging from the last-scattering surface undergo negligible additional
scattering and absorption until they reach us. Their number density therefore decreases, as
the Universe expands, inversely with the volume, as R™3. In addition, the energy of every
photon is reduced by R™! due to the cosmological redshift. The photon energy density
therefore continues to decline as R~*. Furthermore, the spectrum keeps its Planck shape,
even though the photons are no longer in equilibrium with matter. To see this, consider
that every photon gets redshifted from its emitted frequency v to an observed frequency
v’ according to the transformation

dv

v

v = , dv = : (9.14)
1+x2 1+=z
Next, recall the form of the Planck spectrum,
2hv? dv
B, = (9.15)

2 ghv/kT _1°

Dividing by the energy of a photon, hv, we obtain the number density of photons per unit
frequency interval,

212 dv

= ———.
v c2 eghv/kT _ 1

(9.16)

Since the number of photons is conserved, their density decreases by a factor (1 + z)?, and
the new distribution will be

, n, PAVE Y 1 07 dv

My = (1+ 2)3 = 7 ehv/kT _ 1 1+ Z)3 = c2 e /kT _ 1’ (9'17)
where
, T
= iz (9.18)

In other words, the spectrum keeps the Planck form, but with a temperature that is
reduced, between the time of recombination and the present, according to

Trec
1 + z rec ,

Temp = (9.19)
where z, is the redshift at which recombination occurs. A prediction of Big Bang cos-
mology is therefore that space today should be filled with a thermal photon distribution
arriving from all directions in the sky.

3 The ubiquitous presence of hydrogen atoms in their ground state made the Universe, at this point, very
opaque to ultraviolet radiation with wavelengths shortward of Lyman-a.
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Figure 9.3 Observed spectrum of the cosmic microwave background, compared with a
T = 2.725-K blackbody curve. The error bars shown are 5000, so as to be discernible in the
plot. Data credit: D. J. Fixsen et al. 1996, Astrophys. |., 473, 576.

In the 1940s Gamow predicted, based on considerations of nucleosynthesis (which are
discussed in the next section) that recombination must have occurred at z,ec ~ 1000, and
hence the thermal spectrum should correspond to a temperature of a few to a few tens of
degrees Kelvin (i.e., with a peak at a wavelength of order 1 mm, in the microwave region
of the spectrum). This cosmic microwave background (CMB) radiation was discovered
accidentally in 1965 by Penzias and Wilson, while studying sources of noise in microwave
satellite communications. They translated the intensity they measured ata single frequency
into a temperature, Tcmp &~ 3 K, by assuming that the radiation has a Planck spectrum and
that the frequency is on the Rayleigh-Jeans side of the distribution* (Eq. 2.18), according to

2v?

B, ~ kT (9.20)
Subsequent measurements, especially with several recent space-based experiments, have
confirmed that the spectrum has a precise blackbody form, and have refined the temper-
ature measurement to Temp = 2.725 + 0.002 K (see Fig. 9.3). Note that the CMB solves
the Olbers paradox in a surprising way: every line of sight does indeed reach an ionized
surface with a temperature similar to that of the photosphere of a star. Despite our being
inside such an oven, we are not grilled because the expansion of the Universe dilutes the
radiation emitted by this surface, and shifts it to harmless microwave energies.

* As opposed to the thermal flux from a star of unknown surface area, for which a temperature cannot be
deduced from one or more measurements solely on the Rayleigh-Jeans side, the CMB is an intensity, i.e., an
energy flux per unit solid angle on the sky, and it is completely specified for a blackbody of a given temperature.
A temperature derived in this way is called by radio astronomers a brightness temperature.
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The photon number density due to the CMB is

aT* 7.6 x 107" cgs x (2.7 K)’
2.8kT 2.8 x 1.4 x 10-16 erg K1

Ny CMB ™~ = 400 cm 3. (9.21)
Let us see that this is much larger than the cosmic mean number density of photons
originating from stars. If ng, is the mean number density of L, galaxies, then at a typical
point in the Universe the flux of starlight from galaxies within a spherical shell of thickness
dr at a distance r from this point is

Lingadmridr
42

df = = Lyngadr. (9.22)

For a rough, order-of-magnitude, estimate of the total flux from galaxies at all distances, let
us ignore the Universal expansion, possible curvature of space, and evolution with time of
L, and ng,, and integrate from r = 0 to r = cty, where t, is the age of the Universe. Then
the total flux is f = L,ngacty. Stars produce radiation mostly in the optical/IR range, with
photon energies or order hvop ~ 1 eV. The stellar photon density is about 1/c¢ the photon
flux. Thus,

Lyngaty _ 10°Lg x 1072 Mpc ™ x 14 Gyr

Py hvopt 1eV
10 x 38 x10P ergs™ x 107% x (3.1 x 10** cm)® x 4.4 x 10" s
1.6 x 10~ erg
~4x 107 cm ™3, (9.23)

Thus, there are of order 10° CMB photons for every stellar photon.”
The present-day baryon mass density is about 4% of the critical closure density, p.. The
mean baryon number density is therefore

o 0:04pe 00492 x 107 gcm™
? "y, 1.7 x 1024

=2x10"7 cm™3. (9.24)

(Less than one-tenth of these baryons are in stars, and the rest are in a very tenuous
intergalactic gas.) The baryon-to-photon ratio is therefore

n="E a5 x10710, (9.25)
Ny
Thus, although the energy density due to matter is much larger than that due to radiation
(Egs. 8.65 and 8.66), the number density of photons is much larger than the mean number
density of baryons.

5 The mean stellar photon density above is, of course, not representative of the stellar photon density on Earth,
which is located inside an Ly galaxy, very close to an Ly star. The daylight solar photon density on Earth (see
Eq. 3.8) is 10'0 times greater than the mean stellar value for the Universe, found above, and is thus also much
greater than the CMB photon density.
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9.3 Anisotropy of the Microwave Background

The temperature of the CMB, T = 2.725 K, is extremely uniform across the sky. There is a
small dipole in the CMB sky, arising from the Doppler effect due mostly to the motion of
the Local Group (at a velocity of ~600 km s 1) relative to the comoving cosmological frame.
Apart from the dipole, the only deviations from uniformity in the CMB sky are temperature
anisotropies, i.e., regions of various angular sizes with temperatures different from the
mean, with fluctuations having root-mean-squared §T = 29 uK, or

-5

= . (9.26)
Figure 9.4 shows a map of these temperature fluctuations. The extreme isotropy of the
appearance of the Universe at z ~ 1000 is an overwhelming justification of the assumption
of homogeneity and isotropy inherent to the cosmological principle. However, this extreme
isotropy raises the questions of why and how the Universe can appear so isotropic. At
the time of recombination, the horizon size—the size of a region in space across which
light can propagate since the Big Bang (see chapter 8, Problems 1-3)—corresponded to
a physical region that subtends only about 2° on the sky today. Thus, different regions
separated by more than ~2° could not have been in causal contact by t,., and therefore
it is surprising that they would have the same temperature to within 107>, CMB photons
from opposite directions on the sky have presumably never been in causal contact until
now, yet they have almost exactly the same temperature.

The currently favored explanation for this “horizon problem” is that, very early during the
evolution of the Universe, in the first small fraction of a second, there was an epoch of infla-
tion. During that epoch, a vacuum energy density with negative pressure caused an expo-
nential expansion of the scale factor, much like the second acceleration epoch that, appar-
ently, we are in today. The inflationary expansion led causally connected regions to expand
beyond the size of the horizon at that time. All the different parts of the microwave sky we
see today were, in fact, part of a small, causally connected region before inflation. The cause
and details of inflation are still a matter of debate, but most versions of the theory predict
that, today, space is almost exactly flat (i.e., 2, + 2, is very close to 1). We will see now that
this prediction is strongly confirmed by the observed characteristics of the anisotropies.

The temperature anisotropies in the CMB arise through a number of processes, but
at their root are small-amplitude inhomogeneities in the nearly uniform cosmic mass
distribution. These inhomogeneities are set up at the end of the inflationary era, and their
characteristics are yet another prediction of inflation theories. Most of the mass density
at that time, as now, is in a nonbaryonic, pressureless, dark matter. Mixed with the dark
matter, and sharing the same inhomegeneity pattern, is a relativistic gas of baryons and
radiation. The photon-baryon gas therefore has an equation of state thatis well described by

P=1lpc (9.27)
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Figure 9.4 A half-sky (27 steradians) map of the temperature of the CMB sky. The typical relative fluctuations in
the temperature, as coded by the gray scale (white is hot, black is cold), are of order 10> Note the characteristic
sizes of the hot and cold spots, 0.4°. As described in the text, this size provides a “standard ruler” with which the
geometry of space can be measured. Foreground microwave emission from the Milky Way has been subtracted
from the image, as well as the CMB “dipole” anisotropy due to the motion of the Local Group relative to the
comoving cosmological frame. Photo credit: NASA and the WMAP Science Team.

The speed of sound is then

ar _
do V3

The mass density inhomogeneities have a spatial spectrum with power spread continu-

(9.28)

Cs =

ously among all Fourier components, i.e., they have no single physical scale. (The particular
shape of the Fourier spectrum is, as noted above, a prediction of inflationary theories.) The
gravitational potential of the inhomogeneities attracts the baryon—photon fluid, which is
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compressed in the denser regions and more tenuous in the underdense regions. However,
the pressure of the fluid opposes the compression, and causes an expansion that stops only
after the density has “overshot” the equilibrium density and the gas in the originally over-
dense region has become underdense. Thus, periodic expansion and contraction of the
various fluid regions ensues. This means that “standing” sound waves of all wavelengths
represented in the spatial Fourier spectrum of the density inhomogeneities are formed in
the photon-baryon gas.® Their periods T and wavelengths A are related by

r=2, (9.29)
Cs

When the Universe emerges from the inflationary era, at an age of a small fraction of a
second, these acoustic oscillations are stationary and therefore they begin everywhere in
phase. Consider now an overdense or underdense region. One of the Fourier modes that
composes the region, and the fluid oscillations that it produces, has a wavelength that
corresponds to a half-period of t,e,

(9.30)

where .. is the cosmic time when recombination occurs. At t., the baryon—photon fluid
in this particular mode will have executed one-half of a full density oscillation, and will
have just reached its maximal rarefaction or compression, where it will be colder or hotter,
respectively, than the mean. At that time, however, the baryons and photons decouple,
and the imprint of the cool (rarified) and hot (compressed) regions of the mode is frozen
onto the CMB radiation field, and appears in the form of spots on the CMB sky with
temperatures that are lower or higher than the mean. Similarly, higher modes that have
had just enough time, between t = 0 and t = t,., to undergo one full compression and
one full rarefaction, or two compressions and a rarefaction, etc., will also be at their hottest
or coldest at time t,... The CMB sky is therefore expected to display spots having particular
sizes. Stated differently, the fluctutation power spectrum of the CMB sky should have
discrete peaks at these favored spatial scales.

In reality, the picture is complicated by the fact that several processes, other than adia-
batic compression, affect the gas temperature observed from each point. However, all these
effects can be calculated accurately, and a prediction of the power spectrum can be made
for a particular cosmological model. It turns out that measurement of the angular scales
at the positions of the acoustic peaks in the power spectrum, and their relative heights,
can determine most of the parameters describing a cosmological model. Let us see how
this works for one example—the angular scale of the first acoustic peak as a measure of
the global curvature of space.

As seen in Eq. 9.30, the physical scale of the first acoustic peak is the sound-crossing
horizon at the time of recombination. It therefore provides an excellent “standard ruler” at

®The waves that are formed are not, strictly speaking, standing waves, since they do not obey boundary
conditions. They do resemble standing waves in the sense that a given Fourier component varies in phase at all
locations. However, the superposition of all these waves is not a standing wave pattern, and does not have fixed
nodes.



220 | Chapterg

2ot 2cgtrec

k=0 k=-+1 k=-1

Figure 9.5 The angular diameter of the sound-crossing horizon (measurable from
the size of the hot and cold spots in temperature anisotropy maps of the microwave
sky), as it appears to observers in different space geometries. In a k = 0 universe
(“flat” space), the spots subtend on the sky an angle 6 given by Euclidean geometry.
In a k = +1 Universe, the angles of a triangle with sides along geodesics sum to
>180°. Since light follows a geodesic path, the converging light rays from the two
sides of a CMB “spot” will bend, as shown, along their path, and 6 will appear larger
than in the k = 0 case. For negative space curvature, the angles in the triangle sum
to <180°, and @ is smaller than in the flat case.

a known distance. The angle subtended on the sky by this standard ruler (i.e., the angle of
the first peak) can be predicted for every geometry (i.e., curvature) of space. Comparison
to the observed angle thus reveals directly what that geometry is (see Fig. 9.5).

Consider, for example, a flat (k = 0) cosmology with no cosmological constant. We wish
to calculate the angular size on the sky, as it appears today, of a region of physical size
(Eq. 9.30)
2ot 2 x 400,000 ly

7 7 P (9.31)

from which light was emitted at time t,... Between recombination and the present time,

D;

the Universal expansion is matter-dominated, with R o t?/3 for this model, i.e.,

R g \AR 1
(X _ , 9.32
Ry (to) 142 ( )

and hence we can also write D, as

2cty 32
Di=—"—=(1+2z 3 9.33
S \/g( rec) ( )

The angle subtended by the region equals its size, divided by its distance to us at the time
of emission (since that is when the angle between rays emanating from two sides of the
region was set). As we are concerned with observed angles, the type of distance we are
interested in is the distance that, when squared and multiplied by 47, will give the area
of the sphere centered on us and passing through the said region. If the comoving radial
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coordinate of the surface of last scattering is r, the required distance is currently just r x Ry,
and is called the proper-motion distance. (For k = 0, the proper distance and the proper
motion distance are the same, as can be seen from Eq. 8.10.) The proper motion distance
can again be found by solving for the null geodesic in the FRW metric (see Eq. 9.2),

o cdt r dr
—_— = —_— 9.34
‘[trec R(t) ~/(; v 1-— kr2 ( )

Setting k = 0, and substituting

£\ 2/3
R(t):Ro(t—O-) , (9.35)

we integrate and find

0

" 1/3
rRy = 3cty {1 - (%) } = 3ctp[1 — (1 + Zrec) 1. (9.36)

However, at the time of emission, the scale factor of the Universe was 1 4+ z times smaller.
The so-called angular-diameter distance to the last scattering surface is therefore

Da = ——% — 3cto[(1 + Zrec) ! — (1 + 2rec) /2], (9.37)

The angular size of the sound-crossing horizon at the recombination era in a k=0
cosmology is thus expected to be

D, 2cto(1 + zrec) /2

Da  3/3ctol(1 + Zred) ! — (1 + Zrec) /2]
_ 2

©3VB[(1 4 22 — 11

6 =

(9.38)

Since recombination occurs at Trec & 3000 K, and the current CMB temperature is 2.7 K,
Zrec &~ 1100, and

6 ~ 0.012 radian = 0.7°. (9.39)

For this particular cosmological model (k = 0, 2, = 0), this will be the angular scale of
the first acoustic peak in the Fourier spectrum of the CMB fluctuations. The hot and cold
“spots” in CMB sky maps will correspond to half a wavelength, i.e., will have half this
angular size, or somewhat smaller than the diameter of the full Moon (half a degree).
In a negatively curved geometry, where the angles of a triangle add up to less than 180°,
the angle subtended by the standard ruler of length 2¢t,.. will be smaller than in a flat
geometry. In a positively curved Universe, this angle will appear larger than in the flat case.

Recent measurements of the CMB fluctuation power spectrum provide spectacular
confirmation of the expected acoustic peaks (see Fig. 9.6). When compared to more
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Figure 9.6 Observed angular power spectrum of temperature fluctuations in the CMB.
The top axis shows the angular scales corresponding to the spherical harmonic multipoles
on the bottom axis. The curve is based on a detailed calculation of the fluctuation spectrum
using values for the various cosmological parameters that give the best fit to the data. Note
the clear detection of acoustic peaks, with the first peak on a scale § ~ 0.8°, indicating a
flat space geometry. Data credits: NASA/WMAP, CBI, and ACBAR collaborations.

sophisticated calculations that account for all the known effects that can influence the tem-
perature anisotropies, the location of the first peak indicates a nearly flat space geometry,
with

Q. + Q25 =1.02 £+ 0.02. (9.40)

Note that a region with the diameter of the sound-crossing horizon has, between recombi-
nation and the present, expanded by 1 + z,.c = 1100, and hence encompasses today (i.e.,
has a comoving diameter) 140 kpc x 1100 = 150 Mpc. Thus, the CMB hot and cold spots
correspond to regions that, today, are quite large.

Among a number of other cosmological parameters that are determined by analysis of
the observed CMB anisotropy power spectrum are

Q2 0.3, (9.41)

which together with Eq. 9.40 confirms the result found from the Hubble diagram of type 1a
supernovae, that the dynamics of the Universe are currently dominated by a cosmological
constant with

Qa ~0.7. (9.42)

If one assumes that the Universe is exactly flat, then the CMB results also give a precise
age of the Universe

ty = 13.7 £ 0.2 Gyr, (9.43)
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and a density in baryons
Qp = 0.044 + 0.004. (9.44)

The mere existence of acoustic peaks in the power spectrum means that density pertur-
bations existed long before the time of recombination, i.e., they were primordial, and that
they had wavelengths much longer than the horizon size at the time they were set up.
Inflation is the only theory that currently predicts, based on causal physics, the existence
of primordial, superhorizon-size, perturbations. The observation of the acoustic peaks can
therefore be considered as another successful prediction of inflation.

The large density inhomogeneities we see today—stars, galaxies, and clusters—formed
from the growth of the initial small fluctuations, the traces of which are observed in the
CMB. The gravitational pull of small density enhancements attracted additional mass, at
the expense of neighboring underdense regions. The growing clumps of dense matter
merged with other clumps to form larger clumps. This growth of structure by means of
gravitational instability operated at first only on the nonbaryonic dark-matter fluctuations,
but not the baryons, which were supported against gravitational collapse by radiation
pressure. Once the expansion of the Universe became matter-dominated, the dark-matter
density perturbations could begin to grow at a significant rate. Finally, after recombination,
the baryons became decoupled from the photons and their supporting radiation pressure,
and the perturbations in the baryon density field could also begin to grow. The details
and specific path according to which structure formation proceeds is still the subject of
active research. Nevertheless, it is clear that, once the first massive stars formed (ending
the period sometimes called the Dark Ages), they reionized most of the gas in the Uni-
verse. Based again on analysis of the CMB, current evidence is that this occurred during
some redshift in the range between ~6 and 20, when the Universe was 150-750 Myr
old.

By this time, the mean matter density was low enough that the newly liberated electrons
were a negligible source of opacity, and hence the Universe remained transparent (see
Problem 2). Direct evidence that most of the gas in the Universe is, at z ~ 6 and below,
almost completely ionized, comes from the fact that objects at those redshifts are visible
at UV wavelengths shorter than Lyman-«; even a tiny number of neutral hydrogen atoms
along the line of sight would suffice to completely absorb such UV radiation, due to the
very large cross section for absorption from the ground state of hydrogen (often called
resonant absorption). Most of the gas in the intergalactic medium (which is the main current
repository of baryons) remains in a low-density, hot, ionized phase. The density of this
gas is low enough that the recombination time is longer than the age of the Universe, and
hence the atoms will never recombine.

9.4 Nucleosynthesis of the Light Elements

Looking back in time to even earlier epochs than those discussed so far, the temperature of
the Universe must have been high enough that electrons, protons, positrons, and neutrons
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were in thermodynamical equilibrium. Since the rest-mass energy difference between a
neutron and a proton is

(ms — my)c® = 1.3 MeV, (9.45)

ata time t < 1 s, when the temperature was T > 1 MeV (10'° K), the reactions

e +p+08MeV=v+n (9.46)
and
UVe+p+18MeV=ce"+n (9.47)

could easily proceed in both directions. The ratio between neutrons and protons as a
function of temperature can be obtained from statistical mechanics considerations via the
Saha equation. For the case at hand, it takes the form

32 2
No _ (@) exp [——(m" p)C } (9.48)
N, mp kT

When T > 1 MeV, the ratio is obviously very close to 1. As the temperature decreases, the
ratio also decreases, and protons outnumber the heavier neutrons. This decrease in the
ratio could continue indefinitely, but when T < 0.8 MeV, the mean time for reaction 9.46
becomes longer than the age of the Universe at that epoch, t = 2 s. The reaction time can
be calculated from knowledge of the densities of the different particles, the temperature,
and the cross section, as outlined for stellar nuclear reactions in Egs. 3.123-3.127. The long
reaction timescale means that the neutrons and protons, which are converted from one to
the other via this reaction are no longer in thermodynamic equilibrium.” This time is called
neutron freezeout, since neutrons can no longer be created. The neutron-to-proton ratio
therefore “freezes” at a value of exp(—1.3/0.8) = 0.20. In the following few minutes, most
of the neutrons become integrated into helium nuclei. This occurs through the reactions

n+p—>d+y (9.49)
p+d—3He+y (9.50)
d+d—>He+n (9.51)
n+>He —*He + y (9.52)
d +*He —*He + p. (9.53)

Some of the neutrons undergo beta decay into a proton and an electron before making it
into a helium nucleus (the mean lifetime of a free neutron is about 15 min), and a small
fraction is integrated into other elements. Numerical computation of the results of all the
parallel nuclear reactions that occur as the Universe expands, and as the density and the
temperature decrease, shows that, in the end, the ratio between neutrons inside *He and
protons is about 1/7. Thus, for every 2 neutrons there are 14 protons. Since every *He

7 At about the same time, neutrinos also decouple (i.e., cease to be in thermal equilibrium with the rest of the
matter and the radiation), and the cosmic neutrino background is formed; see Problem 9.
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nucleus has 2 neutrons and 2 protons, there are 12 free protons for every *He nucleus, or
the ratio of helium to hydrogen atoms is 1/12. The mass fraction of *He will then be

4N(*He) B 4.5 1

Y, = = = -
7 N(H)+4N(*He) 1+4% 4

(9.54)

A central prediction of Big Bang cosmology is therefore that a quarter of the mass in
baryons was synthesized into helium in the first few minutes.

Measurements of helium abundance in many different astronomical settings (stars,
H 11 regions, planetary nebulae) indeed reveal a helium mass abundance that is consistent
with this prediction. This large amount of helium could not plausibly have been produced
in stars. On the other hand, the fact that the helium abundance is nowhere observed to
be lower than ~0.25 is evidence for the unavoidability of primordial helium synthesis, at
this level, among all baryons during the first few minutes.

Apart from *He, trace amounts of the following elements are produced during the first
minutes: deuterium (107°), *He (107°), “Li (107?), 7Be (10~?), and almost nothing else.
The precise abundances of these elements depend on the baryon density, np, at the time of
nucleosynthesis. As we have seen (Egs. 8.40, 9.13), the radiation energy density declines
as R~*, but the temperature appearing in the Planck spectrum also declines as T o 1/R,
both before and after recombination. Since the energy of the photons scales with kT, the
photon number density declines as R™*. Because baryons are conserved, their density
also declines as R~ when the Universe expands, and therefore the baryon-to-photon ratio
(Eq. 9.25), n = 5 x 1071, does not change with time. Since we know the CMB photon
density today, n,, measurements of the abundances of the light elements in astronomical
systems that are believed to be pristine, i.e., that have undergone minimal additional
processing in stars (which can also produce or destroy these elements) lead to an estimate
of the baryon density today. In units of the critical closure density, p,,
ngm, N0 n,m

Qp = (9.55)
P P
The baryon density based on these measurements is
0.01 < Q5 < 0.05. (9.56)

As already mentioned, a completely independent estimate of Q25 comes from analyzing
the fluctuation spectrum of CMB anisotropies. The relative amplitudes of the acoustic
peaks in the spectrum depend on the baryon density and hence constrain it to

Qp = 0.044 & 0.004, (9.57)

in excellent agreement with the value based on element abundances. Note that both of these
measurements tell us that, even though the mass density of the Universe is a good fraction
of the closure value (£2,, & 0.3), only aabouta tenth of this massis in baryons, while the rest
must be in a dark matter component of unknown nature. Furthermore, less than 1/10 of
the baryons are in stars inside galaxies. The bulk of the baryons are apparently in a tenuous,
hot, and ionized intergalactic gas—the large reservoir of raw material out of which galaxies
formed. A small fraction of this gas is neutral, and can be observed by the absorption it
produces in the spectra of distant quasars. This is discussed briefly in section 9.5.
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Table 9.1 History and Parameters of the Universe
Curvature: Q2+ Q24 =1.02+£0.02
Mass density: 2,,0 = 0.3, consisting of
Qpo = 0.044 £ 0.004 in baryons, and
Qpm,o = 0.25 in dark matter

Dark energy: Q, ~ 0.7

Redshift Temperature
Time z T(K) Event

~1073* s ~10% ~10% Inflation ends, Q,, + Q4 — 1, causally connected
regions have expanded exponentially, initial fluctuation

spectrum determined.
2s 4 % 10° 100 Neutron freezeout, no more neutrons formed.

3 min 4 x 108 10° Primordial nucleosynthesis over—light element

abundances set.

65,000 yr 3500 10* Radiation domination — mass domination,
R ~ t/2 — R ~ /3 dark-matter structures start

growing at a significant rate.

400,000 yr 1100 3000 Hydrogen atoms recombine, matter and radiation
decouple, Universe becomes transparent to radiation
of wavelengths longer than Ly, CMB fluctuation
pattern frozen in space, baryon perturbations start

growing.

~108-10°yr  ~6-20 ~20-60 First stars form and reionize the Universe, ending
the Dark Ages. The Universe becomes transparent also
to radiation with wavelengths shorter than Lya.

~6 Gyr ~1 ey Transition from deceleration to acceleration under

the influence of dark energy.

14 Gyr 0 2.725 4+ 0.002 Today.

Table 9.1 summarizes the current view of the cosmological parameters and the history
of the Universe.

9.5 Quasars and Other Distant Sources as Cosmological Probes

Quasars, which we discussed in section 6.3, are supermassive black holes accreting at rates
that produce near-Eddington luminosities of 10'~10*L,. Their large luminosities make
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Figure 9.7 A high-resolution spectrum of a quasar at redshift z = 3.18, with the Lyman «
emission line redshifted to 5080 A. Note the Lyman- forest of absorption lines starting from
the peak of the emission line, and continuing in the blue (left) direction. These lines are due
to Lyman-o absorption by neutral hydrogen atoms in gas clouds that are along the line of
sight to the quasar, and hence at lower redshifts than the quasar. The few absorption lines
to the red of the Lyman-« emission line peak are due to heavier elements and are associated
with the system that produces the strong damped Lyman-a absorption observed at 24650 A.
Data credit: W. Sargent and L. Lu, based on observations with the HIRES spectrograph at the
W. M. Keck Observatory.

quasars easily visible to large cosmological distances, and allow probing the assembly and
accretion history of the central black holes of galaxies. As noted in chapter 6, luminous
quasars are rare objects at present, and apparently most central black holes in nearby
galaxies are accreting at low or moderate rates, compared to the rates that would produce
a luminosity of Lg. However, quasars were much more common in the past, and their
comoving space density reached a peak at an epoch corresponding to redshift z ~ 2 (i.e.,
about 10 Gyr ago). There is likely a connection between the growth and development of
galaxies and of their central black holes, and quasar evolution may hold clues to deciphering
this connection (see Problem 11). The most distant quasars currently known are at red-
shifts beyond z = 6, and are therefore observed less than 1 Gyr after the Big Bang. Models
of structure formation suggest that the first galaxies began to assemble at about that
time.

Since quasars are so luminous, they are also useful cosmological tools, in that they
can serve as bright and distant sources of light for studying the contents of the Universe
between the quasars and us. One such application is the study of quasar absorption lines.
The light from all distant quasars is seen to be partially absorbed by numerous clouds of
gas along the line of sight. A small fraction (~107*) of the hydrogen in these clouds is
neutral, and is manifest as a “forest” of redshifted absorption lines (mostly Lyman-«) in the
spectrum of each quasar (see Fig. 9.7). Each absorption line is at the wavelength of Lyman-
a redshifted according to the distance of the particular absorbing cloud. The absorption
lines are therefore distributed in wavelength between the rest wavelength of Lyx at 1216 A
and the observed, redshifted Lya wavelength of the quasar (say, (14 2)1216 A = 3648 A,
for a z = 2 quasar).
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Apart from the hydrogen Lyman-o lines, additional absorption lines are detected.
Absorption lines produced by heavier elements in the same clouds allow estimating the
“metallicities” of these clouds, and reveal very low element abundances, i.e., the gas in
the clouds has undergone little enrichment by stellar processes. It is in such clouds that
the abundance of primordial deuterium can be measured and compared to Big Bang
nucleosynthesis predictions (see section 9.4). The Lyman-a clouds are one component (a
relatively cool one, with T ~ 10* K) of the intergalactic medium. Most of the intergalactic
gas, however, is apparently in a hotter T ~ 10°~° K, more tenuous, component. Estimates
of the total mass density of intergalactic gas find that the bulk of the baryons in the Universe
is contained in this hot component, while less than about 10% of the baryons are in galaxies
in the form of stars and cold gas.

Another application in which quasars serve as distant light sources for probing the
intervening matter distribution is in cases where galaxies or galaxy clusters gravitationally
lens quasars that are projected behind them, splitting them into multiple images.? Since
the lensing objects in such cases are at cosmological distances (~1 Gpc), and the lensing
masses are of order 101! M, the Einstein angle (Eq. 6.25), which gives the characteristic
angular scale of the split images, is of order 1 arcsecond, i.e., resolved by telescopes at
most wavelength bands, from radio through X-rays (see Fig. 9.8). Modeling of individual
systems can reveal the shapes and forms of the mass distributions, both the dark and the
luminous. The statistics of lensed quasars (e.g., measurement of the fraction of quasars
that are multiply imaged by intervening galaxies) can provide information on the properties
of the galaxy population and its evolution with cosmic time (see chapter 6, Problem 6). Not
only quasars serve as background light sources for galaxy lenses—there are many known
cases of galaxies that lens other galaxies that lie behind them (also shown in Fig. 9.8), and
such systems can be used for the same applications.

In known systems in which a galaxy or a galaxy cluster operate as a powerful gravitational
lens, one can turn the problem around and use the lens as a “natural telescope.” Once the
properties of the lens have been derived, based on the positions and relative magnifications
of the lensed images of the bright background quasar or galaxy, one can search other
regions of the lens that are then expected to produce high magnification for lensed images
of additional background objects. This method of “searching under the magnifying glass”
has been used to find and study galaxies with luminosities as low as 0.01L, out to redshifts
z ~ 6, aided by the natural magnification of galaxy clusters.

With these and other techniques, it is hoped that a detailed and consistent picture of
cosmic history will eventually emerge. Such an understanding would include the nature
of dark matter and dark energy, their interplay with baryons and with supermassive black
holes in the formation of the first stars and galaxies, the element enrichment of the inter-
stellar and the intergalactic medium by generations of evolved stars and supernovae, and
the evolution of galaxies and their constituents, all the way to the world as we see it today.

8 Since galaxy mass distributions are generally not spherically symmetric, when they act as gravitational lenses
they can split background sources into multiple images, rather than just deforming the sources into rings or
splitting them into double images, as is the case for point masses and spherically symmetric masses.
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Figure 9.8 Top two rows: Examples of quasars that are gravitationally lensed into multiple images by intervening
galaxies. In each case, the lens galaxy, at a redshift of z = 0.04-0.7, is the extended central object, and the two
or four sources straddling it are the multiply lensed images of a background quasar, at z ~ 1.7-3.6. Panels
are 5 arcseconds on a side. Some image processing has been applied, to permit seeing clearly both the bright,
point-like, quasar images and the faint, extended lens galaxies. Bottom row: Examples of foreground galaxies that

~

lens background galaxies into partial or full Einstein rings. In the cases shown, the foreground galaxies are at z =
0.2-0.4 and the background galaxies are at z = 0.5-1. Photo credits: The CASTLES gravitational lens database,
C. Kochanek et al.; NASA, ESA, J. Blakeslee and H. Ford,; and NASA, ESA, A. Bolton, S. Burles, L. Koopmans,

T. Treu, and L. Moustakas.

Problems

1. In an accelerating or decelerating Universe, the redshift z of a particular source will
slowly change over time g, as measured by an observer.
a. Show that the rate of change is
dz
—— = Hy(1 + 2) — H(2),
dtg
where H(z) = R./R, is the Hubble parameter at the time of emission.
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Hint: Differentiate the definition of redshift, 1 + z = Ry/Re, with respect to t5. Use
the chain rule to deal with expressions such as dR, /dty.
b. Show that, for a k = 0 universe with no cosmological constant, H(z) = Ho(1 + z)*/2.

For this model, and assuming Hy = 70km s~'Mpc™'

, evaluate the change in redshift
over 10 years, for a source at z=1, and the corresponding change in “recession
velocity”.

Answers: Az = —59x 107" Av = —18cm s .

2. At a redshift z = 1100, atoms were formed, the opacity of the Universe to radiation via
electron scattering disappeared, and the cosmic microwave background was formed.
Imagine a world in which atoms cannot form. Even though such a universe, by definition,
will remain ionized forever, after enough time the density will decline sufficiently to
make the universe transparent nonetheless. Find the redshift at which this would have
happened, for a k = 0 universe with no cosmological constant. Assume an all-hydrogen

~'. Note that this calculation is not

so farfetched. Following recombination to atoms at z = 1100, most of the gas in the

Universe was reionized sometime between z =6 and z = 20 (probably by the first

composition, Qg = 0.04, and Hy = 70 km s~'Mpc

massive stars that formed), and has remained ionized to this day. Despite this fact, the
opacity due to electron scattering is very low, and our view is virtually unhindered out
to high redshifts.

Hint: A “Universe transparent to electron scattering” can be defined in several ways.
One definition is to require that the rate at which a photon is scattered by electrons,
neorc, is lower than the expansion rate of the Universe at that time, H (or, in other
words, the time between two scatters is longer than the age of the Universe at that
time). To follow this path (which is called decoupling between the photons and the
hypothetical free electrons), express the electron density n, at redshift z, by starting
with the current baryon number density, Qgpcr,0/m,, expressing peo by means of Hy,
and increasing the density in the past as (1 + z)3. Similarly, write H in terms of Hg and
(1 + z) (recall that 1 + z = Ry/R, and in this cosmology, R o< t*/> and H o< t~'). Show
that decoupling would have occurred at

( 87 Gm, \**
lgpg= | 00— ;
3QBHQO’TC

and calculate the value of this redshift. Alternatively, we can find the redshift of the “last
scattering surface” from which a typical photon would have reached us without further
scatters. The number of scatters on electrons that a photon undergoes as it travels from
redshift z to redshift zero is

I(z)
/ ne(Z)(Tle.
0

Express n,, as above, in terms of Qp, Hp, and 1 + z, replace dl with ¢(dt/dz)dz, using
again R o« t*/3 to write dt/dz in terms of Hp and 1 + z. Equate the integral to 1, perform
the integration, show that the last scattering redshift would be
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47 Gm, \*?
lez= 77— 5
QBH()O'TC

and evaluate it.
Answers: z = 65; z = 85.

. Show that the angular-diameter distance for a flat space (k =0; Eq. 9.37) out to
redshift z,

Dy = 3cto[(1+2)71 = (14+2)72),

has a maximum with respect to redshift z, and find that redshift. The angular size on
the sky of an object with physical size d is 8 = d/Da. What is the implication of the
maximum of D4 for the appearance of objects at redshifts beyond the one you found?
Note that this peculiar behavior is simply the result of light travel time out to different
distances in an expanding universe; an object at high redshift may have been closer to
us at the time of emission than an object of the same size at a lower redshift, despite
the fact that the high-redshift object is currently more distant.

. a. Consider the energy flux of photons from a source with bolometric luminosity L and
with proper-motion distance rRy. The photons will be spread over an area 47 (rRo)>.
Explain why the observed energy flux will be

L
F= R 2

Hint: Consider the effects of redshift on the photon energy and cosmological time
dilation on the photon arrival rate. This relation is used to define the luminosity
distance, D| = rRo(1 + z).

b. Find D, (2) for a k = 0 universe without a cosmological constant. Plot, for this world

model, the Hubble diagram, i.e., the flux vs. z, from an object of constant luminosity.

. Show that in a Euclidean, nonexpanding, universe, the surface brightness of an object,
i.e., its observed flux per unit solid angle (e.g., per arcsecond squared), does not change
with distance. Then, show that in an expanding FRW universe, the ratio between the
luminosity distance (see Problem 4) and the angular-diameter distance to an object
is always (1 +z)2. Use this to prove that, in the latter universe, surface brightness
dims with increasing redshift as (1 + z)~*. This effect makes extended objects, such as
galaxies, increasingly difficult to detect at high z.

. An object at proper-motion distance rRy splits into two halves. Each piece moves relative
to the other, perpendicular to our line of sight, at a constant, nonrelativistic, velocity v.
What is the the angular rate of separation, or “proper motion” between the two objects
(i.e., the change of angle per unit time)?

Hint: Recall that we are measuring an angle, and so require the angular-diameter dis-
tance, but we are also measuring a rate, which is affected by cosmological time dilation.
You can now see why rRy is called the proper-motion distance.
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7. Use the first Friedmann equation with a nonzero cosmological constant (Eq. 8.95) to
show that, in a flat, matter-dominated Universe, the proper-motion distance is

R f cdz
rRy = .
Ho/Qmo(l +2)° + Qap

Use a computer to evaluate this integral numerically with €,,0 = 0.3 and Q2,0 = 0.7,
for values of z between 0 and 2. Plot the Hubble diagram, i.e., flux vs. z, from an
object of constant luminosity, in this case, and compare to the curve describing k = 0,
Qm = 1 (Problem 4). You can now see how the Hubble diagram of type la supernovae
can distinguish among cosmological models.

Hint: Set k=0 in Eq. 8.95, replace p by p,R}/R® (matter domination), divide both
sides by Hj, and substitute the dimensionless parameters Q,,0 and €2, . Change
variables from R to z with the transformation 1 4+ z = Ry/R, and separate the variables
z and t. Finally, use the FRW metric for k = 0: cdt = Rdr = Ro/(1 + z)dr, and hence
rRo = [ (1 + z)cdt, to obtain the desired result.

8. Emission lines of hydrogen HB (n =4 — 2, At = 4861 A) are observed in the spec-
trum of a spiral galaxy at redshift z = 0.9. The galaxy disk is inclined by 45° to the line of
sight.

a. The Hp wavelength of lines from one side of the galaxy are shifted to the blue by 5 A
relative to the emission line from the center of the galaxy, and to the red by 5 A on
the other side. What is the galaxy’s rotation speed?

b. Analysis of the emission from the active nucleus of the galaxy reveals a total redshift
of z = 1. If the additional redshift is gravitational, the result of the proximity of the
emitting material to a black hole, find this proximity, in Schwarzschild radii.

Hint: Note that all redshift and blueshift effects are multiplicative, e.g., (1 + Ztotal) =
(1 + Zcosmological) (1 +Vv sini/c), or (1 + Ziotal) = (1 + Zc:osmological)(.I + Zgravitational)-

c. Find the age of the Universe at z = 0.9, assuming an expansion factor R o t*/3, and
a current age to = 14 Gyr. What is the “lookback time” to the galaxy?

Answers: 230 km s~'; 11r;; lookback time 8.5 Gyr.

9. At some point back in cosmic time, the Universe was dense enough to be opaque
to neutrinos. Then, as the Universe expanded, the density decreased until neutrinos
could stream freely. A cosmic neutrino background (which is undetected to date) must
have formed when this decoupling between neutrinos and normal matter occurred, in
analogy to the CMB that results from the electron—photon decoupling at the time of
hydrogen recombination. Find the temperature at which neutrino decoupling occurred.
Assume in your calculation that decoupling occurs during the radiation-dominated
era, photons pose the main targets for the neutrinos, neutrino interactions have an
energy-dependent cross section

E, \*
iy = 12 gin? ( ) ,

1 MeV

and the neutrinos are relativistic. Use a k = 0, 2, = 0 cosmology.
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Hint: Proceed by the first method of Problem 2, i.e., by requiring nov = H. Represent
the “target” density, n, by aT*/kT, where a is the Stefan-Boltzmann (or “radiation”)
constant. Use o, for the cross section o, but approximating E, as kT. The velocity v
equals ¢, because the neutrinos and the target particles are relativistic. To represent H,
use the first Friedmann equation,

_ 8r G".Orad

H? ,
3¢

with prag = aT*.
Answer: kT = 1 MeV.

It has been found recently that every galactic bulge harbors a central black hole with a
mass ~0.001 of the bulge mass. The mean space density of bulges having 10'°M,, is
about 1072 Mpc 3.

a. Find the mean density of mass in black holes, in units of My, Mpc™>.

b. If all these black holes were shining at their Eddington luminosities, what would
be the luminosity density, in units of L, Mpc™*? How does this compare to the
luminosity density from stars?

c. The observed luminosity density of quasars and active galaxies, averaged over cosmic
time, is actually 100 times less than calculated in (b). If all central black holes have
gone through an active phase, what does this imply for the total length of time that
a black hole is “active"?

The most distant quasars currently known are at redshift z ~ 6, and have luminosities

L~10" ergs™.

a. Find a lower limit to the mass of the black hole powering such a quasar, by assuming
it is radiating at the Eddington limit.

b. Find the age of the Universe at z = 6, assuming an expansion R o t?/> and a current
age tg = 14 Gyr.

c. Equate the Eddington luminosity Lg(M) as a function of mass M to the luminosity of
an accretion disk around a black hole with a mass-to-energy conversion efficiency of
0.06. This will give you a simple differential equation for M(t), describing the growth
of a black hole. Solve the equation (be careful with units).

d. Suppose ablack hole begins with a “seed” mass of 10M, and shines at the Eddington
luminosity continuously. How long will it take the black hole to reach the mass found
in (a)? By comparing to the result of (b), what is the minimum redshift at which
accretion must begin?

Answers: ~10°Mg; t(z = 6) = 740 Myr; M = M.qexp(t/T), with T =26 Myr;
480 Myr, z(t = 260 Myr) = 13.
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Textbooks

The following textbooks are at the advanced-undergraduate or graduate level, and are a good place
to pick up where this book takes off on the various topics.

Observational Techniques

Kitchin, C. R. (2003) Astrophysical techniques (4th ed.), Institute of Physics
McLean, L. S (1997) Electronic imaging in astronomy, Wiley

Radiative Processes

Rybicki, G. B., & Lightman, A. P. (1979) Radiative processes in astrophysics, Wiley-Interscience

Stellar Structure and Evolution

Prialnik, D. (2000) An introduction to the theory of stellar structure and evolution, Cambridge University
Press

Phillips, A. C. (1994) The physics of stars, Wiley

Clayton, D. D. (1983) Principles of stellar evolution and nucleosynthesis, University of Chicago Press

Hansen, C. ]., Kawaler, S. D., & Trimble, V. (2004) Stellar interiors (2nd ed.), Springer-Verlag.

Bahcall, J. N. (1989) Neutrino astrophysics, Cambridge University Press

Stellar Remnants and Accretion Physics

Shapiro, S. L., & Teukolsky, S. A. (1983) Black holes, white dwarfs, and neutron stars: The physics of
compact objects, Wiley-Interscience

Interstellar Medium

Spitzer, L. (1978) Physical processes in the interstellar medium, Wiley-Interscience
Osterbrock, D. E., & Ferland, G. |. (2006) Astrophysics of gaseous nebulae and active galactic nuclei (2nd
ed.), University Science Books
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Galaxies

Binney, J. & Merrifield, M. (1998) Galactic astronomy, Princeton University Press
Binney, ]. & Tremaine, S. (1987) Galactic dynamics, Princeton University Press

Active Galactic Nuclei

Peterson, B. M. (1997) An introduction to active galactic nuclei, Cambridge University Press
Krolik, J. H. (1999) Active galactic nuclei, Princeton University Press

General Relativity and Cosmology

There is a large assortment of good cosmology texts at many different levels. The following is a very
partial list, more or less by increasing level.

Roos, M. (1997) Introduction to cosmology, Wiley

Liddle, A. (2003) An introduction to modern cosmology, Wiley

Ryden, B. (2003) Introduction to cosmology, Addison Wesley

Misner, C. W., Thorne, K. S., & Wheeler, J. A. (1973) Gravitation, Freeman

Peacock, J. A. (1999) Cosmological physics, Cambridge University Press

Weinberg, S. (1972) Gravitation and cosmology, Wiley

Peebles, P.J.E. (1993) Principles of physical cosmology, Princeton University Press

Kolb, E. W, & Turner, M. S. (1990) The early universe, Addison Wesley

Astronomical Data and Reference

A useful compendium of astronomical data and formulae is
Cox, A. N., editor (2000) Allen’s astrophysical quantities (4th ed.), Springer-Verlag

Websites

The following useful internet websites are fairly well-established, and their addresses should
therefore remain accurate for some time.

Pretty Pictures (and More)

The Hubble Space Telescope has obtained visually stunning images of many of the types of astro-
nomical objects discussed in this book. See them at:
http://hubblesite.org

Equally beautiful pictures based on data from ground-based telescopes are displayed on the web-
sites of the European Southern Observatory, the National Optical Astronomy Observatory, and the
National Radio Astronomy Observatory:
http://www.eso.org/outreach/gallery/astro/
http://www.noao.edu/image_gallery/

http://www.nrao.edu/imagegallery

A refreshing way to start (or end) every day is to check out NASA’s “Astronomy Picture of the Day”:
http://antwrp.gsfc.nasa.gov/apod/
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Research Papers

Almost all research papers in astrophysics written nowadays are posted by their authors on the arXiv
e-print archive, from where they can be freely downloaded. The main address below has many mirror
sites.

http://xxx.arxiv.org/archive/astro-ph

The published versions of all papers that have appeared in the major astrophysics journals are
available online through the NASA Astrophysics Data System. Downloading the full versions of
recently published (past few years) articles often requires a journal subscription. If your university
library does not have a subscription, the final or near-final versions of the papers can usually also be
found in the arXiv website above.
http://adsabs.harvard.edu/abstract_service.html

Astronomical Databases

Two useful sites for obtaining information on particular astronomical objects (positions, redshifts,
photometry, literature, etc.) are the SIMBAD Astronomical Database and the NASA/IPAC Extra-
galactic Database (NED):

http://simbad.u-strasbg.fr/Simbad

http://nedwww. ipac.caltech.edu

Additional Materials

Corrections and updates to this book, downloadable versions of the figures (with halftones in their
original color renditions), and instructions for teachers wishing to obtain a solutions manual for the
problems, are available at:

http://press.princeton.edu/titles/8457.html
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21 am
“hyperfine” emission line, 133
galactic rotation curves, 148

absorption
bound-bound, 46
bound-free, 46
free-free, 46
absorption lines
galaxy rotation curves, 148
in quasar spectra, 225, 227
in stellar spectra, 16, 19, 20, 22
abundances
cosmic, 225
in ionized gas, 132, 150, 228
in molecular gas, 134
in stars, 42, 44, 53, 121, 146
accelerating Universe, 204-208, 212, 222
accretion disk
luminosity, temperature, 102, 103
radiative efficiency, 102
temperature profile, 102
accretion powered phenomena, 99-113, 165-171
acoustic oscillations, cosmic microwave background
anisotropies, 219
active galactic nuclei (AGN), 165-171, 226-228
adiabatic approximation, 59, 118, 219
affine connections, 193
age of Universe, 187, 201, 222
from cosmic clocks, 187-188
alcohol (methanol, ethanol, in ISM), 134
Algol-type, accreting binary, 101
ammonia, 134

Andromeda galaxy (M31), 164, 171

angular resolution, 2

angular-diameter distance, 221, 231

angular-momentum transfer, interacting
binaries, 109

anisotropy, of cosmic microwave background,
217

antipode, 192

aperture, of telescope, 2

asymptotic giant branch, 68

atmosphere, transmission windows, 19

backround, cosmic microwave, see cosmic
microwave background, 223
Balmer series, 19, 127, 128, 133, 148,
211
baryon density
mean in Universe, 216, 225
nucleosynthesis dependence on, 225
beryllium, cosmic abundance, 225
Big Bang
tests, 209-233
theory, 190-208
Big Crunch, 199
binary systems
Algol-type, 101
astrometric, 22
cataclysmic variables, 101
luminosity, temperature, 103
novae, 104
variability, 104
contact, 101
detached, 101
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binary systems (continued)
eclipsing, 22
as distance indicators, 180
mass measurement, 25
interacting, 99-108
evolution, 106—-108
mass and angular momentum transfer, 108
novae, 101
semi-detached, 101
spectroscopic, 22
mass measurement, 24
type-la supernovae, 101, 104
visual, 22
mass measurement, 24
X-ray binaries, 101, 105
BL-Lacertae objects, 169
black hole(s), 95-113
accretion efficiency of, 103
appearance of star collapsing to, 97
as dark matter candidates, 150
evaporation, 98
event horizon, 97
gravitational redshift, 97, 232
gravitational time dilation, 97
in accreting binaries, 101-105
in water-maser galaxy NGC 4258, 182
information cannot emerge from, 97
last stable orbit around, 103
massive, in galactic centers, 146, 165, 226
stellar-mass candidates, 98
black-widow pulsars, 107
blackbody
peak of, 14
radiation, 1045
Rayleigh-Jeans approx., 14
spectrum of cosmic microwave
background, 214
Stefan-Boltzmann law, 12
Wien tail, 14, 20, 29, 124, 126
Boltzmann factor, 128, 131
bound-bound absorption, 46
bound-free absorption, 46
Brackett series, 19
Bremsstrahlung
absorption, 46
emission
as coolant in H 11 regions, 129, 131
in galaxy clusters, 173, 185
thermal, 150, 173
brightness temperature, 215
brown dwarfs, 21, 81
as dark matter candidates, 150
bulge, galactic, 145
microlensing toward, 161, 176

carbon

burning in massive stars, 56, 81

CNO cycle, 57

cooling of H 11 regions via “metal” lines, 128

monoxide, 134

shell in pre-supernova star, 82

white dwarf composition, 74
cataclysmic variables, 101

luminosity, temperature, 103

novae, 104

variability, 104
CCD (charge-coupled device), 5
Cepheids, 180
Cerenkov radiation, 64, 87
Chandrasekhar mass, 77, 104
charge-coupled device (CCD), 5
circularization, in close binaries, 99
closed Universe, 199
closure density, see critical density, 198
clusters, of galaxies, 171-173

as natural telescopes, 228

collision timescale, 171

crossing timescale, 171

distances to, Sunyaev-Zeldovich effect, 184

intracluster medium, 173

lensing mass, 172

virial mass, 171
CMB, see cosmic microwave

background, 215
CNO cycle, 57
CO (carbon monoxide), 134

galactic rotation curves, 148
coasting expansion of Universe, 199
cold dark matter, 151
collision timescale

between galaxies, 164

between stars, in a galaxy, 144

in galaxy clusters, 171
collisional excitation/de-excitation, 128
color

meaning of, 16

temperature, 16
comets, 137
common-envelope, contact binaries, 101
comoving coordinates, 192
conduction, thermal, in white dwarfs, 78
convection, 58-64

condition for, 60

equation of energy transport by, 61
cooling

function, 129

in H 11 regions, 126, 128

of atomic H 1 gas, 134

of molecular gas, 134



coordinate speed of light, in Schwarzschild
metric, 97
Copernican Principle, 190
core collapse
of massive stars, 84
Supernova, see supernovae,
core-collapse, 85
cosmic microwave background, 200,
213-223
acoustic peaks, 219
baryon density from, 225
dipole, 217
isotropy, 188, 217
Olbers paradox solution, 215
photon number density of, 215
Planck spectrum of, 214
Sunyaev-Zeldovich effect, 185
temperature, 215
temperature anisotropy, 217
cosmic rays, 2, 132, 148, 166
cosmological
constant, 204-208, 212, 222
Principle, 190, 217
redshift, 209-213
time dilation, 213
cosmology
basic observations, 178-189
tests, 209-233
theory, 190-208
Coulomb repulsion
between nuclei in Sun, 50
Crab
nebula, 88
pulsar rotational energy source, 92
total luminosity, 89
pulsar, 88
age, 93
magnetic field, 93
period, period derivative, 88
critical density
for closure of Universe, 198
for collisional de-excitation, 130
cross section
absorption or scattering, 37
collisional excitation, 128
hydrogen photoionization, 124
inverse f§ process, 224
Lyman photon absorption, 127
microlensing, 158
nuclear reaction, 53
of star, Olbers paradox, 179
recombination, 122
stellar collision, 145, 164
Thomson, 37
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crossing timescale
in galaxy clusters, 171
in star clusters, 121

curvature of space, 192, 198
from CMB acoustic peaks, 220

Dark Ages, 223
dark energy, 204-208, 212, 222
dark matter
alternatives, 162
density fluctuations, 217, 223
fraction of cosmic mass density, 225
in galaxies, 148-151
in galaxy clusters, 173
nature of, 149, 228
de Broglie wavelength, 70
degenerate electron gas, 71-75
equation of state
non-relativistic, 74
ultra-relativistic, 76
phase-space distribution, 73
density waves, as explanation of spiral arms, 145
deuterium
abundance
in Lya clouds, 228
mean cosmic, 225
in stellar nuclear reactions, 49, 56
diffraction limit, 3
dinosaurs, extinction of, 137
disks
accretion, 99-113
galactic, 142
protoplanetary, 120
dissociation, of molecular hydrogen in collapsing
cloud, 118
distance
angular-diameter, 221
Cepheids, 180
extragalactic, 179-185
ladder, 179-185
luminosity, 231, 232
main-sequence fitting, 180
parallax, 14
proper, 192, 221
proper motion, 221, 231, 232
Doppler shift
compared to cosmological redshift, 210
dipole of cosmic microwave background, 217
galactic rotation curves, 148
galaxy velocities, 185
in spectroscopic binaries, 22
line broadening in quasar spectra, 166, 211
of stars around Galactic center, 141
dredge-up, 68
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dust evolution
and gas disk of the Galaxy, 145 of interacting binaries, 106-108
as dark matter candidate, 150 of quasars, 171, 227
component of ISM, 135 of Universe, 196-202
extinction by, 145 Exclusion Principle, Pauli’s, 72
extinction, by dust, 135
eclipsing binaries, 22 if dark matter is dust, 150
as distance indicators, 180 in galactic disk, 145
Eddington luminosity, 106 extinction, of species, 137
in quasars, 166 extragalactic distances, 179-185
Einstein eye
angle, 153 angular resolution, 8
coefficient for spontaneous radiative as camera, 2
emission, 130 wavelength sensitivity of, 4
equations of General Relativity, 95
equations of general relativity, 193 Faber-Jackson relation, 183
radius, 172, 176 “failed” stars (brown dwarfs), 81
ring, 153 Fermi
tensor, 96, 193, 194 energy, 73
electron gas, degenerate, 71-75 momentum, 73
electron scattering Fermi-Dirac distribution, 72
cross section, 37 fine-structure constant, 52
in Eddington luminosity, 105 gravitational analog of, 78
in stars, 38, 45, 47, 57 free-fall timescale
in Universe, before recombination, 213 in massive star core collapse, 84
element abundances of molecular cloud, 118
cosmic, 225 of Sun, 32
in ionized gas, 132, 150, 228 free-free
in molecular gas, 134 absorption, 46
in stars, 42, 44, 53, 121, 146 emission
elliptical galaxies, 163 as coolant in H 11 regions, 129, 131
emission lines Friedmann equations, 193-208
[O 111]Ax 4959, 5007 doublet, 131 Friedmann-Robertson-Walker metric,
21 cm, 133, 134 190-193
in H 11 regions, 126 “frozen stars”, vs. black holes, 97
[O )X 4363 singlet, 132 Fundamental Plane, of elliptical galaxies, 183
energy
conservation equation, in stars, 41 Galactic center
production rate, in stars, 48-58 extinction to, 145
energy-momentum tensor, 95, 194 massive black hole in, 146
energy-momentum tensor, 194 galaxies, 140-164
equation of state clusters of, 171-173
cosmological, 195, 196, 205, 207, 217 crossing timescale, 171
in stars, 4345 distances to, 184
of degenerate electron gas, 71-75 intracluster medium, 173
of degenerate nonrelativistic gas, 74 lensing mass, 172
of degenerate ultra-relativistic gas, 76 virial mass, 171
of nuclear matter, 84 collision timescales, 164
equations of stellar structure, 31, 64 in galaxy clusters, 171
solution of, 58 elliptical, 163
ethanol, 134 fraction in clusters, 171
event horizon Fundamental Plane, 183
in exponentially expanding Universe, 205, 207 groups, 171-173

of black hole, 97, 103 irregular, 163



Large Magellanic Cloud
distance via SN1987A light echo, 181
microlensing experiments, 157-162
SN1987A in, 87
luminosity function, 163
M31, 164, 171
M33, 171
Milky Way, 140-164
NGC 4258, 181
spiral, 140
structure, 140
bulge, 145
cosmic rays, 148
dark halo, 148-151
disk, 142
Galactic center, 146
gas and star halo, 145
spheroid, 145
types, 162
gamma-rays
bursts, 88, 99, 148, 188
from Galactic center, 146
from quasars and AGN, 166
in nuclear reactions in massive stars, 67, 81
in nuclear reactions in Sun, 49-56
opacity of atmosphere, 19
spectra of novae, 104
Gamow
energy, in nuclear reactions, 52
factor, in nuclear reactions, 52
General Relativity, Einstein equations,
95,193
geodesic, null, 97, 207, 209, 221
globular clusters, 121, 145
as cosmic clocks, 188
as distance indicators, 183
gravitational
analog of fine-structure constant, 78
extrasolar planet detection, 161
focusing, 144, 164, 175
lensing, 151-162
experiments toward LMC, 157-162
galaxy cluster masses, 172
magnification, 156, 157, 161, 228
microlensing, 154
natural telescopes, 228
of quasars by galaxies, 177, 228
of stars by the Sun, 152
surveys, 177
radiation, 2, 110
redshift, near black hole, 97
time dilation, near black hole, 97
waves, 2, 110
groups, of galaxies, 171-173
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H,0
masers, 134
distance to NGC 4258, 182
halo
gas and star, in galaxies, 145
Hawking radiation, 98
heating rate, in H 11 region, 126
Heisenberg’s Uncertainty Principle, 71
helium
absorption lines in stellar spectra, 19
abundance in stars, 42—44
cosmic abundance, 225
formation in Big Bang, 224
photodisintegration in pre-supernova star, 83
production in Sun, 49, 57, 65, 66
shell in pre-supernova star, 82
stellar abundance, 17
triple-alpha burning, 67
white dwarf composition, 74
Hertzsprung-Russell diagram, 27-29
main sequence stars, 27, 46, 48, 65
main sequence turnoff, 67, 146, 188
red giant stars, 27
white dwarf stars, 27
homogeneity, of Universe, 190
horizon
event, 97, 205
particle, 179, 205, 206
problem, of cosmic microwave background, 217
size, of Universe, at recombination, 217
horizontal branch, 68
Hubble
Law, 185, 193, 209-213
parameter, Hy, 189
parameter, Hg, 185, 187, 198, 202, 205
time, 187, 202
hydrogen
21 cm, 133
galactic rotation curves, 148
absorption lines in stellar spectra, 19
abundance in stars, 17, 43
as dark matter candidate, 149
atomic, 21 cm emission, 133
Balmer series, 19, 127, 128, 133, 148, 211
galactic rotation curves, 148
redshifted quasar emission lines, 211
Brackett series, 19
burning
in novae, 104
in stars, 49, 56, 57, 65, 66
energy levels, 17
H 11 regions, 122-132
ionization energy, 18
Lyman series, 19
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hydrogen (continued)
Lyman-« forest, 227
molecular
clouds, 114
inefficiency as radiator, 134
nuclear ignition temperature, 80
Paschen series, 19
Pfund series, 19
recombination cooling, 127
shell burning, in red giants, 68
shell in pre-supernova star, 82
hydrostatic equilibrium
in stars, 32, 33
hydroxyl, 134
hypersphere, 191, 192
H 11 regions, 122-132
Hi
21 cm emission, 133
galactic rotation curves, 148

ice radius, of planetary systems, 120
imaging, 5
inflation
prediction of CMB acoustic peaks, 219, 223
solution of horizon problem, 217
infrared emission
extinction by dust of, 135
from dust, if dark matter, 150
from Galactic center, 146
from interstellar dust, 135
from K and M stars, 20
from molecules, 134
from quasar host galaxies, 170
from quasars, 166
mean stellar photon density, 216
transparency of atmosphere, 19
initial mass function, stellar, Salpeter, 120
interacting binaries, 99-108
evolution, 106-108
mass and angular momentum transfer, 108
interferometry, 7, 8, 22, 146
intergalactic medium, 223, 225, 228
interstellar medium, 114-136
intracluster medium, 129, 173
Sunyaev-Zeldovich effect, 184
ionization front, 124, 136, 139
ionized fraction, inside H II region, 125
iron
-group elements, 82
abundance in halo stars, 146
abundance in ISM and Sun, 138
catastrophe, in massive stars, 82
cooling of H 11 regions via “metal” lines, 128
core of pre-supernova star, 82

irregular galaxies, 163
isotopes, radioactive, as cosmic clocks, 187
isotropy
of cosmic microwave background, 217
of Universe, 188, 190

Jeans
density, 115
mass, 115
radius, 115
jets
from quasars and AGN, 166
from younger stellar objects, 121

Kamiokande, 109
Kelvin-Helmholtz timescale, 48
Kepler’s law, 24, 107

Kerr metric, 103

Kramers opacity law, 46

laboratory astrophysics, 1
Lagrange point, first, 100
Large Magellanic Cloud
distance
via Cepeheids, 180
via SN1987A light echo, 181
microlensing experiments, 157-162
SN1987A in, 87
large-scale structure, 173
last-scattering surface, cosmic microwave
background, 214
lensing, gravitational
see gravitational lensing, 151-162
lifetime-mass relation, for stars, 66
light gathering area, 2
lithium, cosmic abundance, 225
Local Group (of galaxies), 171
distances, 180
local thermodynamic equilibrium, 128
luminosity
bolometric, 21
class, of stars, 29
distance, 231, 232
function, of galaxies, 163
Lyman series, 19
emission and absorption in H 11 regions, 126
population of hyperfine-split ground level, 133
Lyman-« forest, 227

M31 (Andromeda galaxy), 164, 171

MACHOs (massive compact halo objects), 157-162

magnetic dipole radiation, from pulsars, 92

magnification, by gravitational lensing, 156, 157,
161, 228



main sequence fitting, 180
main sequence, see Hertzsprung-Russell
diagram, 27
masers, 134
distance to NGC 4258, 182
mass
continuity, equation of, 36
transfer, in interacting binaries, 109
massive stars
nuclear reactions, 81
scaling relations, 47
matter-dominated era, 196, 197
Maxwell-Boltzmann distribution
and equation of state, 74
of hot gas, 150
of nuclei in Sun, 50
of particles in H 11 regions, 126
of relative velocities, 54
vs. quantum distributions, 71
mean free path
between stellar collisions, 144
for photons before recombination
epoch, 213
of neutrinos in collapsing star, 84
of photons in H 11 regions, 126
of photons in Sun, 37-41
Olbers paradox, 179
mergers, of galaxies, 164
“metals”
in stars, 42, 146
problems with dust as dark matter, 150
as thermostats in H 11 regions, 131
cooling of H 11 regions by, 128
in Lyx clouds, 228
metric, 96
Friedmann-Robertson-Walker,
190-193
Kerr, 103
Minkowski, 96
Schwarzschild, 96
microlensing, 154
experiments toward LMC, 157-162
extrasolar planet detection, 161
toward bulge, 161, 176
microwave
cosmic background radiation, see cosmic
microwave background, 213-223
transparency of atmosphere, 19
Milky Way, 140-164
millisecond pulsars, 107, 112
Minkowski metric, 96
molecular clouds, 114-119
as candidates for dark matter, 149
collapse of, 118
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free-fall timescale, 118
main coolants of, 134
stability of, 117
moment of inertia, of neutron star, 92
MoND (modified Netwonian dynamics),
162
Moon, cratering record, 137

neon, production in massive stars, 67, 82
neutrino(s)
as dark matter candidates, 151
astronomy, 2
cosmic background, 201, 224, 232
detector, 63
flavor oscillations, 57
flux from Sun, 57
from core-collapse supernovae, 86
from Supernova 1987A, 87
neutron
dark matter, 151
freezeout, 224
lifetime, 224
neutron stars, 81-87
accreting, 105
accretion efficiency of, 102
as dark matter candidates, 150
binary, 138
birth kicks, 139
cooling time, 94
density, 84
formation, 84
identification with pulsars, 89
in accreting binaries, 95, 101
mass-radius relation, 84
maximum mass of, 85
moment of inertia, 92
old, 94
pulsars, 88-95
black-widow, 107
millisecond, 107, 112
radius, 84
rotation, 91
neutronization in massive stars, 83
Newtonian
derivation of black hole horizon, 95
derivation of Friedmann equations,
202-204
Dynamics, Modified (MoND), 162
NHj3 (ammonia), 134
nitrogen
CNO cycle, 57
cooling of H 11 regions via “metal”
lines, 128
novae, 101, 104
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nuclear reactions
in massive stars, 81
in stars, 48-58
cross section, 53
rates, 53
nucleosynthesis, of light elements, 223-233
null geodesic, 97, 207, 209, 221

oceans, cometary source of, 120, 137
OH (hydroxyl), 134
masers, 134
[O m1]Ax 4959, 5007 doublet, 131
[O mijx 4363 singlet, 132
Olbers paradox, 178-179
cosmic microwave background, 215
opacity, 37
in stars, 45-47, 57, 119
of Universe before recombination, 213
open clusters, 121
open Universe, 199
optical light, definition, 4
Orion nebula, 131
oxygen
4363 A emission line, use as thermometer
in H 11 regions, 132
4959, 5007 A doublet, 131
burning in massive stars, 82
CNO cycle, 57
cooling of H 11 regions via “metal”
lines, 128
production in massive stars, 67
white dwarf composition, 74

P-p chain, in Sun, 49
parallax, 14, 180
parsec, definition, 15
particle horizon, 179, 205, 206
Paschen series, 19
Pauli’s exclusion principle, 72
Pfund series, 19
phase-space distribution
for degenerate electron gas, 73
photodissociation
of molecular hydrogen, 133
photoelectrons
in CCD detector, 5
photoionization
as opacity source in stars, 46
in H 11 regions, 122
of SN1987A ring, 181
photometry, 6
photosphere
absorption lines, 16
definition, 16

Planck spectrum, 10
of cosmic microwave background, 214
planetary nebulae, 69, 79, 132
as distance indicators, 183
planets
electrostatic forces in, 109
extrasolar, 26, 161
formation, 120
migration, 120
polarimetry, 7
population inversion, 134
power density, of stellar nuclear reactions, 54
power spectrum, of CMB anisotropies, 219-223
pressure
adiabatic compression, 203
conditions for convection, 59
dark energy equation of state, 205
equation of state, 4245
hydrostatic equilibrium in stars, 32
in energy—-momentum tensor, 95, 194
in Friedmann equations, 195
in matter dominated era, 196
in radiation dominated era, 196
magnetic and turbulent, in molecular
clouds, 117
mean, inside star, 35
of degenerate electron gas, 71-75
of degenerate neutron gas, 84
of degenerate ultra-relativistic gas, 76
of ideal gas, 73
of pre-recombination baryon-photon fluid, 219
radiation, 44, 48, 61, 66, 103, 113, 223
stellar scaling relations, 47
white dwarf scaling relations, 75
proper distance, 192
proper-motion, 16
proper motion distance, 221
proper time, 96
proton decay, 87
protoplanetary disks, 120
pulsars, 88-95
binary, 138
birth kicks, 139
black-widow, 107
emission mechanism, 92
identification with neutron stars, 89
magnetic field, 93
millisecond, 107, 112
rotation, 91
rotational energy as source of Crab
luminosity, 92
pulsations, stellar
as nonoption for explaining pulsars, 91
Cepheids, 180



QSOs, see quasars, 170
quantum
forbidden transitions, 131
matter density, 70
structure of hydrogen atom, 17
tunneling, in nuclear reactions, 51
quasars, 165-171, 226-228
absorption lines, 225, 227
accretion rate, 170
cosmologically redshifted spectra, 211
evolution, 171, 227
host galaxies, 170, 226
radio-loud, (-quiet), 169
temperature of accretion disk, 170

radiation pressure, 44, 48, 61, 66, 103,

113, 223
radiation-dominated era, 196, 197
radiation-matter domination transition, 199
radiative transfer (transport), 3641
radio emission

21 cm, 133

from Galactic center, 146

from molecules, 134

from pulsars, 88

from quasars and AGN, 166, 170

transparency of atmosphere, 19
radio galaxies, 169
radio-loud, (-quiet) quasars, 169
radioactive isotopes, as cosmic clocks, 187
random walk, 38, 109, 127
Rayleigh-Jeans

approximation, 14

side of cosmic microwave background, 215
recombination

case B, 123

coefficient, 122

cooling via, 127

era, 213

in H 11 regions, 122

rate, 122
red giants, 66

on H-R diagram, 27
reddening, by interstellar dust, 135
redshift

cosmological, 209-213

gravitational, near black hole, 97
reionization, of Universe, 223, 230
Ricci

scalar, 194

tensor, 194
Riemann tensor, 194
Roche lobes, 100
rotation curves, galactic, 148
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Sagittarius A*, 146
Saha equation, 224
Salpeter initial mass function, 121
Schechter luminosity function, 163
Schrodinger equation, 51
Schwarzschild
metric, 96, 103, 151, 152
radius, 95-97, 101, 152, 232
seeing, 8
Seyfert galaxies, 169
sheets (of galaxies), 173
signal-to-noise ratio, 8
silicon
burning in massive stars, 82
cooling of H 11 regions via “metal”
lines, 128
in CCD detector, 5
singularity, at t = 0 in Big Bang, 198
Sirius-B, 69
sky
as a source of noise, 4
why dark, Olbers paradox, 178
sound-crossing horizon scale, 219
spectroscopy, 7
spheroid, galactic, 145
spiral
arms, in galactic disk, 145
density waves, 145
galaxies, 140, 162
stars
absorption lines, 19, 20
binary systems, 22
boundary conditions, 42
clusters of, 121
convection in, 58-64
early type, 27
element abundances, 42, 146
energy source of, 48-58
equation of state, 43—45
equations of structure, 31-64
energy conservation, 41
hydrostatic equilibrium, 32, 33
mass continuity, 36
radiative energy transport, 3641
solution of, 58
evolution, 65-69
formation, 114-121
initial mass function, 120
late type, 27
lifetime-mass relation, 66
luminosity class, 29
main sequence, 27
mass measurement, 22
minimum mass for nuclear ignition, 81
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stars (continued)

nuclear reactions, 48-58

in massive stars, 81

rates, 53
opacity in, 4546
photosphere, 20
power density from nuclear reactions, 54
pressure

mean, 35
pulsations

Cepheids, 180

non-option for explaining pulsars, 91
radius, 21, 4648
red giants, 66

on H-R diagram, 27
rotation speed, maximum, 91
scaling relations, 4648
spectral types, 19
supergiants, 28
temperature, 20

mean, 36
virial theorem, 34, 35
white dwarfs, 69-80

on H-R diagram, 27

winds, 68, 119, 120, 132, 135, 136, 146, 148, 150

Stefan-Boltzmann Law, 12
stimulated emission, masers, 134

Stromgren sphere, radius, 122, 124, 126, 133,

136, 139
sulfur

cooling of H 11 regions via “metal” lines, 128

Sun
free-fall time, 32
Kelvin-Helmbholtz timescale, 48
neutrino flux from, 57
properties, 31
spectral type, 21
Sunyaev-Zeldovich effect, distances to galaxy
clusters, 184, 189
super star clusters, 121
superclusters (of galaxies), 173
supergiants, 28
SuperKamiokande, 63
Supernova 1054, Crab nebula, 88, 94
Supernova 1987A
light echo, distance to LMC, 181
neutrinos from, 87
supernovae
core-collapse, 81-87
binding energy, 85
compared to type la, 104
energies, 85
luminosity, 85
neutrinos from, 86

cosmic-ray acceleration, 148
dust production, 135
metal enrichment by, 146, 150, 187
remnants, 136
Crab nebula, 88
energy of ejecta, 85
in Galactic center, 146
type 1a 87, 101, 104, 111
as distance indicator, 184
Hubble diagram of, 212, 222
surface brightness
fluctuations, as distance indicators, 183
redshift dependence of, 231
surface of last scattering, cosmic microwave
background, 214
synchronization, in close binaries, 99
synchrotron emission
from Crab nebula, 89
from quasar jets, 166
in X-ray binaries, 105

T Tauri stars, 119
telescopes, 2
temperature
accretion disk, 102
anisotropy, CMB, 217
brightness, 215
CMB, 214
color, 16
effective, 21, 48
mean, inside star, 36
of gas in H 11 region, 123
of Universe, 213
photospheric, 16
thermal
conduction, in white dwarfs, 78
radiation, 10
thermal pulses, 68
thermostat action
of metal lines in H 11 regions, 131
of nuclear reactions in stars, 56, 87
Thomson scattering
cross section, 37
in Eddington luminosity, 105
in stars, 45
in Universe, before recombination, 213
mean free path in H 11 regions, 126
tidal
disruption, of stars near black hole,
111, 165
forces
between colliding galaxies, 164
by Moon and Sun on Earth, 100, 112
locking, in binaries, 99
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time dilation water masers, 134
cosmological, 213 distance to NGC 4258, 182
gravitational, near black hole, 97 white dwarfs, 69-80
timescale mass-temperature relation, 79
collision temperature, 79
in galaxy, 144 ablated by black-widow pulsars, 107
in galaxy clusters, 171 accreting
crossing luminosity, temperature, 103
in galaxy clusters, 171 novae, 104
in star clusters, 121 type Ia supernovae, 104
free-fall, of Sun, 32 variability, 104
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on H-R diagram, 27
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from O and B stars, 20 WIMPS (weakly interacting massive particles), 151
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H; absorption and scattering, 150 150
in H 11 regions, 122
in planetary nebulae, 69 X-ray binaries, 95, 101, 105
ionizing SN1987A ring, 181 X-rays
opacity of atmosphere, 19 Bremsstrahlung
uncertainty principle, Heisenberg’s, 71 from galaxy clusters, 173, 185
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clocks, 187 from Crab pulsar, 88
from Galactic center, 146
vacuum energy, 204-208 from old neutron stars, 95
Virgo Cluster (of galaxies), 171 from quasars and AGN, 166
distances, 180 from young white dwarfs, 79
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