
The idea that light exists as tiny packets, or particles, that we now call photons. Alongside Max Planck's

work on quanta of heat, and Niels Bohr's later work on quanta of matter, Einstein's work anchors the most

building block of 20th-century physics: we live in a quantum universe, one built out of tiny, discrete chunks

of energy and matter.

➢ Plank’s Quantum theory of Radiation

Quantum description of the universe

Light Electron

Metal

➢ Bhor’s hypothesis of discrete orbits for electron

➢ Photo-Electric Effect

Photo-Electric Effect

Is light a wave or a particle?

This theory says it's a particle - and won Einstein his Nobel Prize !

1925 - Heisenberg's paper, “On quantum-theoretical reinterpretation of kinematic and mechanical relationships”

1926 - Schrodinger’s paper, “An undulatory theory of the mechanics of atoms and molecules”

IYQ 2025

https://quantum2025.org/

Quantum description: wave–particle nature

If light behaves as
particle we should get

If light behaves as
 waves we should get

When only one slit is open

When both slits are open

What we get ?
➢ When we track the photon path, we get A
➢ When we don’t observer which path the photon travelled, we get B

A

B

D1

D2

➢Demonstrates existence of photons as single particles

➢Photons don’t split

Beam splitter and single photon

Beam Splitter (BS)

Classical light splits into two paths. What will happen to single photon ?

Beam splitters and single photon

Single beam splitter setting

Double beam splitter setting (Mach-Zehnder Interferometer)

Photon taking Path 0 Photon taking Path 1

D1

D2

D2

D2

D1

Summary :Quantum Interference / particle behavior

▪ Knowing which slit or path a photon

travel through is a form of measurement

▪ If no information exists to link photo to

specific path, the wave behavior

resumes, and interference pattern is

observed

▪ When particle behavior is observed,

interference fails to form

▪ One way to determine which path is by

maintaining different polarization state

in each path or slit

▪ Measuring collapses its wavefunction

D
e
te

c
to

r
o

n
D

e
te

c
to

r
o

ff

How to understand the dynamics ?

Process / Dynamics ?

Must be modeled

Source
is

known

Measurement
output can be

recorded

Needs complex space vector representation to model / develop a quantum theory

Quantum theory
developed to describe
the dynamics/ process

Let us model the dynamics of the photon in

interferometer setup

Process / Dynamics ?

Must be modeled

Source
is

known

Measurement
output can be

recorded

Vector representation and complex numbers

Photon in Path 0 Photon in Path 1

Vector representation and complex numbers

D2

After first BS :

After second BS :

This simple math shows how interference is
Making photon get detected only at D2

Quantum state represented by atom, photon or

electron spin can simultaneously be at more than

one state at any given time.

Classical bit at any given time can only be in 0 or 1

but qubit can simultaneously be in both 0 and 1.

Quantum Superposition and Interference

Qubit Representation – 2D Hilbert Space

Light pulse of
frequency  for time

interval t/2

Dirac Notations – composite system

Two qubit representation – Tensor product state – four-dimensional Hilbert space

Two-qubit state - Quantum Entanglement

Dirac Notations – composite system

Three qubit representation – Tensor product state, 8-dimensional Hilbert space

▪Consider a 3 qubit register. An equally weighted superposition of all possible states would be denoted by :

General quantum states

➢ n-dimensional quantum system consists of n basis states :

➢ dimensional system can be constructed as a tensor product of n qubit system

n-qubit registrar in composite system

▪ In general, an n qubit register can represent the numbers 0 through 2n-1 simultaneously.

Sound too good to be true?…It is!

▪ If we attempt to retrieve the values represented within a superposition, the superposition

randomly collapses to represent just one of the original values.

Quantum Operations

Unitary transformations :

➢ Linear transformations that preserve vector norm.

➢ In 2 dimensions, linear transformations that preserve unit circle (rotations and reflections).

Examples :

➢ Bit flip

➢ Hadamard transformation

What will two times the above two operations return ?

Universal set of gates for QC

Measurements

➢ Measuring in basis gives:

▪0 with probability | |2,

▪1 with probability | |2.

➢ Measurement changes the state: it becomes .

➢ Repeating the measurement gives the same outcome.

Prob. 1/2

Prob. 1/2

General measurements

Even for any two orthogonal one-qubit states

It is equivalent to mapping them to and measuring.

Partial Measurements

Let us take a simple two qubit state and make measurement only on the first qubit :

First qubit collapses to
First qubit collapses to

This will be 50% probability This will be 50% probability

Classical vs. Quantum

Classical Bits:

➢ Can be measured completely

➢ States don’t chance by measurements

➢ Can be copied

➢ Can be erased

Quantum Bits:

➢ Can be measured partially

➢ States alter by measurements

➢ Cannot be copied (no cloning)

➢ Cannot be erased

No cloning of any arbitrary quantum state

Directly related to impossibility of measuring an arbitrary quantum state perfectly

➢ Let us imagine that we could copy quantum states :

➢ Then, by linearity condition we will get

➢ This is not the same as two copies of

Linear Algebra (short review)

Linear Algebra (short review)

Linear Algebra (short review)

Postulates of Quantum Mechanics

Postulate 1 : A Quantum Bit

Postulate 1 : A Quantum Bit

Qubit

Classical Bit

 Qubit : and possible (allowed) basis states

Any quantum system with exactly two degree of freedom
 (state of an hydrogen atom, spin of an electron)

: {0, 1}

|0� |1�

|0� =
�

1
0

⇥
|1� =

�
0
1

⇥

|⇤� = �|0� + ⇥|1� with |�|2 + |⇥|2 = 1

In Dirac notation : |⇤� =
�

�
⇥

⇥Superposi!on sta"
�

Bloch Sphere representation of Qubit

Postulate 2 : Evolution of Quantum Systems

Postulate 2 : Evolution of Quantum Systems

Postulate 2 : Evolution of Quantum Systems

Postulate 3 : Measurement

Postulate 3 : Measurement

Postulate 4 : Multi-qubit Systems

Entanglement

Entanglement

Quantum computing

Classical vs Quantum computer

Quantum computer

The qubits are
prepared in a

particular
state

They undergo
a sequence of
quantum logic

gates

A quantum
measurement
extracts the
algorithm’s

output

How do you make Programmable Quantum Computers ?

Single and two qubit operations

Qubit rotations

Quantum
logic gates

Measurements and partial measurements

Suppose 3 qubits are in the superposition

| i = 1

2
|000i+ 1

2
|100i+ 1

2
|101i � 1

2
|111i

<latexit sha1_base64="S7pVTtaizbMkFHCDnSqUyX5FRk4=">AAACknicfZHLbhMxFIY9w62ES1PaHRuLCAkJEY3T0qaVKIVuWLAIgrSVMlHkcc4kVj228QURTWfeh9dhx9vgaROJVsCRLP36v3Ns+T+ZFty6JPkVxbdu37l7b+1+68HDR4/X2xtPTqzyhsGQKaHMWUYtCC5h6LgTcKYN0CITcJqdHzf89BsYy5X84hYaxgWdSZ5zRl2wJu0fOC0y9b387LVWFurt+qvPuLM1NVBzWbs51NZrMIHyZqRK09ZFOrA8NVTOBOA3OM0NZSWpyl6FL5IkWZGX1wn5DyEr8uoGISvSmrQ7STfcHizcCLK3mwSxv9/vkT4mDQrVQcsaTNo/06livgDpmKDWjkii3bikxnEmoGql3oKm7JzOYBSkpAXYcXkZaYWfB2eKc2XCkQ5fun9OlLSwdlFkobOgbm5vssb8Gxt5l/fHJZfaO5Ds6qHcC+wUbvaDp9wAc2IRBGUmRM4wm9MQiQtbbEJY/RT/W5z0umS72/u00zl6v4xjDT1Fz9ALRNAeOkIf0AANEYvWo9fRYfQ23ooP4nfx8VVrHC1nNtG1ij/+Bq7Jx+8=</latexit>

and the third qubit is measured. What are the probabilities

of the two possible measurement outcomes and what are

the resulting superpositions of the three qubits for each case ?
<latexit sha1_base64="g9HEKC3ri2GkHBqxKFvDTgzjgps=">AAACunicdVFNj9MwEHXC11K+Chy5WFRInKqkrGhXQmIFF46LRLcrNVHlOJPGqhMHe8xSRfV/hBv/BqdNxYdgJEtPM/Oen5+zRgqDUfQjCG/cvHX7zsndwb37Dx4+Gj5+cmmU1RzmXEmlrzJmQIoa5ihQwlWjgVWZhEW2ed/NF19AG6HqT7htIK3YuhaF4Ax9azX8NkiqTH1tWZ07LMEfoXP32WYCnTCuAmashnzsFiVDxzTstx qtMpYJKVCAcbsk6VVUcRC5Vs41yhjhbRw1KqjRKYtcVZ7T3XfdS/7i79kajJUo6rVzxjagvZDozBp3lC81wMGjcYXSDhgvHfcp0Lc7uhqOonEURXEc0w7E09eRB2dns0k8o3E38jUifV2sht+TXHHb+eOSGbOMowbTlmkUXMJukFgDDeMbtoalhzXz/tN2H/2OvvCdnHoT/tRI993fGS2rjNlWmd+sGJbm71nX/NdsabGYpa2oG4tQ88NFhZUUFe3+keZCA0e59YBx7QPilJdMM47+twc+hONL6f/B5WQcvxpPPp6Ozt/1cZyQZ+Q5eUliMiXn5AO5IHPCg2mQBkWwDt+EWSjCzWE1DHrOU/JHhfgTdRPkBQ==</latexit>

Measurements and partial measurements
Suppose 3 qubits are in the superposition

| i = 1

2
|000i+ 1

2
|100i+ 1

2
|101i � 1

2
|111i

<latexit sha1_base64="S7pVTtaizbMkFHCDnSqUyX5FRk4=">AAACknicfZHLbhMxFIY9w62ES1PaHRuLCAkJEY3T0qaVKIVuWLAIgrSVMlHkcc4kVj228QURTWfeh9dhx9vgaROJVsCRLP36v3Ns+T+ZFty6JPkVxbdu37l7b+1+68HDR4/X2xtPTqzyhsGQKaHMWUYtCC5h6LgTcKYN0CITcJqdHzf89BsYy5X84hYaxgWdSZ5zRl2wJu0fOC0y9b387LVWFurt+qvPuLM1NVBzWbs51NZrMIHyZqRK09ZFOrA8NVTOBOA3OM0NZSWpyl6FL5IkWZGX1wn5DyEr8uoGISvSmrQ7STfcHizcCLK3mwSxv9/vkT4mDQrVQcsaTNo/06livgDpmKDWjkii3bikxnEmoGql3oKm7JzOYBSkpAXYcXkZaYWfB2eKc2XCkQ5fun9OlLSwdlFkobOgbm5vssb8Gxt5l/fHJZfaO5Ds6qHcC+wUbvaDp9wAc2IRBGUmRM4wm9MQiQtbbEJY/RT/W5z0umS72/u00zl6v4xjDT1Fz9ALRNAeOkIf0AANEYvWo9fRYfQ23ooP4nfx8VVrHC1nNtG1ij/+Bq7Jx+8=</latexit>

Quantum circuits

• Time goes from left to right

• Horizontal lines represent quits

• Operations and measurements are represented by different symbols

Quantum circuits

Quantum circuits

Example 4

Quantum circuits

Example 4

Quantum circuits

Example 4

Superdense coding

Superdense coding

Alice and Bob are in different parts of the world. Alice has two bits : a and b. She
would like to communicate these two bits to Bob by sending him just a single qubit.
Alice cannot encode two classical bit into a single qubit in any way that would give
Bob more than just one bit of information about the pair (a, b).

This can be accomplished with additional resources, if Alice and Bob share an
entangled bit (e-bit).

Superdense coding

Alice and Bob are in different parts of the world. Alice has two bits : a and b. She
would like to communicate these two bits to Bob by sending him just a single qubit.
Alice cannot encode two classical bit into a single qubit in any way that would give
Bob more than just one bit of information about the pair (a, b).

This can be accomplished with additional resources, if Alice and Bob share an
entangled bit (e-bit).

Alice

Bob

|�+i
(

<latexit sha1_base64="vl5kgCFOWtrf3D5lQ+J/Bv27Rok=">AAACAXicdVDLSgMxFM3UV62vUTeCm2ARBKFMqth2V+rGZQX7gE4tmTSdhmYyQ5IRylg3/oobF4q49S/c+Tdm2goqeuDC4Zx7ufceL+JMacf5sDILi0vLK9nV3Nr6xuaWvb3TVGEsCW2QkIey7WFFORO0oZnmtB1JigOP05Y3Ok/91g2VioXiSo8j2g2wL9iAEayN1LP3bt1oyK6PXYmFzymEbo35PnSTnp13Co7jIIRgSlDpzDGkUikXURmi1DLIgznqPfvd7YckDqjQhGOlOsiJdDfBUjPC6STnxopGmIywTzuGChxQ1U2mH0zgoVH6cBBKU0LDqfp9IsGBUuPAM50B1kP120vFv7xOrAflbsJEFGsqyGzRIOZQhzCNA/aZpETzsSGYSGZuhWSIJSbahJYzIXx9Cv8nzWIBnRSKl6f5am0eRxbsgwNwBBAogSq4AHXQAATcgQfwBJ6te+vRerFeZ60Zaz6zC37AevsEl26WWA==</latexit>

| ABi = |�+i = 1p
2
(|00i+ |11i)

<latexit sha1_base64="h0NmxZfyUIehAZXDEB5X0odYVTM=">AAACPHicdVBNSyNBEO1x/cz6Ed3jXgrDgosQuqNoPAiue/EY0aiQiaGn05M09vSM3T1CmMwP24s/wtue9uJBEa+e7dEEXNEHBa/fq6KrXpBIYSzGf72JL5NT0zOzc6Wv8wuLS+XllRMTp5rxJotlrM8CargUijetsJKfJZrTKJD8NLj4XfinV1wbEatjO0h4O6I9JULBqHVSp3w09BtGdLJf+zn4mqqe5AC7MPSTvjhfHyu74IeasozkmW8utYVaDmtDjMf+OgwJGT9+dsoVXMUYE0KgIGR7Czuys1OvkTqQwnKooBEanfKN341ZGnFlmaTGtAhObDuj2gomeV7yU8MTyi5oj7ccVTTipp29HJ/DD6d0IYy1K2XhRX07kdHImEEUuM6I2r557xXiR14rtWG9nQmVpJYr9vpRmEqwMRRJQldozqwcOEKZFm5XYH3qYrIu75ILYXwpfE5OalWyUa0dblb29kdxzKLvaBWtIYK20R46QA3URAz9Qf/QHbr3rr1b78F7fG2d8EYz39B/8J6eAYZPrHg=</latexit>

Superdense coding protocol

Superdense coding protocol

Superdense coding protocol

First gate represent

a Controlled-�z =
0

BB@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

1

CCA

<latexit sha1_base64="AEfCxvkEV0WyqWsf2ww+QZi0/4w=">AAAC0nicdVJbb9MwFHbCbYTLCjzyckQFGg+r4oJY94A0MQnxxpDWbVJTVY5zmlpznMh2EF2UIsQrv443fgL/AqdJpXL7LNufvu8cX44dF1IYG4Y/PP/a9Rs3b+3cDu7cvXd/t/fg4ZnJS81xzHOZ64uYGZRC4dgKK/Gi0MiyWOJ5fHnc+OcfURuRq1O7LHCasVSJueDMOmnW+wlRFuefqrdCG7uClFlcaXRLGFR2tUYdRUEbxOA4V1bnUmKyX0dGpBmbXcFrWHWAJlTi3O5BFGMqVMW0Zsu64nLddB0ABXjmGoTraTNCkxp2Ft22tvRW2bh/Ge24T4MIVdLtDJEW6cI+h2DW64eDMAwppdAQevAqdOTwcDSkI6CN5dAnHU5mve9RkvMyc4XgkhkzoWFhp25dK7jEOohKgwXjlyzFiaOKZWim1fpJanjqlATmuXZdWVir2xkVy4xZZrGLzJhdmD+9RvyXNyntfDSthCpKi4q3G81LCTaH5n0hERq5lUtHGNfCnRX4gmnGrfsFTRE2N4X/k7PhgL4YDD+87B+96cqxQx6TJ2SPUHJAjsg7ckLGhHvvvdJbeZ/9U//K/+J/bUN9r8t5RH6D/+0XGanPuw==</latexit>

Quantum Teleportation

Quantum Teleportation

Quantum Teleportation

Quantum Teleportation

Quantum Algorithms

Probabilistic versus quantum algorithms

⌘<latexit sha1_base64="3Qs1VHHSY/kzbllzUPBcNJT24ls=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4KkkV2+6KblxWsA9oh5JJM21sJhmTTKGU/oMbF4q49X/c+Tdm2goqeuDC4Zx7ufeeIBbcWIQ+vMzK6tr6RnYzt7W9s7uX3z9oGpVoyhpUCaXbATFMcMkallvB2rFmJAoEawWjq9RvjZk2XMlbO4mZH5GB5CGnxDqp2WX3CR/38gVURAhhjGFKcPkCOVKtVkq4AnFqORTAEvVe/r3bVzSJmLRUEGM6GMXWnxJtORVslusmhsWEjsiAdRyVJGLGn86vncETp/RhqLQraeFc/T4xJZExkyhwnRGxQ/PbS8W/vE5iw4o/5TJOLJN0sShMBLQKpq/DPteMWjFxhFDN3a2QDokm1LqAci6Er0/h/6RZKuKzYunmvFC7XMaRBUfgGJwCDMqgBq5BHTQABXfgATyBZ095j96L97pozXjLmUPwA97bJxCOj3Y=</latexit>

Quantum Algorithms

Probabilistic versus quantum algorithms

6=
<latexit sha1_base64="5ct13f4X9FqVTOStYxgNsy+qYFY=">AAAB63icdVDLSgMxFM3UV62vqks3wSK4KkkV2+6KblxWsA9oh5JJM21okhmTjFCG/oIbF4q49Yfc+Tdm2goqeuDC4Zx7ufeeIBbcWIQ+vNzK6tr6Rn6zsLW9s7tX3D9omyjRlLVoJCLdDYhhgivWstwK1o01IzIQrBNMrjK/c8+04ZG6tdOY+ZKMFA85JTaT+ordDYolVEYIYYxhRnD1AjlSr9cquAZxZjmUwBLNQfG9P4xoIpmyVBBjehjF1k+JtpwKNiv0E8NiQidkxHqOKiKZ8dP5rTN44pQhDCPtSlk4V79PpEQaM5WB65TEjs1vLxP/8nqJDWt+ylWcWKboYlGYCGgjmD0Oh1wzasXUEUI1d7dCOiaaUOviKbgQvj6F/5N2pYzPypWb81LjchlHHhyBY3AKMKiCBrgGTdACFIzBA3gCz570Hr0X73XRmvOWM4fgB7y3T2ZRjnw=</latexit>

Quantum Algorithms

Probabilistic versus quantum algorithms

6=
<latexit sha1_base64="5ct13f4X9FqVTOStYxgNsy+qYFY=">AAAB63icdVDLSgMxFM3UV62vqks3wSK4KkkV2+6KblxWsA9oh5JJM21okhmTjFCG/oIbF4q49Yfc+Tdm2goqeuDC4Zx7ufeeIBbcWIQ+vNzK6tr6Rn6zsLW9s7tX3D9omyjRlLVoJCLdDYhhgivWstwK1o01IzIQrBNMrjK/c8+04ZG6tdOY+ZKMFA85JTaT+ordDYolVEYIYYxhRnD1AjlSr9cquAZxZjmUwBLNQfG9P4xoIpmyVBBjehjF1k+JtpwKNiv0E8NiQidkxHqOKiKZ8dP5rTN44pQhDCPtSlk4V79PpEQaM5WB65TEjs1vLxP/8nqJDWt+ylWcWKboYlGYCGgjmD0Oh1wzasXUEUI1d7dCOiaaUOviKbgQvj6F/5N2pYzPypWb81LjchlHHhyBY3AKMKiCBrgGTdACFIzBA3gCz570Hr0X73XRmvOWM4fgB7y3T2ZRjnw=</latexit>

No interference versus interference

Quantum Algorithms

No interference versus interference

Phase Kick-Back to control register

Phase Kick-Back to control register

CNOT : |0i
✓
|0i � |1ip

2

◆
�! |0i

✓
|0i � |1ip

2

◆

<latexit sha1_base64="ZnAoQtF7k5Ot9r4zKQBUO4iWcps=">AAACiHicpVFNbxMxEPUuLZTw0UCPXEaNkIoQK++S0IZT1V56okVq2krZKPI63o1Vr73Ys6Bom/6V/idu/Js6aVABwYmRLD2/mTdjv8kqJR1S+iMIH6ytP3y08bj15Omz55vtFy/PnKktFwNulLEXGXNCSS0GKFGJi8oKVmZKnGeXh4v8+VdhnTT6FGeVGJWs0DKXnKGnxu2bJrUlHH46Pp1ff7yGK5papgslIFUiR9iBNLeMN/f8O7iKV3jepO6LRUjmkFpZTBHeeJnRxfLCrDXf/rvhuN2hEU32et0EaJT0aD/ue9Cjcf9DF+KILqNDVnEybn9PJ4bXpdDIFXNuGNMKRw2zKLmf0EprJyrGL1khhh5qVgo3apZGzuG1ZyaQG+uPRliyvyoaVjo3KzNfWTKcuj9zC/JvuWGN+d6okbqqUWh+NyivFaCBxVZgIq3gqGYeMG6lfyvwKfNGod9dy5vw86fwb3CWRPH7KPnc7ewfrOzYIK/INtkhMdkl++SInJAB4cF68DboBr2wFdJwN+zflYbBSrNFfovw4Bb4PcMu</latexit>

Phase Kick-Back to control register

CNOT : |0i
✓
|0i � |1ip

2

◆
�! |0i

✓
|0i � |1ip

2

◆

<latexit sha1_base64="ZnAoQtF7k5Ot9r4zKQBUO4iWcps=">AAACiHicpVFNbxMxEPUuLZTw0UCPXEaNkIoQK++S0IZT1V56okVq2krZKPI63o1Vr73Ys6Bom/6V/idu/Js6aVABwYmRLD2/mTdjv8kqJR1S+iMIH6ytP3y08bj15Omz55vtFy/PnKktFwNulLEXGXNCSS0GKFGJi8oKVmZKnGeXh4v8+VdhnTT6FGeVGJWs0DKXnKGnxu2bJrUlHH46Pp1ff7yGK5papgslIFUiR9iBNLeMN/f8O7iKV3jepO6LRUjmkFpZTBHeeJnRxfLCrDXf/rvhuN2hEU32et0EaJT0aD/ue9Cjcf9DF+KILqNDVnEybn9PJ4bXpdDIFXNuGNMKRw2zKLmf0EprJyrGL1khhh5qVgo3apZGzuG1ZyaQG+uPRliyvyoaVjo3KzNfWTKcuj9zC/JvuWGN+d6okbqqUWh+NyivFaCBxVZgIq3gqGYeMG6lfyvwKfNGod9dy5vw86fwb3CWRPH7KPnc7ewfrOzYIK/INtkhMdkl++SInJAB4cF68DboBr2wFdJwN+zflYbBSrNFfovw4Bb4PcMu</latexit>

CNOT : |1i
✓
|0i � |1ip

2

◆
�! |1i

✓
(�1)

✓
|0i � |1ip

2

◆◆
= �|1i

✓
|0i � |1ip

2

◆

<latexit sha1_base64="3SmA6itSx5pcEr/63i+i1gLL7KU=">AAAC4nicnVJNbxMxEPUuXyV8BThyGREhpYesvNsEGiSkil44QZGatlI2iryOd2PV613sWVC0TW9cOIAQV34VN34KN5w0UQGVA4xk6c2bmTf2jJNSSYuUfvf8S5evXL22cb1x4+at23ead+8d2KIyXAx4oQpzlDArlNRigBKVOCqNYHmixGFyvLuIH74VxspC7+OsFKOcZVqmkjN01Lj5o45NDrsvX+3PT5+ewkkYG6YzJSBWIkVoQ5waxusTuuY75znzOrZvDEI0h9jIbIqw6coKnS0dZkzx7gLBdifcXDv/Kr4CjWfQORf+P7HGuNmiAY22e90IaBD1aD/sO9CjYf9xF8KALq1FVrY3bn6LJwWvcqGRK2btMKQljmpmUHLXohFXVpSMH7NMDB3ULBd2VC9XNIdHjplAWhh3NMKS/bWiZrm1szxxmTnDqf0ztiAvig0rTLdHtdRlhULzs0ZppQALWOwbJtIIjmrmAONGursCnzI3KXS/YjGE9Uvh7+AgCsKtIHrdbe08X41jgzwgD0mbhOQJ2SEvyB4ZEO6NvffeR++TP/E/+J/9L2epvrequU9+M//rT83H5Bc=</latexit>

Phase Kick-Back to control register

CNOT : |0i
✓
|0i � |1ip

2

◆
�! |0i

✓
|0i � |1ip

2

◆

<latexit sha1_base64="ZnAoQtF7k5Ot9r4zKQBUO4iWcps=">AAACiHicpVFNbxMxEPUuLZTw0UCPXEaNkIoQK++S0IZT1V56okVq2krZKPI63o1Vr73Ys6Bom/6V/idu/Js6aVABwYmRLD2/mTdjv8kqJR1S+iMIH6ytP3y08bj15Omz55vtFy/PnKktFwNulLEXGXNCSS0GKFGJi8oKVmZKnGeXh4v8+VdhnTT6FGeVGJWs0DKXnKGnxu2bJrUlHH46Pp1ff7yGK5papgslIFUiR9iBNLeMN/f8O7iKV3jepO6LRUjmkFpZTBHeeJnRxfLCrDXf/rvhuN2hEU32et0EaJT0aD/ue9Cjcf9DF+KILqNDVnEybn9PJ4bXpdDIFXNuGNMKRw2zKLmf0EprJyrGL1khhh5qVgo3apZGzuG1ZyaQG+uPRliyvyoaVjo3KzNfWTKcuj9zC/JvuWGN+d6okbqqUWh+NyivFaCBxVZgIq3gqGYeMG6lfyvwKfNGod9dy5vw86fwb3CWRPH7KPnc7ewfrOzYIK/INtkhMdkl++SInJAB4cF68DboBr2wFdJwN+zflYbBSrNFfovw4Bb4PcMu</latexit>

CNOT : |1i
✓
|0i � |1ip

2

◆
�! |1i

✓
(�1)

✓
|0i � |1ip

2

◆◆
= �|1i

✓
|0i � |1ip

2

◆

<latexit sha1_base64="3SmA6itSx5pcEr/63i+i1gLL7KU=">AAAC4nicnVJNbxMxEPUuXyV8BThyGREhpYesvNsEGiSkil44QZGatlI2iryOd2PV613sWVC0TW9cOIAQV34VN34KN5w0UQGVA4xk6c2bmTf2jJNSSYuUfvf8S5evXL22cb1x4+at23ead+8d2KIyXAx4oQpzlDArlNRigBKVOCqNYHmixGFyvLuIH74VxspC7+OsFKOcZVqmkjN01Lj5o45NDrsvX+3PT5+ewkkYG6YzJSBWIkVoQ5waxusTuuY75znzOrZvDEI0h9jIbIqw6coKnS0dZkzx7gLBdifcXDv/Kr4CjWfQORf+P7HGuNmiAY22e90IaBD1aD/sO9CjYf9xF8KALq1FVrY3bn6LJwWvcqGRK2btMKQljmpmUHLXohFXVpSMH7NMDB3ULBd2VC9XNIdHjplAWhh3NMKS/bWiZrm1szxxmTnDqf0ztiAvig0rTLdHtdRlhULzs0ZppQALWOwbJtIIjmrmAONGursCnzI3KXS/YjGE9Uvh7+AgCsKtIHrdbe08X41jgzwgD0mbhOQJ2SEvyB4ZEO6NvffeR++TP/E/+J/9L2epvrequU9+M//rT83H5Bc=</latexit>

CNOT :

✓
|0i+ |1ip

2

◆✓
|0i � |1ip

2

◆
�!

✓
|0i � |1ip

2

◆✓
|0i � |1ip

2

◆

<latexit sha1_base64="W0E9M7TgV2zY+lQZh2HH+v8GXU8=">AAAC4XicnVJNbxMxEPUuXyV8pXDkMiJCKkKsvEtSGk4VvXCCIjVtpWyIvI53Y9VrL/YsKNqmJy4cQIgr/4ob/4QjThokQFRIHcnS85t5HvuNs0pJh5R+D8ILFy9dvrJ2tXXt+o2bt9rrt/edqS0XA26UsYcZc0JJLQYoUYnDygpWZkocZEc7i/zBW2GdNHoPZ5UYlazQMpecoafG7R9NakvYefFybw4nT09SJXKEDUhzy3hzTFPLdKEEPITjeIXnTereWIRkDqmVxRThAZwle/Q/mdHFcsOsNe/Oecz5VON2h0Y02ep1E6BR0qP9uO9Bj8b9zS7EEV1Gh6xid9z+lk4Mr0uhkSvm3DCmFY4aZlFy36GV1k5UjB+xQgw91KwUbtQsJzSH+56ZQG6sXxphyf6uaFjp3KzMfGXJcOr+zi3If+WGNeZbo0bqqkah+WmjvFaABhbjhom0gqOaecC4lf6uwKfMG4X+U7S8Cb9eCmeD/SSKH0fJq25n+9nKjjVyl9wjGyQmT8g2eU52yYDw4HXwPvgYfAp5+CH8HH45LQ2DleYO+SPCrz8BaNblyA==</latexit>

Phase Kick-Back to control register

CNOT : |0i
✓
|0i � |1ip

2

◆
�! |0i

✓
|0i � |1ip

2

◆

<latexit sha1_base64="ZnAoQtF7k5Ot9r4zKQBUO4iWcps=">AAACiHicpVFNbxMxEPUuLZTw0UCPXEaNkIoQK++S0IZT1V56okVq2krZKPI63o1Vr73Ys6Bom/6V/idu/Js6aVABwYmRLD2/mTdjv8kqJR1S+iMIH6ytP3y08bj15Omz55vtFy/PnKktFwNulLEXGXNCSS0GKFGJi8oKVmZKnGeXh4v8+VdhnTT6FGeVGJWs0DKXnKGnxu2bJrUlHH46Pp1ff7yGK5papgslIFUiR9iBNLeMN/f8O7iKV3jepO6LRUjmkFpZTBHeeJnRxfLCrDXf/rvhuN2hEU32et0EaJT0aD/ue9Cjcf9DF+KILqNDVnEybn9PJ4bXpdDIFXNuGNMKRw2zKLmf0EprJyrGL1khhh5qVgo3apZGzuG1ZyaQG+uPRliyvyoaVjo3KzNfWTKcuj9zC/JvuWGN+d6okbqqUWh+NyivFaCBxVZgIq3gqGYeMG6lfyvwKfNGod9dy5vw86fwb3CWRPH7KPnc7ewfrOzYIK/INtkhMdkl++SInJAB4cF68DboBr2wFdJwN+zflYbBSrNFfovw4Bb4PcMu</latexit>

CNOT : |1i
✓
|0i � |1ip

2

◆
�! |1i

✓
(�1)

✓
|0i � |1ip

2

◆◆
= �|1i

✓
|0i � |1ip

2

◆

<latexit sha1_base64="3SmA6itSx5pcEr/63i+i1gLL7KU=">AAAC4nicnVJNbxMxEPUuXyV8BThyGREhpYesvNsEGiSkil44QZGatlI2iryOd2PV613sWVC0TW9cOIAQV34VN34KN5w0UQGVA4xk6c2bmTf2jJNSSYuUfvf8S5evXL22cb1x4+at23ead+8d2KIyXAx4oQpzlDArlNRigBKVOCqNYHmixGFyvLuIH74VxspC7+OsFKOcZVqmkjN01Lj5o45NDrsvX+3PT5+ewkkYG6YzJSBWIkVoQ5waxusTuuY75znzOrZvDEI0h9jIbIqw6coKnS0dZkzx7gLBdifcXDv/Kr4CjWfQORf+P7HGuNmiAY22e90IaBD1aD/sO9CjYf9xF8KALq1FVrY3bn6LJwWvcqGRK2btMKQljmpmUHLXohFXVpSMH7NMDB3ULBd2VC9XNIdHjplAWhh3NMKS/bWiZrm1szxxmTnDqf0ztiAvig0rTLdHtdRlhULzs0ZppQALWOwbJtIIjmrmAONGursCnzI3KXS/YjGE9Uvh7+AgCsKtIHrdbe08X41jgzwgD0mbhOQJ2SEvyB4ZEO6NvffeR++TP/E/+J/9L2epvrequU9+M//rT83H5Bc=</latexit>

CNOT :

✓
|0i+ |1ip

2

◆✓
|0i � |1ip

2

◆
�!

✓
|0i � |1ip

2

◆✓
|0i � |1ip

2

◆

<latexit sha1_base64="W0E9M7TgV2zY+lQZh2HH+v8GXU8=">AAAC4XicnVJNbxMxEPUuXyV8pXDkMiJCKkKsvEtSGk4VvXCCIjVtpWyIvI53Y9VrL/YsKNqmJy4cQIgr/4ob/4QjThokQFRIHcnS85t5HvuNs0pJh5R+D8ILFy9dvrJ2tXXt+o2bt9rrt/edqS0XA26UsYcZc0JJLQYoUYnDygpWZkocZEc7i/zBW2GdNHoPZ5UYlazQMpecoafG7R9NakvYefFybw4nT09SJXKEDUhzy3hzTFPLdKEEPITjeIXnTereWIRkDqmVxRThAZwle/Q/mdHFcsOsNe/Oecz5VON2h0Y02ep1E6BR0qP9uO9Bj8b9zS7EEV1Gh6xid9z+lk4Mr0uhkSvm3DCmFY4aZlFy36GV1k5UjB+xQgw91KwUbtQsJzSH+56ZQG6sXxphyf6uaFjp3KzMfGXJcOr+zi3If+WGNeZbo0bqqkah+WmjvFaABhbjhom0gqOaecC4lf6uwKfMG4X+U7S8Cb9eCmeD/SSKH0fJq25n+9nKjjVyl9wjGyQmT8g2eU52yYDw4HXwPvgYfAp5+CH8HH45LQ2DleYO+SPCrz8BaNblyA==</latexit>

CNOT : |bi
✓
|0i � |1ip

2

◆
�! (�1)

b|bi
✓
|0i � |1ip

2

◆

<latexit sha1_base64="od6455l7yM8sdSZETWw7H9ySggU=">AAACkHiclVFNbxMxEPUuXyVQGsqRy4gIKT105d0mkCAQhV4QByhS01bKhsjreDdWvd7FngVFm/Tv8H+48W9w0kR8CA6MZOn5zbwZ+01SKmmR0u+ef+36jZu3tm437tzdvrfTvL97aovKcDHghSrMecKsUFKLAUpU4rw0guWJEmfJxdEyf/ZZGCsLfYKzUoxylmmZSs7QUePm1zo2ORy9e3+yuHx2CfMkNkxnSkCsRIrQhjg1jNdzuuH3YR6u8aKO7SeDEC0gNjKbIuw5WaGz1YUZU3wBaO+Hex+Tn303jf+vb2PcbNGARr1uJwIaRF3aD/sOdGnYf9KBMKCraJF1HI+b3+JJwatcaOSKWTsMaYmjmhmU3I1oxJUVJeMXLBNDBzXLhR3VK0MX8NgxE0gL445GWLG/KmqWWzvLE1eZM5zaP3NL8m+5YYVpb1RLXVYoNL8alFYKsIDldmAijeCoZg4wbqR7K/Apc06h2+HShM1P4d/gNArCgyD60Gkdvl7bsUUekkekTULylBySN+SYDAj3tr0D77n3wt/1e/5L/9VVqe+tNQ/Ib+G//QHn0cV7</latexit>

Phase Kick-Back to control register

CNOT : (↵0|0i+ ↵1|1i)
✓
|0i � |1ip

2

◆
�! (↵0|0i � ↵1|1i)

✓
|0i � |1ip

2

◆

<latexit sha1_base64="W/NqK9M4lKxK0sR5+FwmgIoL5JQ=">AAAC4nicnVJNbxMxEPUuXyV8NIUjlxERUhFi5V0S2nCq6IUTFKlpK8XRyut4N1a93sX2gqJteuulBxDiyq/ixk/hhpMm6YfohZEsPb2ZN8+ecVJKYSzGvz3/xs1bt++s3G3cu//g4Wpz7dGeKSrNeI8VstAHCTVcCsV7VljJD0rNaZ5Ivp8cbk/z+5+5NqJQu3Zc8kFOMyVSwah1VNz8UxOdw/b7D7sTOH5zTCRPLawDobIc0RgfYaKpyiSHFwsuPAoXHNEiG1l4DrDUpZqy+lz1EpbVk5qYT9pCNFnqiCxUNsNU6+ILXHWHi42ut/8/87jZwgGONjvtCHAQdXA37DrQwWH3dRvCAM+iheaxEzd/kWHBqpwryyQ1ph/i0g5qqq1gzqFBKsNLyg5pxvsOKppzM6hnK5rAM8cMIS20O8rCjL2oqGluzDhPXGVO7chczU3Jf+X6lU03B7VQZWW5YmdGaSXBFjDdNwyF5szKsQOUaeHuCmxE3aCs+xUNN4TFS+F6sBcF4asg+thubb2dj2MFPUFP0ToK0QbaQu/QDuoh5sXeiffV++YP/VP/u//jrNT35prH6FL4P/8C67Tk+A==</latexit>

Z-operation on control qubit (phase kick-back to
control register).

Phase Kick-Back to control register

Quantum Phase Estimation

Quantum Fourier Transform

Quantum Fourier Transform

Quantum Fourier Transform

Quantum Fourier Transform

How many operations do we have to do for M X M matrix?

If we need only probability, we don’t see any difference

Quantum Fourier Transform

What is a quantum operational form QFT ?

Inverse Quantum Fourier Transform

Quantum Phase Estimation

Quantum Phase Estimation

Quantum Phase Estimation

Quantum Phase Estimation

Grover’s Search Algorithm (Unstructured database)

Grover’s Search Algorithm (quadratic speedup) (Unstructured database)

Intuition for a quadratic speedup (heuristic argument)

Let's take a database of N items and assign a number to each item :

These are all real numbers in the classical case for which we will assign a probability for each item i-1, 1, 2,3, ……… N

Probability of finding ith item

Good chance of finding item index m when pm = O(N)

In the quantum case, probabilities are defined using amplitudes in the wavefunction, which are in general
complex numbers.

Implies

Grover’s Search Algorithm (Unstructured database)

Define the problem using quantum states

N = 2n elements can be represented using n qubits

Grover’s Search Algorithm (Unstructured database)

Phase rotation operator

Grover’s Search Algorithm (Unstructured database)

Diffusion operator

Grover’s Search Algorithm (Unstructured database)

Grover’s Search Algorithm (Circuit from book Nelsen and Chuang)

Grover’s Search Algorithm (Geometrical picture)

The amplitude of z is increased

Quantum Simulation Algorithm

Simulation of Hamiltonian

◼ We want to simulate the evolution
𝜓𝑡 = 𝑒−𝑖𝐻𝑡|𝜓0〉

◼ The Hamiltonian is a sum of terms:

𝐻 = ෍

ℓ=1

𝑀

𝐻ℓ

◼ We can perform
𝑒−𝑖𝐻ℓ𝑡

◼ For short times we can use
𝑒−𝑖𝐻1𝛿𝑡𝑒−𝑖𝐻2𝛿𝑡 … 𝑒−𝑖𝐻𝑀−1𝛿𝑡𝑒−𝑖𝐻𝑀𝛿𝑡 ≈ 𝑒−𝑖𝐻𝛿𝑡

◼ For long times
𝑒−𝑖𝐻1𝑡/𝑟𝑒−𝑖𝐻2𝑡/𝑟 … 𝑒−𝑖𝐻𝑀𝑡/𝑟 𝑟

≈ 𝑒−𝑖𝐻𝑡

◼ For short times we can use
𝑒−𝑖𝐻1𝛿𝑡𝑒−𝑖𝐻2𝛿𝑡 … 𝑒−𝑖𝐻𝑀−1𝛿𝑡𝑒−𝑖𝐻𝑀𝛿𝑡 ≈ 𝑒−𝑖𝐻𝛿𝑡

◼ This approximation is because
𝑒−𝑖𝐻1𝛿𝑡𝑒−𝑖𝐻2𝛿𝑡 … 𝑒−𝑖𝐻𝑀−1𝛿𝑡𝑒−𝑖𝐻𝑀𝛿𝑡

= 𝕀 − 𝑖𝐻1𝛿𝑡 + 𝑂 𝛿𝑡2 𝕀 − 𝑖𝐻2𝛿𝑡 + 𝑂 𝛿𝑡2 …

 … 𝕀 − 𝑖𝐻𝑀𝛿𝑡 + 𝑂 𝛿𝑡2

= 𝕀 − 𝑖𝐻1𝛿𝑡 − 𝑖𝐻2𝛿𝑡 … − 𝑖𝐻𝑀𝛿𝑡 + 𝑂 𝛿𝑡2

= 𝕀 − 𝑖𝐻𝛿𝑡 + 𝑂 𝛿𝑡2

= 𝑒−𝑖𝐻𝛿𝑡 + 𝑂(𝛿𝑡2)

◼ If we divide long time 𝑡 into 𝑟 intervals, then
𝑒−𝑖𝐻𝑡 = 𝑒−𝑖𝐻𝑡/𝑟 𝑟

= 𝑒−𝑖𝐻1𝑡/𝑟𝑒−𝑖𝐻2𝑡/𝑟 … 𝑒−𝑖𝐻𝑀𝑡/𝑟 + 𝑂 𝑡/𝑟 2 𝑟

 = 𝑒−𝑖𝐻1𝑡/𝑟𝑒−𝑖𝐻2𝑡/𝑟 … 𝑒−𝑖𝐻𝑀𝑡/𝑟 𝑟
+ 𝑂 𝑡2/𝑟

◼ Typically, we want to simulate a system with some maximum allowable
error 𝜀.

◼ Then we need 𝑟 ∝ 𝑡2/𝜀.

Simulation of Hamiltonian

Quantum Simulation Algorithm
Quantum walk

Continuous walk on a graph (Classical)

The walk position is any node on the
graph.

Describe the generator matrix 𝐾 by

𝐾𝑎𝑎′ = ቐ

𝛾,
0,

−𝑑 𝑎 𝛾,

𝑎 ≠ 𝑎′, 𝑎𝑎′ ∈ 𝐺
𝑎 ≠ 𝑎′, 𝑎𝑎′ ∉ 𝐺

𝑎 = 𝑎′

The quantity 𝑑(𝑎) is the number of
edges incident on vertex 𝑎.

An edge between 𝑎 and 𝑎′ is denoted
𝑎𝑎′.

The probability distribution for a
continuous walk has the differential

equation

𝑑𝑝𝑎 𝑡

𝑑𝑡
= ෍

𝑎′

𝐾𝑎𝑎′𝑝𝑎′(𝑡)

Quantum walk on a graph

𝑑𝑝𝑎 𝑡

𝑑𝑡
= ෍

𝑎′

𝐾𝑎𝑎′𝑝𝑎′(𝑡)

• Quantum mechanically we have

𝑖
𝑑

𝑑𝑡
𝜓 𝑡 = 𝐻|𝜓 𝑡 〉

𝑖
𝑑

𝑑𝑡
〈𝑎 𝜓 𝑡 = ෍

𝑎′

𝑎 𝐻 𝑎′ 〈𝑎′|𝜓 𝑡 〉

• The natural quantum analogue is

𝑎 𝐻 𝑎′ = 𝐾𝑎𝑎′

• We take

𝑎 𝐻 𝑎′ = ቊ
𝛾,
0,

𝑎 ≠ 𝑎′, 𝑎𝑎′ ∈ 𝐺
otherwise.

• Probability is conserved because 𝐻 is Hermitian.

Quantum walk on a graph

• The goal is to traverse the graph from entrance to
exit.

• Classically the random walk will take exponential
time.

• For the quantum walk, define a superposition state

col 𝑗 =
1

𝑁𝑗
σ𝑎∈column 𝑗 |𝑎〉

 𝑁𝑗 = ൝
2𝑗 0 ≤ 𝑗 ≤ 𝑛

22𝑛+1−𝑗 𝑛 + 1 ≤ 𝑗 ≤ 2𝑛 + 1

• On these states the matrix elements of the
Hamiltonian are

• col 𝑗 𝐻 col 𝑗 ± 1 = 2𝛾

entrance
exit

Quantum walk on a graph

entrance exit

• Add random connections between the two
trees.

• All vertices (except entrance and exit) have
degree 3.

• Again using column states, the matrix
elements of the Hamiltonian are

col 𝑗 𝐻 col 𝑗 ± 1 = ൝
2𝛾 𝑗 ≠ 𝑛

2𝛾 𝑗 = 𝑛

• This is a line with a defect.

• There are reflections off the defect, but the
quantum walk still reaches the exit efficiently.

Continuous-time Quantum walk on a graph

CTQW will simulate the Schrodinger equation (Hamiltonian of that form)

Quantum walks

Quantum analog of classical random walks

Controllable quantum evolution in discrete space

Operational (algorithmic) approach to control quantum dynamics
- a tool for quantum algorithms and quantum simulations

Quantum walks

Quantum analog of classical random walks

Controllable quantum evolution in discrete space

Operational (algorithmic) approach to control quantum dynamics
- a tool for quantum algorithms and quantum simulations

Quantum walks

Quantum analog of classical random walks

Controllable quantum evolution in discrete space

Operational (algorithmic) approach to control quantum dynamics
- a tool for quantum algorithms and quantum simulations

Classical random walk and stochastic problems

Classical random walk

Classical random walk and stochastic problems

Classical random walk

Classical random walk and stochastic problems

Classical random walk

Quantum walk

Classical random walk

Quantum walk

Continuous-time quantum walk

• CTQW has its position space defined by a graph �(V ,E)

• Adjacency matrix Aij is defined on � :

Aij :=

(
1 edge (i , j) 2 E

0 otherwise

The vertices are labeled by the computational basis states {|1i , |2i , ..., |Ni}

• Hamiltonian H� :

H� = �L = �(D � A),

=) H�ij =

8
><

>:

�� i 6= j , (i , j) 2 E

0 i 6= j , (i , j) /2 E

dii� i = j ,

Continuous-time quantum walk

• CTQW has its position space defined by a graph �(V ,E)

• Adjacency matrix Aij is defined on � :

Aij :=

(
1 edge (i , j) 2 E

0 otherwise

The vertices are labeled by the computational basis states {|1i , |2i , ..., |Ni}

• Hamiltonian H� :

H� = �L = �(D � A),

=) H�ij =

8
><

>:

�� i 6= j , (i , j) 2 E

0 i 6= j , (i , j) /2 E

dii� i = j ,

Continuous-time quantum walk

• CTQW has its position space defined by a graph �(V ,E)

• Adjacency matrix Aij is defined on � :

Aij :=

(
1 edge (i , j) 2 E

0 otherwise

The vertices are labeled by the computational basis states {|1i , |2i , ..., |Ni}

• Hamiltonian H� :

H� = �L = �(D � A),

=) H�ij =

8
><

>:

�� i 6= j , (i , j) 2 E

0 i 6= j , (i , j) /2 E

dii� i = j ,

Continuous-time quantum walk

• CTQW has its position space defined by a graph �(V ,E)

• Adjacency matrix Aij is defined on � :

Aij :=

(
1 edge (i , j) 2 E

0 otherwise

The vertices are labeled by the computational basis states {|1i , |2i , ..., |Ni}

• Hamiltonian H� :

H� = �L = �(D � A),

=) H�ij =

8
><

>:

�� i 6= j , (i , j) 2 E

0 i 6= j , (i , j) /2 E

dii� i = j ,

Discrete-time quantum walk

• Walk is defined on the Hilbert space H = Hc ⌦Hp

Hc (particle) is spanned by | "i and | #i

Hp (position) is spanned by |ji, j 2 Z

• Initial state :| ini = [cos(�)| "i+ e
i⌘ sin(�)| #i]⌦ |j = 0i

• Evolution :

Coin operation : C (✓) =


cos(✓) � i sin(✓)

�i sin(✓) cos(✓)

�

Conditional unitary shift operation S :

S =
P

j2Z

h
| "ih" |⌦ |j � 1ihj |+ | #ih# |⌦ |j + 1ihj |

i

state | "i moves to the left and state | #i moves to the right

Discrete-time quantum walk

• Walk is defined on the Hilbert space H = Hc ⌦Hp

Hc (particle) is spanned by | "i and | #i

Hp (position) is spanned by |ji, j 2 Z

• Initial state :| ini = [cos(�)| "i+ e
i⌘ sin(�)| #i]⌦ |j = 0i

• Evolution :

Coin operation : C (✓) =


cos(✓) � i sin(✓)

�i sin(✓) cos(✓)

�

Conditional unitary shift operation S :

S =
P

j2Z

h
| "ih" |⌦ |j � 1ihj |+ | #ih# |⌦ |j + 1ihj |

i

state | "i moves to the left and state | #i moves to the right

Discrete-time quantum walk

• Walk is defined on the Hilbert space H = Hc ⌦Hp

Hc (particle) is spanned by | "i and | #i

Hp (position) is spanned by |ji, j 2 Z

• Initial state :| ini = [cos(�)| "i+ e
i⌘ sin(�)| #i]⌦ |j = 0i

• Evolution :

Coin operation : C (✓) =


cos(✓) � i sin(✓)

�i sin(✓) cos(✓)

�

Conditional unitary shift operation S :

S =
P

j2Z

h
| "ih" |⌦ |j � 1ihj |+ | #ih# |⌦ |j + 1ihj |

i

state | "i moves to the left and state | #i moves to the right

Discrete-time quantum walk

• Walk is defined on the Hilbert space H = Hc ⌦Hp

Hc (particle) is spanned by | "i and | #i

Hp (position) is spanned by |ji, j 2 Z

• Initial state :| ini = [cos(�)| "i+ e
i⌘ sin(�)| #i]⌦ |j = 0i

• Evolution :

Coin operation : C (✓) =


cos(✓) � i sin(✓)

�i sin(✓) cos(✓)

�

Conditional unitary shift operation S :

S =
P

j2Z

h
| "ih" |⌦ |j � 1ihj |+ | #ih# |⌦ |j + 1ihj |

i

state | "i moves to the left and state | #i moves to the right

Quantum walk

• Each step of QW : W = S(C (✓)⌦)

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Particle position

P
ro

b
a
b
ili

ty

Quantum walk
Classical random walk

100 step of CRW and QW [S(C(⇡/4)⌦)]
100

on a particle with initial state

1p
2
(| "i+ i | #i)

• G. V. Riazanov (1958), R. Feynman (1986)
• K.R. Parthasarathy, Journal of applied probability 25, 151-166 (1988)
•Y. Aharonov, L. Davidovich and N. Zugury, Phys. Rev. A, 48, 1687 (1993)

From discrete-time quantum walk to relativistic equations
:Klein-Gordon, Dirac

(free quantum field dynamics)

Quantum simulations using quantum walks

Symmetric evolution of DQW and hyperbolic PDE

| ini =
1p
2

h
| "i± i | #i

i
⌦ |x = 0i

B(✓) =


cos(✓) sin(✓)

� sin(✓) cos(✓)

�

| ini =
1p
2

h
| "i± | #i

i
⌦ |x = 0i

B(✓) =


cos(✓) �i sin(✓)

�i sin(✓) cos(✓)

�

In the form of left moving and right moving component

 0

x,t+1 = cos(✓) 0

x+1,t � i sin(✓) 1

x�1,t

 1

x,t+1 = cos(✓) 1

x�1,t � i sin(✓) 0

x+1,t

Di↵erential equation form in continuum limit :Klein-Gordon equation


@2

@t2
� cos(✓)

@2

@x2
+ 2[1� cos(✓)]

�
 0(1)

x,t = 0

CMC, SB and RS, PRA, 81 062340 (2010)

Quantum simulations using quantum walks

Symmetric evolution of DQW and hyperbolic PDE

| ini =
1p
2

h
| "i± i | #i

i
⌦ |x = 0i

B(✓) =


cos(✓) sin(✓)

� sin(✓) cos(✓)

�

| ini =
1p
2

h
| "i± | #i

i
⌦ |x = 0i

B(✓) =


cos(✓) �i sin(✓)

�i sin(✓) cos(✓)

�

In the form of left moving and right moving component

 0

x,t+1 = cos(✓) 0

x+1,t � i sin(✓) 1

x�1,t

 1

x,t+1 = cos(✓) 1

x�1,t � i sin(✓) 0

x+1,t

Di↵erential equation form in continuum limit :Klein-Gordon equation


@2

@t2
� cos(✓)

@2

@x2
+ 2[1� cos(✓)]

�
 0(1)

x,t = 0

CMC, SB and RS, PRA, 81 062340 (2010)

Quantum simulations using quantum walks

Symmetric evolution of DQW and hyperbolic PDE

| ini =
1p
2

h
| "i± i | #i

i
⌦ |x = 0i

B(✓) =


cos(✓) sin(✓)

� sin(✓) cos(✓)

�

| ini =
1p
2

h
| "i± | #i

i
⌦ |x = 0i

B(✓) =


cos(✓) �i sin(✓)

�i sin(✓) cos(✓)

�

In the form of left moving and right moving component

 0

x,t+1 = cos(✓) 0

x+1,t � i sin(✓) 1

x�1,t

 1

x,t+1 = cos(✓) 1

x�1,t � i sin(✓) 0

x+1,t

Di↵erential equation form in continuum limit :Klein-Gordon equation


@2

@t2
� cos(✓)

@2

@x2
+ 2[1� cos(✓)]

�
 0(1)

x,t = 0

CMC, SB and RS, PRA, 81 062340 (2010)

Quantum simulations using quantum walks

Symmetric evolution of DQW and hyperbolic PDE

| ini =
1p
2

h
| "i± i | #i

i
⌦ |x = 0i

B(✓) =


cos(✓) sin(✓)

� sin(✓) cos(✓)

�

| ini =
1p
2

h
| "i± | #i

i
⌦ |x = 0i

B(✓) =


cos(✓) �i sin(✓)

�i sin(✓) cos(✓)

�

In the form of left moving and right moving component

 0

x,t+1 = cos(✓) 0

x+1,t � i sin(✓) 1

x�1,t

 1

x,t+1 = cos(✓) 1

x�1,t � i sin(✓) 0

x+1,t

Di↵erential equation form in continuum limit :Klein-Gordon equation


@2

@t2
� cos(✓)

@2

@x2
+ 2[1� cos(✓)]

�
 0(1)

x,t = 0

CMC, SB and RS, PRA, 81 062340 (2010)

Quantum simulations using quantum walks

Dirac equation from Discrete-time QW

Dirac equation

✓
i~ @

@t
� ĤD

◆
 =

✓
i~ @

@t
+ i~c↵̂ ·

@

@x
� �̂mc

2

◆
 = 0

From DTQW when ✓ = 0, the expression in continuum limit takes the form


i~ @

@t
� i~�3

@

@x

�
 (x , t) = 0

David Mayer (1996) and Fredrick Strauch (2006)

For ✓ 6= 0

Giuseppe Molfetta - Fabrice Debbasch (2013) and CMC (2013)

Quantum simulations using quantum walks

Dirac equation from Discrete-time QW

Dirac equation

✓
i~ @

@t
� ĤD

◆
 =

✓
i~ @

@t
+ i~c↵̂ ·

@

@x
� �̂mc

2

◆
 = 0

From DTQW when ✓ = 0, the expression in continuum limit takes the form


i~ @

@t
� i~�3

@

@x

�
 (x , t) = 0

David Mayer (1996) and Fredrick Strauch (2006)

For ✓ 6= 0

Giuseppe Molfetta - Fabrice Debbasch (2013) and CMC (2013)

Quantum simulations using quantum walks

Quantum simulation of Dirac equation

Dirac equation

(
i~ �

�t
2 ĤD

8
� =

(
i~ �

�t
+ i~c�̂ ·

�

�x
2 ✓̂mc

2

8
� = 0

Dirac cellular automaton (DCA) from discretization of Dirac equation :

UDCA =

(
�T2 2i✓
2i✓ �T+

8
= �{T2 i |�) 6�|+ T+ i |⌦) 6⌦|}2 i✓(I i @x)

� corresponds to the hopping strength, ✓ corresponds to the mass term.

T2 = |x 2 1)6x | ; | T+ = |x + 1)6x |

�(x) " �(x 2 1) ; �(x) " �(x + 1)

Associated Hamiltonian in momentum basis, produces DH,

H(k) =
a

c↵

(
2kc mc

2

mc
2

kc

8

with the identification ✓ = mac
~ , k is a eigenvalue of momentum operator.

Quantum simulation of Dirac equation

Dirac equation

(
i~ �

�t
2 ĤD

8
� =

(
i~ �

�t
+ i~c�̂ ·

�

�x
2 ✓̂mc

2

8
� = 0

Dirac cellular automaton (DCA) from discretization of Dirac equation :

UDCA =

(
�T2 2i✓
2i✓ �T+

8
= �{T2 i |�) 6�|+ T+ i |⌦) 6⌦|}2 i✓(I i @x)

� corresponds to the hopping strength, ✓ corresponds to the mass term.

T2 = |x 2 1)6x | ; | T+ = |x + 1)6x |

�(x) " �(x 2 1) ; �(x) " �(x + 1)

Associated Hamiltonian in momentum basis, produces DH,

H(k) =
a

c↵

(
2kc mc

2

mc
2

kc

8

with the identification ✓ = mac
~ , k is a eigenvalue of momentum operator.

Quantum simulation of Dirac equation

Dirac equation

(
i~ �

�t
2 ĤD

8
� =

(
i~ �

�t
+ i~c�̂ ·

�

�x
2 ✓̂mc

2

8
� = 0

Dirac cellular automaton (DCA) from discretization of Dirac equation :

UDCA =

(
�T2 2i✓
2i✓ �T+

8
= �{T2 i |�) 6�|+ T+ i |⌦) 6⌦|}2 i✓(I i @x)

� corresponds to the hopping strength, ✓ corresponds to the mass term.

T2 = |x 2 1)6x | ; | T+ = |x + 1)6x |

�(x) " �(x 2 1) ; �(x) " �(x + 1)

Associated Hamiltonian in momentum basis, produces DH,

H(k) =
a

c↵

(
2kc mc

2

mc
2

kc

8

with the identification ✓ = mac
~ , k is a eigenvalue of momentum operator.

DTQW

The general form of the evolution operator

UQW =

(
cos(�) T2 2i sin(�) T2

2i sin(�) T+ cos(�) T+

8

UQW = cos(�)
>
T2 i |�) 6�|+ T+ i |⌦) 6⌦|

<
+ sin(�)

>
T2 i |�) 6⌦|) + T+ i |⌦) 6�|

<

UDCA =

(
�T2 2i✓
2i✓ �T+

8
= �{T2 i |�) 6�|+ T+ i |⌦) 6⌦|}2 i✓(I i @x)

By taking the value of � " 0 the o -diagonal terms can be ignored and a massless
DH can be recovered.

David Mayer (1996) ; Fredrick Strauch (2006) ; CSB (2010)

DTQW

The general form of the evolution operator

UQW =

(
cos(�) T2 2i sin(�) T2

2i sin(�) T+ cos(�) T+

8

UQW = cos(�)
>
T2 i |�) 6�|+ T+ i |⌦) 6⌦|

<
+ sin(�)

>
T2 i |�) 6⌦|) + T+ i |⌦) 6�|

<

UDCA =

(
�T2 2i✓
2i✓ �T+

8
= �{T2 i |�) 6�|+ T+ i |⌦) 6⌦|}2 i✓(I i @x)

By taking the value of � " 0 the o -diagonal terms can be ignored and a massless
DH can be recovered.

David Mayer (1996) ; Fredrick Strauch (2006) ; CSB (2010)

DTQW

The general form of the evolution operator

UQW =

(
cos(�) T2 2i sin(�) T2

2i sin(�) T+ cos(�) T+

8

UQW = cos(�)
>
T2 i |�) 6�|+ T+ i |⌦) 6⌦|

<
+ sin(�)

>
T2 i |�) 6⌦|) + T+ i |⌦) 6�|

<

UDCA =

(
�T2 2i✓
2i✓ �T+

8
= �{T2 i |�) 6�|+ T+ i |⌦) 6⌦|}2 i✓(I i @x)

By taking the value of � " 0 the o -diagonal terms can be ignored and a massless
DH can be recovered.

David Mayer (1996) ; Fredrick Strauch (2006) ; CSB (2010)

DTQW and DCA

DTQW and DCA

DTQW and DCA

DTQW and DCA

DTQW and DCA

DE with mass term : Split-step

C (�1) =

(
cos(�1) 2i sin(�1)

2i sin(�1) cos(�1)

8
; C (�2) =

(
cos(�2) 2i sin(�2)

2i sin(�2) cos(�2)

8

and a two half-shift operators,

S2 =

(
T2 0
0 I

8
, S+ =

(
I 0
0 T+

8
S =

(
T2 0
0 T+

8

T2 = |j 2 1)6j | ; T+ = |j + 1)6j |

USQW = S+

:
C (�2)i I


S2

:
C (�1)i I


S

:
C (�2)i I


S

:
C (�1)i I



DE with mass term : Split-step

C (�1) =

(
cos(�1) 2i sin(�1)

2i sin(�1) cos(�1)

8
; C (�2) =

(
cos(�2) 2i sin(�2)

2i sin(�2) cos(�2)

8

and a two half-shift operators,

S2 =

(
T2 0
0 I

8
, S+ =

(
I 0
0 T+

8
S =

(
T2 0
0 T+

8

T2 = |j 2 1)6j | ; T+ = |j + 1)6j |

USQW = S+

:
C (�2)i I


S2

:
C (�1)i I


S

:
C (�2)i I


S

:
C (�1)i I



DE with mass term : Split-step

C (�1) =

(
cos(�1) 2i sin(�1)

2i sin(�1) cos(�1)

8
; C (�2) =

(
cos(�2) 2i sin(�2)

2i sin(�2) cos(�2)

8

and a two half-shift operators,

S2 =

(
T2 0
0 I

8
, S+ =

(
I 0
0 T+

8
S =

(
T2 0
0 T+

8

T2 = |j 2 1)6j | ; T+ = |j + 1)6j |

USQW = S+

:
C (�2)i I


S2

:
C (�1)i I


S

:
C (�2)i I


S

:
C (�1)i I



DCA and SS-QW

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

Position

P
ro

b
a
b
ili

ty

DTQW

SS−DTQW

−100 0 100
0

0.05

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

0.1

Position

P
ro

b
a
b
ili

ty

θ
1
 = π/12

θ
1
=π/3

θ
1
 = 5π/12

θ
2
 = π/4

SSQW :
S+C (�2)S2C (�1) when (�1 = 0, �2 = �/4) = DCA

USSQW =

(
cos(�2)T2 2i sin(�2)I

2i sin(�2)I cos(�2)T+

8

which is in the same form as UDCA where ✓ = sin(�2) #
mca
~ and � = cos(�2).

CMC (2013) ; CMC & Mallick (2015) ; SS et. al. (2021)

DTQW/ DCA on circuit-based quantum processor

Single and two qubit gates

Identity : =

(
1 0
0 1

8

Pauli x : @x = X =

(
0 1
1 0

8

Pauli y : @y = Y =

(
0 2i

i 0

8

CNOT : =

�

PPh

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

i

✓✓◆

Pauli z : @z = Z =

(
1 0
0 21

8

Hadamard : H =
1
h
2

(
1 1
1 21

8

�/8 Phase : T⌘/8 =

(
1 0
0 e

i⌘/4

8

Mapping of position to qubit gates

DTQW/ DCA on circuit-based quantum processor

Single and two qubit gates

Identity : =

(
1 0
0 1

8

Pauli x : @x = X =

(
0 1
1 0

8

Pauli y : @y = Y =

(
0 2i

i 0

8

CNOT : =

�

PPh

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

i

✓✓◆

Pauli z : @z = Z =

(
1 0
0 21

8

Hadamard : H =
1
h
2

(
1 1
1 21

8

�/8 Phase : T⌘/8 =

(
1 0
0 e

i⌘/4

8

Mapping of position to qubit gates

DTQW/ DCA on circuit-based quantum processor

Single and two qubit gates

Identity : =

(
1 0
0 1

8

Pauli x : @x = X =

(
0 1
1 0

8

Pauli y : @y = Y =

(
0 2i

i 0

8

CNOT : =

�

PPh

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

i

✓✓◆

Pauli z : @z = Z =

(
1 0
0 21

8

Hadamard : H =
1
h
2

(
1 1
1 21

8

�/8 Phase : T⌘/8 =

(
1 0
0 e

i⌘/4

8

Mapping of position to qubit gates

Nature Communication 11, 3720 (2020) ; Phys. Rev. A 104, 062401 (2021)

Nature Communication 11, 3720 (2020) ; Phys. Rev. A 104, 062401 (2021)

Directed quantum walks and equivalence

Directed quantum walks and equivalence

Directed quantum walks and equivalence

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

Position

P
ro

b
a
b
ili

ty

SQW

DQW

SSQW

Directed quantum walks and equivalence

−100 −50 0 50 100
0

0.02

0.04

0.06

0.08

Position

P
ro

b
a
b
ili

ty

SQW

DQW

SSQW

◼ Two scenarios:

1. The Hamiltonian is given as a sum of interaction terms:

𝐻 = ෍

𝑗

𝐻𝑗

2. The Hamiltonian is sparse, in that it has no more than 𝑑 nonzero elements in any row or column.

Simulation of Hamiltonians

Standard methods
Decompose the Hamiltonian as

𝐻 = ෍

𝑘=1

𝑀

𝐻𝑘

The individual Hamiltonians 𝐻𝑘 can be limited-dimension interaction
Hamiltonians (Lloyd, 1996).

Approximate evolution for short time as

𝑒−𝑖𝐻𝑇 = ෑ

𝑘=1

𝑀

𝑒−𝑖𝐻𝑘𝑇

For longer times, we divide the time up into many short times

𝑒−𝑖𝐻𝑇 = ෑ

𝑘=1

𝑀

𝑒−𝑖𝐻𝑘𝑇/𝑟

𝑟

Standard methods
• More generally, we would like to be able to simulate sparse

Hamiltonians.

• Positions and values of non-zero elements are given by oracle.

• This enables application to many other problems.

𝑈𝐵𝐵

|𝑗, 𝑘〉|𝑗, 𝑘〉

|0〉 |𝐻𝑗𝑘〉

Standard methods
• The individual 𝐻𝑘 can be 1-sparse Hamiltonians obtained by a

decomposition technique (2003).

• Efficiency can be increased by improved decomposition techniques (2007;
2010).

• Higher-order decomposition formulae can also be used to obtain greater
efficiency (2007).

Quantities involved in simulation
We want to simulation quantum evolution under a Hamiltonian

𝑑

𝑑𝑡
𝜓 = −𝑖𝐻(𝑡) 𝜓

➢ 𝜀 – allowable error in the simulation

➢𝑇 – time of evolution under the Hamiltonian

➢𝑑 – sparseness, i.e. maximum number of nonzero elements

➢ 𝐻 – norm of the Hamiltonian to be simulated

➢ 𝐻′ – norm of the time-derivative of the Hamiltonian

➢𝑁 – dimension of the system

Standard methods - Limitations

• The scaling is always polynomial in the allowable error, 𝜀.

• The scaling for time-dependent Hamiltonians depends heavily on the
derivatives of the Hamiltonian.

• The scaling in 𝑇 is always superlinear, whereas lower bound is linear in 𝑇.

• The scaling is at best 𝑑3 in the sparseness.

Known results
• It is possible to decompose a sparse Hamiltonian into 𝑂(𝑑2) 1-sparse Hamiltonians with complexity

𝑂(log∗ 𝑛).

• This can be improved to 𝑂(𝑑) Hamiltonians, at the cost of complexity linear in 𝑑.

• Arbitrary order Lie-Trotter-Suzuki formulae can be used to obtain scaling as 𝑂((𝐻 𝑇)1+1/2𝑘) for
arbitrarily large integer 𝑘. The scaling in terms of the allowable error is 𝑂 1

𝜀
1

2𝑘

.

• Using quantum walks without a decomposition enables complexity strictly linear in 𝐻 𝑇, but as scaling
in the error of 𝑂(1/ 𝜀)

.

• Similar scaling can be obtained for time-dependent Hamiltonians, but the complexity now depends on
the higher-order derivatives.

• An algorithm with randomised times enables complexity independent of the derivatives of the
Hamiltonian, at the expense of worse scaling in 𝜀.

1. Decompose Hamiltonian to 1-sparse
• Sparse Hamiltonian has no more than 𝑑 nonzero elements in any row or

column, e.g. 𝑑 = 2

• A 1-sparse Hamiltonian has no more than one nonzero element.

• We could decompose Hamiltonian into 𝐻1 and 𝐻2 shown in blue and yellow.

D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Comm. Math. Phys. 270, 359 (2007).

2. Decompose 1-sparse to self-inverse
• We further divide the 1-sparse Hamiltonian into 𝑋, 𝑌 and 𝑍 components, in

this example for 𝐻1.

• The 𝑋 and 𝑌 components are proportional to Pauli 𝑋 and 𝑌 matrices in each
2 × 2 subspace.

• The 𝑍 component is a phase shift in a 1 × 1 subspace.

off-diagonal real

off-diagonal
imaginary

on-diagonal real

𝐻1

2. Decompose 1-sparse to self-inverse
• Consider just the 𝑋 component. We further decompose it into components of

magnitude 2𝜀𝐻.

Take 𝜀𝐻 = 1/4. Then we can approximate

− 3 ≈ −
1

2
−

1

2
−

1

2
+ 0

𝐻1,𝑋

take component 2

take component 2

2. Decompose 1-sparse to self-inverse
• Consider just the 𝑋 component. We further decompose it into components of

magnitude 2𝜀𝐻.

• Take 𝜀𝐻 = 1/4. Then we can approximate

− 3 ≈ −
1

2
−

1

2
−

1

2
+ 0

𝐻1,𝑋,2

−1/2

−1/2

2. Decompose 1-sparse to self-inverse
• To obtain self-inverse matrices, we want +1 or −1 to appear in each column

once.

• We further expand

1

2
=

1

4
+

1

4
 −

1

2
= −

1

4
−

1

4
 0 =

1

4
−

1

4

𝐻1,𝑋,2

−1/2

−1/2

take first
component

2. Decompose 1-sparse to self-inverse
To obtain self-inverse matrices, we want +1 or −1 to appear in each column
once.

• We further expand

1

2
=

1

4
+

1

4
 −

1

2
= −

1

4
−

1

4
 0 =

1

4
−

1

4

• To make it 1-sparse we fill in on the diagonal as needed.

𝜀𝐻

1

1
1

𝐻1,𝑋,2,+

−1

−1
1

1

3. Trotter expansion
◼ The Hamiltonian evolution is

exp(−𝑖(𝐻1 + 𝐻2)𝑇)

◼ More generally time-dependent evolution

exp −𝑖 න

0

𝑇

𝐻1(𝑡) + 𝐻2(𝑡) 𝑑𝑡

◼ This can be thought of as the limit of a large number, 𝑟, of small intervals.

lim
𝑟→∞

ෑ

𝑗=1

𝑟

𝑒−𝑖𝐻1(𝑡𝑗)𝛿𝑡𝑒−𝑖𝐻2(𝑡𝑗)𝛿𝑡

◼ We can approximate the time evolution using finite 𝑟. The error scales as

𝑂
Λ𝑇 2

𝑟

◼ To bound error by 𝜀, can use

𝑟 ∝
Λ𝑇 2

𝜀

Ttime ordering

𝑡𝑗 = 𝑗𝛿𝑡
𝛿𝑡 = 𝑇/𝑟

Λ = max(𝐻 , 𝐻′)

4. Using CGMSY’09 technique

◼ 𝐻1 = 𝜀𝐻𝑈1, where 𝑈1 is self-inverse, so

𝑒−𝑖𝐻1𝛿𝑡 = 𝕀 cos 𝜃 − 𝑖𝑈1 sin 𝜃

◼ Implement the operation probabilistically with a control qubit.

cos 𝜃 0 − 𝑖 sin 𝜃 |1〉 cos 𝜃 〈0| + sin 𝜃 〈1|

𝑈1
|𝜓〉 𝑒−𝑖𝐻1𝛿𝑡|𝜓〉

𝜃 = 𝜀𝐻𝛿𝑡

R. Cleve, D. Gottesman, M. Mosca, R. Somma, and D. Yonge-Mallo, In Proc. 41st ACM

Symposium on Theory of Computing, pp. 409-416 (2009).

4. Using CGMSY’09 technique

𝑒−𝑖𝐻1𝛿𝑡|𝜓〉

0 〈0|

𝑈1
|𝜓〉

𝑅 𝑃 𝑅𝑅 =
𝛼 𝛽
𝛽 −𝛼

𝛽 = sin 𝜃

𝑃 =
1 0
0 −𝑖

◼ 𝐻1 = 𝜀𝐻𝑈1, where 𝑈1 is self-inverse, so

𝑒−𝑖𝐻1𝛿𝑡 = 𝕀 cos 𝜃 − 𝑖𝑈1 sin 𝜃

◼ Implement the operation probabilistically with a control qubit.

𝜃 = 𝜀𝐻𝛿𝑡

Density Operator

All that we assume is that they behave like classical probabilities (classical uncertainty)

Density Operator

we say we have a pure state. And in this case, it is not necessary to use at all. One
may simply continue to use ket notation.

 A state which is not pure is usually called a mixed state. In this case kets won’t help us and we must use

With this idea, we may now recast all of quantum mechanics in terms of density matrices, instead of kets.

Therefore, most general representation of a quantum system is written in terms of an operator called the
density operator, or density matrix. It is designed in a way that naturally encompasses both quantum and
classical probabilities.

When

Example

angle. The density matrix for this system will then be

For instance, machine can produce

The mixed state will have all these states with some probability.

Example

Interpretation of matrix element in density matrix

Diagonal elements = probabilities

Off-diagonal elements = "coherences"
 (provide info. about relative phase)

Example

We can see the off-diagonal element appearing for the superposition state (coherence / relative phase).

What happens when we don’t look at part of the system ?

When you calculate expectation values, you trace over the system.
If your operators depend only on a subsystem, then it makes no
difference whether you trace over other systems before or after:

Taking this trace over the environment retains only terms diagonal
in the environment variables – i.e., no cross-terms (coherences) remain
if they refer to different states of the environment.

(If there is any way – even in principle – to tell which of two
paths was followed, then no interference may occur.)

s when env is 

s when env is 

Decoherence arise from loss of information

There is still coherence between  and , but if the environment is not part of your
interferometer, you may as well consider it to have "collapsed" to  or  .

This means there is no effective coherence if you look only at the system.

coherence
lost

Decoherence arise from loss of information

Density operators - summary

Please prove this as an exercise

Density operators - summary

Density operators - summary

Evolutions in density operators

The evolution of the closed system is described by a unitary transformation.

When states are evolved, action of unitary operator will be :

When density operators are evolved, action of unitary operator will be :

The evolution of the open systems is described using Kraus operators. We will not discuss that here.

The von Neumann equation : Time evolution o any ket in density operator

Quantum Errors’ and Quantum Error corrections

Classical Errors’ : Binary symmetric channel

Errors in quantum computers

Depolarizing channel

Classical Errors’ : the three bit repetition code

Can I do the same for qubits ?

It appears that we cannot directly transfer the classical error correction techniques to the problem of
quantum error correction for the following three reasons:

1. The no-cloning principle forbids the copying of quantum states

2. Measurement destroys quantum information

3. Quantum states are continuous :
 Therefore, quantum errors are also continuous :

Thus, classical techniques cannot be directly applied to qubit errors.

Nevertheless, with some ingenuity, techniques to correct quantum errors have been developed.

Three qubit bit-flip correction code

The three-bit repetition code guarantees to return the correct bit value, so long as at most one of
the bits in the code is flipped. We now use this as inspiration for the three-qubit bit-flip code, in
which entanglement rather than cloning plays the role of the repetition. That is, we encode the
computational basis states:

The above circuit will result in :

The three-qubit bit-flip code: error detection and recovery

To detect and recover bit-flip errors, we supplement the circuit with two ancillas that we use for error detection:

With this circuit, we can
 detect and recover a single-qubit
bit-flip errors

In the circuit we have made we have made comparative parity-check measurements that tell us only about the error
and not about the quantum state itself, and so these measurements have not destroyed the quantum state.

The three-qubit phase -flip code: error detection and recovery

To detect and recover phase-flip errors, we again supplement the circuit with two ancillas that we use for error detection:

With this circuit, we can
 detect and recover a single-qubit
bit-flip errors

Phase-flip

Phase-flip sends :

The three-qubit bit-flip code: error detection and recovery (Recap)

To detect and recover bit-flip errors, we supplement the circuit with two ancillas that we use for error detection:

With this circuit, we can
 detect and recover a single-qubit
bit-flip errors

In the circuit we have made we have made comparative parity-check measurements that tell us only about the error
and not about the quantum state itself, and so these measurements have not destroyed the quantum state.

The three-qubit phase -flip code: error detection and recovery ((Recap)

To detect and recover phase-flip errors, we again supplement the circuit with two ancillas that we use for error detection:

With this circuit, we can
 detect and recover a single-qubit
bit-flip errors

Phase-flip

Phase-flip sends :

The Shor code - 9-qubit code

The Shor code is a 9-qubit code which is constructed by concatenating the three-qubit bit-flip and
 three-qubit phase-flip codes:

○ Concatenation is an important, often used concept in error correction.

○ The idea is simply to combine the two codes.

 ● Step 1: Apply bit flip code to physical qubit.

 ● Step 2: Apply phase flip code to the logical qubit.

This encodes the computational basis states as follows:

How do we generate a 9-qubit state

Correcting bit-flip with Shor code

The Shor code can detect and correct a bit-flip on any single qubit. For

example, suppose we have an arbitrary quantum state α|0⟩+ β|1⟩. which

we encode with the Shor code as:

If a bit-flip occurs on the first qubit, the state becomes:

Which can be detected (and thus recovered from) by parity-check measurements between the

first three qubits as in the three-qubit bit-flip code. By symmetry we can see that the same

principle applies to all of the nine qubits.

Correcting bit-flip with Shor code

The Shor code can also detect and correct a phase-flip on any single

qubit. If a phase-flip occurs on the first qubit, the state becomes:

The key idea here is to detect which of the three blocks of three qubits has experienced a change

of sign. This is achieved using the circuit shown on the following slide.

We can also correct combinations of bit- and phase-flips in this way.

Circuit for correcting phase-flip with Shor code

Circuit for correcting phase-flip with Shor code

The bit-flip error will be identified by two
parties of each triplet of the qubit

Phase-flip error will be identified by

The depolarising channel

Correcting any single bit-flip with the Shor code

Correcting any single bit-flip with the Shor code ….

We first perform parity-check measurements to detect a bit-flip. The parity check for a bit-flip in the first

block of three qubits requires two ancillas (the first comparing the first and second qubits, the second

comparing the second and third qubits), whose state (after the parity-check CNOTs) we can append to the

Shor code state:

Correcting any single bit-flip with the Shor code ….

If the parity-check measurement outcome is 00, the state collapses to (un-normalised):

In which case there
 is no bit-flip

If the measurement outcome is 10:

In which case a bit-flip
has occurred we can
then correct

Correcting any error by correcting only bit- and phase-flips

Following the bit-flip parity-check measurement (and correction if necessary) we perform a parity-check
measurement to check for a phase flip. Using the same argument as for the bit-flip detection,
 if we measure 0 the state collapses to:

Or if we measure a 1 we get:

i.e., a phase-flip has occurred which we can then correct. Therefore we have recovered the original state.

Therefore performing bit- and phase-flip parity-check measurements collapses a general state into the case where

either the bit / phase flip has occurred or not as per the measurement outcome. This remarkable property allows

us to correct a continuum of errors by performing only bit- and phase-flip checks.

Hamming code

Repetition codes are useful for demonstrating the principle of error correction, but are rather too inefficient to
use in practise. One particularly elegant code is the (7,4) Hamming code, a linear code that encodes a 4-bit
data-word, d, as a 7-bit code-word c.

In coding theory, Hamming (7,4) is a linear error-correcting code that encodes four bits of data into seven bits
by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code
often refers to this specific code that Richard W. Hamming introduced in 1950. At the time, Hamming worked
at Bell Telephone Laboratories and was frustrated with the error-prone punched card reader, which is why he
started working on error-correcting codes.

Code word c= Gd mod 2, where G is the generator matrix:

From Wiki

Any errors are detected by

applying the parity-check

matrix, H, to a given code-

word

https://en.wikipedia.org/wiki/Coding_theory
https://en.wikipedia.org/wiki/Linear_code
https://en.wikipedia.org/wiki/Linear_code
https://en.wikipedia.org/wiki/Linear_code
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Hamming_code
https://en.wikipedia.org/wiki/Richard_W._Hamming
https://en.wikipedia.org/wiki/Bell_Telephone_Laboratories
https://en.wikipedia.org/wiki/Punched_card

Hamming code - example

Four data bit : (1011)

Transmitted code word c

c = Gp =

0110011. will be transmitted in place of 1011

Parity check

z is syndrome vector, it indicated whether an error has
occurred or not. If z is null vector, no error

z = Hc

c1 =c + e

Hamming code

0110011. will be transmitted in place of 1011

z is syndrome vector, it indicated whether an error has
occurred or not. If z is null vector, no error

c1 =c + e

Corrected c1

Hc1

Quantum error correction codes from Hamming code - Steane code

Classical linear codes are efficient, in the sense that code-words are generated by multiplying the data-

word by a matrix, which can be compactly described. There is a technique for using classical linear codes

to find quantum error correction codes. These codes are known as CSS (Calderbank-Shor-Steane) codes

Among them one particular CSS code, the Steane code, which is constructed from the (7,4)

Hamming code and encodes the logical states 0 and 1 as follows:

Quantum error correction codes from Hamming code - Steane code

Classical linear codes are efficient, in the sense that code-words are generated by multiplying the data-

word by a matrix, which can be compactly described. There is a technique for using classical linear codes

to find quantum error correction codes. These codes are known as CSS (Calderbank-Shor-Steane) codes

Among them one particular CSS code, the Steane code, which is constructed from the (7,4)

Hamming code and encodes the logical states 0 and 1 as follows:

Any errors are

detected by applying

the parity-check

matrix, H, to a given

code-word

Quantum error correction codes from Hamming code - Steane code

Classical linear codes are efficient, in the sense that code-words are generated by multiplying the data-

word by a matrix, which can be compactly described. There is a technique for using classical linear codes

to find quantum error correction codes. These codes are known as CSS (Calderbank-Shor-Steane) codes

Among them one particular CSS code, the Steane code, which is constructed from the (7,4)

Hamming code and encodes the logical states 0 and 1 as follows:

Like the Shor code, the Steane code guarantees to correct any bit- and / or phase-flip

that occurs on a single qubit. Thus we can see that it also suppresses the error of the

depolarising channel from pe to O(p2
e).

Summary - QEC

We have seen that there are three obstacles to applying the techniques and principles of

classical error correction directly to quantum error correction, each of which can be worked

around:

• The no-cloning principle means that we cannot simply copy quantum states in repetition
codes – instead, we can use entangling to “copy” the information.

• Measurements destroy quantum information: so instead we design the error correcting codes

so that the measurements only tell us whether an error has occurred, and nothing about the

quantum state itself.

• Quantum errors are continuous, but we have seen that the process of error correction

effectively digitises the errors.

Additionally, we have seen that, in practice, classical error correction codes are typically more
sophisticated and efficient than simple repetition codes, and that these can be used to design

quantum error correction codes, of which the Steane code is an important example.

Recap – Superposition and interference

D2

After first BS :

After second BS :

This simple math shows how interference is
Making photon get detected only at D2

Quantum non-locality

Entanglement and Non-locality

Entangled states are those that cannot be written as a tensor product of separate states
The most famous example is the EPR pair :

Alice will have the first qubit
Bob will have the second qubit
(no constraint on where they should be located)

If Alice makes measurement, Bob’s state also collapses and vice versa – Instantaneous information exchange

Does not violate locality – No information is transferred from Alice to Bob
It's realist because the measurement has a definite outcome

But still, no local realist theory explains this phenomena

John Bell devised an entanglement-based experiment to explain this

Two party setting to explain this

Entanglement and Non-locality

Alice receives input x and Bob receives input y, and they
produce outputs a and b, respectively, that have to be
correlated in a certain way (which depends on the game).
They are not allowed to communicate.

This setting captures all local realist models.

In the quantum model Alice and Bob are allowed to share entangled states, such as EPR-pairs.

The goal is to show that entanglement-based strategies can do things that local realist strategies

cannot.

CHSH game

CHSH: Clauser-Horne-Shimony-Holt

It's impossible to satisfy all four
equations simultaneously
summing them modulo 2 yields 0 = 1

Probabilistically, you can have a

success of ¾ times.

Quantum strategy for CHSH game

CHSH: Clauser-Horne-Shimony-Holt

Alice and Bob are supplied with a shared 2-qubit

system initialized to the entangled state

Recall the unitary operation that rotates the qubit

by angle θ

If x= 0 then Alice applies R(−π/16) to her qubit; and if

x= 1 she applies R(3π/16). Then Alice measures her

qubit in the computational basis and outputs the resulting

bit a. Bob’s procedure is the same, depending on his

input bit y. It is straightforward to calculate that if Alice
rotates by θA and Bob rotates by θB, the state becomes

After the measurements, the probability that

Hence the condition is satisfied

P = 0.85 is higher than what can be achieved classically

CHSH in equality

We will define

if we denote by pxy the probability that above equation

satisfied when the input bits are (x,y), then

Suppose that Charlie generates the input bits at random.

Then there is a very simple strategy that enables Alice

and Bob to win the game three times out of four: they

always choose the output a= b= 0 so that they lose only

if the input is x= y= 1.

the value of ab is +1 when Alice and Bob win and −1 when

they lose.

= 0.853

CHSH in equality …….

If

We will get

Upper bound – Cirel’son bound for a quantum state

For classical, we only get 2

How do we test if
the given state is
entangled or not

Lets take two
photons

entangled in
polarization

degree of
freedom

S = 2.83 for
a = 135, a’ =0,
b = 157.5, b’=22.5

Other ways to measure entanglement

Entanglement Entropy for a bipartite system will be : Concurrence
Negativity

Are other measures

DiVincenzo Criteria - Desired condition

1. A scalable physical system of well-characterized qubits;

2. the ability to initialize the state of the qubits to a simple fiducial state;

3. long (relative) decoherence times, much longer than the gate-operation time;

4. a universal set of quantum gates; and

5. a qubit-specific measurement capability.

Two additional criteria, which are necessary conditions for quantum computer
networkability are

6. the ability to interconvert stationary and flying qubits and

7. the ability to faithfully transmit flying qubits between specified locations.

DiVincenzo Criteria - Table of QC approaches

This is a table from 2004

What has changed now to
green is marked in red circle

Quantum computing platform: from varying size to coupling with environment

Superconducting qubits – a timeline

1911

H
ei

ke
 K

am
er

lin
gh

 O
nn

es
Su

pe
rc

on
du

ct
iv

ity
 in

 H
g

1933

W
al

te
r M

ei
ss

ne
r

“M
ei

ss
ne

r e
ffe

ct
”

1957

Sc
hn

irm
an

 e
t a

l.
–

th
eo

re
tic

al
pr

op
os

al
 fo

r J
J q

ub
its

1962

Su
pe

rc
ur

re
nt

 th
ro

ug
h

a
no

n-
Su

pe
rc

on
du

ct
in

g
ga

p

1997

B
ar

de
en

, C
oo

pe
r,

Sc
hr

ie
ffe

r
Th

eo
ry

 o
f S

up
er

co
nd

uc
tiv

ity

1998

D
ev

or
et

 g
ro

up
 (S

ac
la

y)
fir

st
 C

oo
pe

r P
ai

r B
ox

 q
ub

it

2000

Lu
ke

ns
, H

an
 (S

U
N

Y
SB

)
Fl

ux
 q

ub
it

2002

M
ar

tin
is

 (N
IS

T)
ph

as
e

qu
bi

t

1999

N
ak

am
ur

a,
 T

sa
i (

N
EC

)
R

ab
i o

sc
ill

at
io

ns
 in

 C
PB

2006

M
ar

tin
is

 (U
C

SB
)

tw
o-

qu
bi

t g
at

e
(8

7%
 fi

de
lit

y)

1985

M
ac

ro
sc

op
ic

 q
ua

nt
um

m

ec
ha

ni
ca

l t
un

ne
lli

ng
 a

nd

en
er

gy
 q

ua
nt

is
at

io
n

in
 a

n
 e

le
ct

ric
 c

irc
ui

t
C

la
rk

e,
 D

ev
or

et
 &

 M
ar

tin
is

Circuits are quantized!!

- FIRST DEMONSTRATION BY DEVORET,

MARTINIS, CLARKE (1985)

- engineered Hamiltonian with "LEGO" blocks:

capacitors, inductors and Josephson junctions

Superconducting circuit (building an artificial atoms)

Superconducting circuit (building an artificial atoms)

Superconducting circuit (building an artificial atoms) –

Cooper pairs and Josephson Junction

Superconducting circuit (building an artificial atoms)
(a) Circuit for a parallel LC-oscillator (quantum har-

monic oscillator, QHO), with inductance L in parallel

With capacitance, C. The superconducting phase

on the island is denoted φ, referencing ground as

zero.

(b) Energy potential for the QHO, where

energy levels are equidistantly spaced ωr apart.

(c) Josephson qubit circuit, where the nonlinear
inductance LJ (represented with the Josephson

-subcircuit in the dashed orange box) is shunted

by a capacitance, Cs.

(d) The Josephson inductance reshapes the
quadratic energy potential (dashed red) into

sinusoidal (solid blue), which yields non-equidistant

energy levels. This allows us to isolate the two

lowest energy levels |0⟩and |1⟩, forming a

Computational subspace with an energy separation
 ω01, which is different than ω12.

Superconducting circuit

Cooper pairs are formed by alternating regions of
high and low density of positive charge (phonons)
represented by the density of red dots.

Example of two qubit operaiton

Schematic circuit diagram of

two fixed frequency

transmons coupled through a

resonator yielding an overall

coupling coefficient g. Qubit 1
driven at the frequency of

qubit 2 leads to the CR gate.

Superconducting circuit (building an artificial atoms)

decoherence

Superconducting circuit (building an artificial atoms)

Trapped ion qubits – timeline

1975 95 97 98 2000 0499 060503020297

1989 (Paul and Dehmelt) – Development of ion trap technique

2012 (Wineland) – Development of ion trap technique and using it for quantum computing

QCCD- quantum charged
couple devices

Trapped ion qubits

+U

+U

+U

+U

+U

+U

+U

+U

0

0

0

0

1 mm

Complex qubit organization: each row is a
separate image of 53 trapped ion qubits, with each
qubit fluorescing (state 1) or dark (state 0) upon
measurement.

Qubit representation: Hyperfine (nuclear spin) state of an
atom and phonons of trapped atoms

Unitary evolution:

Laser pulses manipulate atomic state

Qubits interact via shared phonon state

Initial state preparation: Cool the atoms
to ground state using optical pumping
Readout: Measure population of
hyperfine states
Drawbacks: Phonon lifetimes are short,
and ions are difficult to prepare in their
ground states.

Ion trap systems for qubits

Cold atoms for qubits

Can I take sample of atoms from this room and

cool them using lasers?

Cooling cycle

Atoms respond only to a very specific color
(frequency) of light

Only a tuned laser can do that

For each specimen of atoms we need to find
lasers with frequency that can be absorbed
by atom and excite to higher energy level

Zeeman slower

What happens when we have atoms

going at different speeds?

If the laser was set to slow fast ones,

wouldn’t it just blast the slow ones in

the other direction, and leave them
faster and hotter?

Cold atoms (Doppler effect)

Example of qubit array

a. An optical standing wave is generated by superimposing two laser
beams. The antinodes (or nodes) of the standing wave act as a perfectly

periodic array of microscopic laser traps for the atoms. The crystal of light
in which the cold atoms can move and are stored is called an optical
lattice.

b, If several standing waves are overlapped, higher-dimensional lattice

structures can be formed, such as the two-dimensional optical lattice
shown here.

Cold atoms for qubits

NMR apparatus

Qubit representation:

Spin of an atomic nucleus

Unitary evolution:

Transforms are constructed from magnetic
field pulses applied to spins in a strong
magnetic field. Couplings between spins are
provided by chemical bonds between
neighboring atoms.

NMR system for qubits

NMR system for qubits
A molecular computer

The computing is done by the

and nuclear spins .

5 Flourine atoms nuclear spin and 2 Carbon - 13 atoms nuclear

spins carry the qubits of a quantum computation.

They can be programmed by radio pulses, they

can interact, and they can be read out by

NMR instruments.

perfluorobutadienyl iron complex

Using Shor’s quantum factoring algorithm 15 was factored using the above 7 qubits.

The answer : 3 X 5 was obtained in about 720ms.

54 qubit Sycamore chip - google

Quantum supremacy using programmable Superconducting qubits ?

Quantum supremacy using programmable Superconducting qubits ?

54 qubit Sycamore chip - google
This claim has been questioned by
 an alternative classical algorithm

DiVincenzo criteria for Quantum Computation

• Well-defined state space of qubits

• Ability to initialize the state of the qubits

• Long decoherence time

For realization of quantum computation, the system should have

• Ability to implement a universal set of quantum gates

• Qubit-specific measurement capability

Presence or absence of photon –

single rail encoding, dual rail encoding

You can initialize the multi-qubit states

Photons interact very weakly with

The environment. Decoherence time is long.

Combinations of beamsplitters, waveplates,

and phase-shifters—an optical interferometer

implements universal gates

Projective measurement techniques of

photonic quantum states are well

developed

Quantum Computation with photons

Advantages

o The quantum operations can be done at room temperature

o More robust against the external environment

o Access to multiple degrees of freedom of photons

o Most of the hardware and fabrication techniques are common between

classical and quantum optical devices

Challenge

Designing controlled operations between multiple photons

Controlling fast-moving photons

Models for photonic quantum computation

• Discrete variable (DV) using single photons
 Dual rail encoding – polarization, paths, frequency, time bin, qudits

Different schemes for realizing operations under each model has been proposed and experimentally realized

Universal quantum computation

Special purpose quantum computation

• Boson sampling

• -------

• Continuous variable (CV) using Gaussian state of light
 GKP states and Gaussian operation

• Cluster states using squeezed modes
 Measurement-based / one-way computation

• Hybrid CV-DV cluster approach using higher-dimensional encoding
 Fusion based

Quantum operations on photonic qubits

DV as qubit

Operations of polarization qubit

CV as qubit

Quantum operations on photons

limitation

Bosonic behavior limits photon-photon interaction

Fock state representation : Corresponds to mode empty (vacuum)

Corresponds to one photon in mode

One input photon along mode :

Two input photon, one along mode and other along :

When we have one input photon along mode

Two photon interaction

Two photon interaction

Two mode beam splitter matrix
When we have two photon inputs along two modes

Root 2 is from
normalization

Quantum operations on photons

CNOT operation on photon using (NS)

non-linear sign shift operation
Operations on dual rail qubits

NS – Non-linear phase shifter

Why sign change operation and CNOT gate relation

One single NS operation

Knill, Laflamme and Milburn (2001)
KLM model

CNOT operation on photon using (NS)

non-linear sign shift operation

We can look at three cases individually :

Thus,

Using bulk optics

Single photon in four wave mixing – 16 qubit

Special task photonic system – boson sampling

Optical circuit, maximum of 76 photons detected in one test
and an average of 43 across several tests.

Science 370, 1460–1463 (2020)

Boson sampling

• Multi-photon input state

• Pure linear optics network

• Passive - no feedforward, no memory

• No qubits, no qubit gates like CNOTs etc.

• Number-resolving measurement

Not universal quantum
computing but still can
perform what is classically
hard

HOM dip

Boson sampling details and calculating permanents

A is the amplitude matrix

Special task photonic system – boson sampling

76 photons and 144 modes – Jiuzhang (specific task photonic QC)

The dimension of the entangled state grows exponentially with both the number of photons and the
modes, which quickly renders the storage of the quantum probability amplitudes impossible. The state-
of-the-art classical simulation algorithm calculates one probability amplitude (Permanent of the
submatrix) at a time. The Permanent is classically hard, and because at least one Permanent is
evaluated for each sample, the sample size loophole can be avoided. In addition, boson samplers use
photons that can be operated at room temperature and are robust to decoherence.

2020 - 2021

QC using different degrees of freedom of photons

18 qubits using 6 photons

Mapping of position state to multi-qubit state

Particle and position space as qubits

Hadamard operation

Gate operations using different degree of freedom of photons

• Available coherence time resulting in short circuit depth

• Limited connectivity between qubits results in more gates to perform controlled
operations

• The quality and number of qubits are still very small in number for error corrections

To perform simulations of large quantum systems on near-term quantum hardware:

We need quantum algorithms with a short circuit depth that finish within the available
coherence time.

A way to stay within the limits of coherence is to design and optimize gates for specific
algorithm of interest optimized to the hardware of choice.

Or use the combination of classical and quantum systems to implement an algorithm

Limitations of NIQS / near-term quantum computers

Some simple and interesting problems being simulated

• Real-time dynamics of lattice gauge theories using a four-qubit system (quantum
Monte Carlo methods describe equilibrium phenomena, no systematic techniques
exist to tackle the dynamical long-time behaviour)

2016

We don’t expect a quantum computer to solve worst case instances of NP-hard

problems, but it might find better approximate solutions, or find them faster.

Hybrid quantum/classical algorithms.

Combine quantum evaluation of an expectation value with a classical feedback

loop for seeking a quantum state with a lower value.

Quantum approximate optimization algorithm (QAOA).
Seek low-energy states of a classical spin glass.

Variational quantum eigensolvers (VQE).

Seek low energy states of a quantum many-body system with a local Hamiltonian
H. (Much easier than algorithms which require simulation of time evolution

governed by H.)

Classical optimization algorithms (for both classical and quantum problems) are
sophisticated and well-honed after decades of hard work. Will NISQ be able to do

better?

Quantum optimization

Variational Eigenvalue Solver (Classical – Quantum)

• Calculating the ground-state molecular energy for He-H+

Variational Eigenvalue Solver (Classical – Quantum)

• Biological nitrogen fixation by the enzyme nitrogenase

From Prof. Preskill’s slide

Quantum Fourier Transform

Quantum Fourier Transform

Quantum Fourier Transform

How many operations do we have to do for M X M matrix?

If we need only probability, we don’t see any difference

Quantum Fourier Transform

What is a quantum operational form QFT ?

Quantum Phase Estimation

Quantum Phase Estimation

Quantum Phase Estimation

Quantum Phase Estimation

The phase estimation procedure can solve a variety of interesting problems.

Order-finding problem

 and

factoring problem

These two are equivalent to each other

Shor’s factoring algorithm

When do we need Quantum algorithms?

Shor’s factoring algorithm

Look for

Look for order finding algorithm

Once we know the order, we can find the factors

Quantum Computation and Algorithms

Chandrashekar, QT 207 November 2025 , IISc

Quantum Computer : A device that uses a quantum mechanical representation of

information to perform calculations. Information in quantum computers is stored in qbits

and the states can be represented by l2 normalized vectors in complex vector space,

|ψ⟩ =
∑

x∈{0,1}n
ax|x⟩

ax ∈ C satisfies
∑

x∈{0,1}n |ax|2 = 1 and basis of state |x⟩ is computation basis.

A vector is l1 normalized if its integral over all space = 1 and l2 if its integral of function

times complex conjugate =1.

For a finite set S, the normalized uniform superposition of its elements can be written as

|S⟩ = 1

∥S∥
∑
s ∈S

|s⟩.

If quantum computer stores state |ψ⟩ in one register and |ϕ⟩ in another register the state

can be written as

|ψ⟩ ⊗ |ϕ⟩ ≡ |ψ⟩|ϕ⟩ ≡ |ψ, ϕ⟩

Single and two qubit operations

Identity : 1 =

 1 0

0 1

 Pauli x : σx = X =

 0 1

1 0


Pauli y : σy = Y =

 0 −i

i 0

 Pauli z : σz = Z =

 1 0

0 −1


Hadamard : H = 1√

2

 1 1

1 −1

 π/8 Phase : Tπ/8 =

 1 0

0 eiπ/4



CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



2

I. PHASE KICK-BACK TO CONTROL REGISTER

Phase Kick-Back using CNOT operation

CNOT : |0⟩
(
|0⟩ − |1⟩√

2

)
−→ |0⟩

(
|0⟩ − |1⟩√

2

)

CNOT : |1⟩
(
|0⟩ − |1⟩√

2

)
−→ |1⟩

(
(−1)

(
|0⟩ − |1⟩√

2

))
= −|1⟩

(
|0⟩ − |1⟩√

2

)
CNOT :

(
|0⟩+ |1⟩√

2

)(
|0⟩ − |1⟩√

2

)
−→

(
|0⟩ − |1⟩√

2

)(
|0⟩ − |1⟩√

2

)
CNOT : |b⟩

(
|0⟩ − |1⟩√

2

)
−→ (−1)b|b⟩

(
|0⟩ − |1⟩√

2

)
CNOT : (α0|0⟩+ α1|1⟩)

(
|0⟩ − |1⟩√

2

)
−→ (α0|0⟩ − α0|1⟩)

(
|0⟩ − |1⟩√

2

)
=⇒ Z-operation on control qubit (phase kick-back to control register).

More general 2 qubit operation Uf implementing an arbitrary function f : {0, 1} −→

{0, 1} by mapping

Uf : |x⟩|y⟩ −→ |x⟩|y ⊕ f(x)⟩

Uf : |x⟩
(
|0⟩ − |1⟩√

2

)
−→

(
Uf |x⟩|0⟩ − Uf |x⟩|1⟩√

2

)
= |x⟩

(
|0⊕ f(x)⟩ − |1⊕ f(x)⟩√

2

)
Depending on the two cases : f(x) = 0 and f(x) = 1 we have

|x⟩
(
|0⊕ f(x)⟩ − |1⊕ f(x)⟩√

2

)
= |x⟩(−1)f(x)

(
|0⟩ − |1⟩√

2

)
= (−1)f(x)|x⟩

(
|0⟩ − |1⟩√

2

)
When control qubit is in superposition

Uf : (α0|0⟩+ α1|1⟩)
(
|0⟩ − |1⟩√

2

)
−→ ((−1)f(0)α0|0⟩+ (−1)f(1)α1|1⟩)

(
|0⟩ − |1⟩√

2

)
You can notice that the state of the second registrar |0⟩−|1⟩√

2
is an eigenvector of Uf and

the eigenvalue (−1)f(x) is kicked back in front of the control registrar. This technique of

inputting an eigenstate to the target qubit of an operator and associating the eigenvalue

with the state of the control register will be very useful in eigenvalue estimation.

Note : For Deutsch, Deutsch-Jozsa and Simon’s algorithms refer :

(1) Quantum Computation and Quantum Information, Nielsen and Chuang

(2) An Introduction to Quantum Computing, Kaye, Laflamme and Mosca

3

II. QUANTUM PHASE ESTIMATION

Hadamard operation is self-inverse operation (It does the opposite as well) and it can be

used to encode information into the phases.

H|x⟩ = 1√
2
[|0⟩+ (−1)x|1⟩] = 1√

2

∑
y∈{0,1}

(−1)xy|y⟩.

H

(
1√
2
[|0⟩+ (−1)x|1⟩]

)
= |x⟩

The value of x is encoded into the relative phases between the basis states |0⟩ and |1⟩.

Hadamard operation on an n−qubit basis state is given by

H⊗n|X⟩ = 1√
2n

∑
Y ∈{0,1}n

(−1)X·Y |Y ⟩.

Information about the value of X is encoded into the phases (−1)X·Y .

H⊗n

 1√
2n

∑
Y ∈{0,1}n

(−1)X·Y |Y ⟩

 = H⊗n(H⊗n|X⟩) = (H⊗nH⊗n)|X⟩ = 1|X⟩.

Note that (−1)X·Y are phases of specific form. General form is a complex number e2πiω for

any real number ω ∈ (0, 1) (phase ”-1” corresponds to ω = 1
2
). The n−qubit Hadamard

operation is not able to fully access information that is encoded in more general ways.

Useful notations and identity

Notation for binary fraction :

ω = 0 . x1x2x3 · · · · · · =
x1
2

+
x2
22

+
x3
23

+ · · · · · ·

similarly, 2kω = x1x2x3 · · · xk . xk+1xk+2 · · · and e2πik = 1 for any k,

e2πi(2
kω) = exp[2πi(x1x2x3 · · ·xk . xk+1xk+2 · · ·)]

= exp[2πi(x1x2x3 · · ·xk)] exp[2πi(xk+1xk+2 · · ·)] = exp[2πi(0.xk+1xk+2 · · · · · ·)]

0 . xlxl+1xl+2 · · · · · ·xn =
xl
2
+
x2l+1

22
+
x3l+2

23
+ · · · · · ·+ xn

2n−l+1

Product representation :

1√
2n

2n−1∑
y=0

e2πiωy|y⟩ = |0⟩+ e2πi(2
n−1ω)|1⟩√
2

⊗ |0⟩+ e2πi(2
n−2ω)|1⟩√
2

⊗ · · · · · · ⊗ |0⟩+ e2πi(ω)|1⟩√
2

=
|0⟩+ e2πi(0 . xnxn+1······)|1⟩√

2
⊗ |0⟩+ e2πi(0 . xn−1xnxn+1······)|1⟩√

2
⊗ · · · · · · ⊗ |0⟩+ e2πi(0 . x1x2x3······)|1⟩√

2

4

Algorithm :

Input : The state 1√
2n

∑2n−1
y=0 e2πiωy|y⟩

Problem : Obtain a good estimate of the phase parameter w

If the input is one-qubit (n = 1), ω = 0 . x1 then we get

1√
2

1∑
y=0

e2πi(0 . x1)y|y⟩ = 1√
2

1∑
y=0

e2πi(
x1
2)y|y⟩ = 1√

2

1∑
y=0

eπi(x1y)|y⟩

=
1√
2

1∑
y=1

(−1)x1y|y⟩ = 1√
2
(|0⟩+ (−1)x1|y⟩)

You can recall that Hadamard operation on the preceding expression will return you the

value of x1 and hence the value of ω for one-qubit.

When we have a two qubit state (n = 2), ω = 0 . x1x2 then using product representation

we get

1√
22

3∑
y=0

e2πi(ω)y|y⟩ = 1√
22

3∑
y=0

e2πi(0 . x1x2)y|y⟩ =
|0⟩+ e2πi(0 . x2)|1⟩√

2
⊗ |0⟩+ e2πi(0 . x1x2)|1⟩√

2

Hadamard operation on the first qubit will return the value for x2. If x2 = 0 the value of

x1 can be obtained but not if x2 = 1. To obtain x1 when x2 = 1 we need to define a phase

rotation operation,

R2 =

 1 0

0 e2πi/2
2

 =

 1 0

0 e2πi(0.01)

 in base 2

and

R−1
2 =

 1 0

0 e−2πi(0.01)


If x2 = 1, R−1

2 followed by an Hadamard operation (H) will return the value of x1. Similarly

for a three-qubit, H on first qubit will return x3, if x3 = 0 you can find x2, if x2 = 0 find x1

directly. If x3 = 1, R−1
2 followed by an H will return x2 and if x2 = 1, R−1

3 followed by R−1
2

and H will return x1. See the circuit diagram below where,

|φ1⟩ =
|0⟩+ e2πi(0 . x3)|1⟩√

2
; |φ2⟩ =

|0⟩+ e2πi(0 . x2x3)|1⟩√
2

; |φ3⟩ =
|0⟩+ e2πi(0 . x1x2x3)|1⟩√

2
.

5

H

H

H

R2

−1

R R
23

|ϕ >

|ϕ >1

2

|ϕ >3

−1 −1
|x >

|x >2

|x >3

1

Exercise 1 : Expand the n qubit state

1√
2n

2n−1∑
y=0

e2πiωy|y⟩

with |0⟩ and |1⟩ as computation basis in tensor product representation.

III. QUANTUM FOURIER TRANSFORM

Quantum Fourier Transform (QFT) is a unitary Discrete Fourier Transform (DFT) upon

the quantum state. DFT of a discrete function f1, ..., fN is given by

f̃k ≡
1√
N

N−1∑
j=0

e2πijk/Nfj,

where f0, f1, f2,, fN−1 and f̃1, f̃2,, f̃N−1 are the input and output functions,

respectively.

The inverse transform is

fj ≡
1√
N

N−1∑
k=0

e−2πijk/N f̃k.

In QFT we do a DFT on the amplitudes of a quantum state :

|j⟩ −→ 1√
N

N−1∑
k=0

e2πijk/N |k⟩

N−1∑
j=0

xj|j⟩ −→
N−1∑
k=0

yk|k⟩

amplitudes yk are DFT of amplitudes xj.

Exercise 2 : Find an operator F̂ which transform a state into its DFT and show that its

unitary.

6

IV. PERIODIC STATES

A superposition of state in the form

|ϕr,b⟩ =
1√
m

m−1∑
z=0

|zr + b⟩,

is a periodic superposition of the state with period r, offset l, and m repetitions of the

period.

Exercise 3 : Performing DFT on the above periodic state, |ϕr,b⟩ −→ |ϕ̃⟩, obtain |ϕ̃⟩

V. SHOR’S FACTORING QUANTUM ALGORITHM

Factoring : given n = PQ, find factor P and Q

Best algorithm - 2O(L1/3); L- number of digits

The fastest classical computers can factor the number with approximately 100 digits

Shor’s Factoring Algorithm - O(L2) [Shor, 1994]

Ref : Ekert and Jozsa, Rev. Mod. Phys. 68, 733 (1996) along with Nielsen and Chuang

Summery of Shor’s Algorithm

1. If n is prime number : factors are 1 and n

2. If n is even number : one of the factor is 2

3. If n = pc (power of prime number) : one of the factor is p

4. If n is none of the above : choose a random number x < n

(a) If gcd (x, n) = d > 1 : one of the factor is d.

(b) If gcd (x, n) = 1 : That is, when x and n are co-prime, solution is non-trivial. Use

quantum computer to find the order r of x mod n (Look below for order-finding

algorithm)

5. If r is even and xr/2 ̸= ±1(mod n) : Find gcd (x
r
2 − 1, n) > 1 and gcd (x

r
2 +1, n) > 1,

one of them is non-trivial factor of n

7

6. If r is odd return to step 4 and choose and other number x.

Useful inputs from number theory :

• Order of an element x in a group is the least integer r, such that xr = 1G

• Order-finding : Given x and n, x < n and gcd (x, n) = 1, the order of x in Zn is the

least positive integer r such that xr = 1 (mod n)

• If n is a non-prime number and y ̸= ±1 (mod n) is a solution of y2 = 1 (mod n), one

of the gcd (y − 1, n) and gcd (y + 1, n) is a non-trivial factor of n.

• If gcd (x, n) = 1, x has an even order r [xr = 1 (mod n)]. Therefore, ≡ xr/2 (mod n) ̸=

±1 (mod n) is the solution of xr and one of the gcd (xr/2 − 1, n) and gcd (xr/2 + 1, n)

is a non-trivial factor of n.

Order-finding algorithm

Create a quantum register and partition it into two sets, register 1 (source) and register 2

(target). Pick a integer q = 2k such that n2 ≤ q < 2n2 . Register one must have enough

qubits (k) to store a number (q − 1). Register 2 (target) must have at least N = log2n

qubits, so that it can store (n − 1) or more basis states. Note that the total number of

qubits required is then given by the sum of k ≤ 1 + 2 log2 n and N ≤ log2 n.

1. Both the registrar are initialized in the state |0⟩ ⊗ |0⟩.

2. Load register 1 with an equally weighted superposition of all integers from 0 to (q−1).

The total state of the quantum memory register at this point is:

1
√
q

q−1∑
a=0

|a, 0⟩

Exercise 4 : Show that you can obtain the preceding expression by applying k qubit

Hadamard operation and also by applying Fourier transform. What does this tell you

about the relation between Hadamard and Fourier transform?

3. Apply a gate Ux (transformation) that implements a −→ f(a) = xa mod n to the

content of source registrar 1 and store the result in register 2. Note f is distinct on

8

[0, r−1] and f(a) will have r as its smallest period (see Nielsen and Chuang page-228).

The state of the quantum memory register at this point is:

1
√
q

q−1∑
a=0

|a, xa mod n⟩

Here q > n2 values of the function f(a) are computed in parallel. Since r < n, the

period r must manifest itself in the resulting sequence of function values now stored

in the second register. So there can only be r different function values.

4. Measure the second register. When we measure, we must get some value which has to

be one of the r distinct values of f(a). Suppose it is f(a0). Then all superposed states

of the register 1 inconsistent with this measured value must disappear. For simplicity,

we shall restrict ourselves first to the case where q = mr, i.e., there are m different

values of a which have the same value of f(a). Then exactly q/r states of register

1 will contribute to the measured state of register 2, and after this measurement the

combined state of the two registers must be given by

1√
q/r

q/r−1∑
z=0

|zr + a0⟩|f(a0)⟩

We now have a periodic superposition of state in register 1, with period r. From now

on second registrar is irrelevant and can be dropped from the discussion.

5. First registrar has a periodic superposition whose period is the value we want to

compute. This can’t be done by simply measuring first registrar directly. Instead, we

apply QFT modulo q to the state :

QFT :|ϕa0⟩ =
1√
q/r

q/r−1∑
z=0

|zr + a0⟩ −→ 1√
r

r−1∑
t=0

ωta0 |tq
r
⟩

where ω is a primitive rth root of unity, ω = e
2πi
r

Exercise 5 : The sum got changed from q/r terms to r terms during QFT. This was

a result of destructive interference in the QFT on the state. Show how it happened ?

6. Now we measure register 1. The measurement gives us a value C = t q
r
where t is a

random number between 0 and r − 1. Now we have q, C, and hence also the ratio

9

C/q = t/r. If gcd (t, r) = 1, we can reduce the ratio C/q to an irreducible fraction,

e.g., 1/r. Since t is chosen at random in the measurement, then the probability that

gcd (t, r) = 1 is greater than 1/ log r for larger values of r (see Appendix A.3 in Ekert

and Jozsa, RMP 68, 733 (1996)). So one can repeat it and it is easy to see that with

big probability gcd (k, q
r
) = 1. Then by repeating the calculation O(log r) < O(log n)

times, one can amplify the success probability to as close to one as desired. So we

have an efficient determination of the order r.

VI. GROVER’S SEARCH ALGORITHM

Problem : Find i such that xi = 1

Queries : ask i, get xi

Classically : N − 1 queries required (worst case) [N elements in search space]

Quantum : O(
√
N) queries [grover, 1996]

Steps Grover’s algorithm

1. Begin with the computer in state |0⟩⊗n. Use Hadamard transformation to put the

computer in equal superposition state,

|S⟩ = 1√
N

N−1∑
x=0

|x⟩.

2. Repeat O(
√
N) times the following two steps (Grover iteration)

• Apply the Oracle O |x⟩ −→ (−1)f(x)|x⟩

• Apply the operator Us = 2|S⟩⟨S| − I = H⊗n(2|0⟩⟨0| − I)H⊗n

3. Measure the resulting state

10

VII. CLASSICAL RANDOM WALKS TO QUANTUM WALKS

Classical random walks are widely studied in two forms, discrete-time classical random

walk (DTCRW) and Continuous-time classical random walk (CTCRW). They have been

successfully used as algorithms in classical computers, to understand and model dynamics

in various systems from biology to social behavior for many decades now. Its quantum

version, quantum walks has also also been explored in two forms, discrete-time quantum

walk (DTQW) and continuous-time quantum walk (CTQW) for over decade now.

Classical random walk : Lets first recall the structure of the discrete-time classical

random walk in one-dimension. The discrete-time classical random walk takes place on the

position Hilbert space Hp with instruction from the coin operation. A coin flip defines the

direction in which the particle moves and a subsequent position shift operation moves the

particle in position space. For a walk on a line, a two sided coin with head (H) and tail (T)

defines the movements to the left and right, respectively.

........ -3 -2 -1 0 1 2 3

1. Initial state : Particle at position x = 0

2. Evolution : (Coin, Position) = (H or T, x ∈ Z)

(a) (H, x) =⇒ (x− 1)

(b) (T, x) =⇒ (x+ 1)

3. Probability : Px and
∑

x Px = 1

Note: Each step evolution is independent of its previous step.

A. Discrete-time quantum walk (DTQW)

The DTQW also has a very similar structure to that of its classical counterpart. The

coin flip is replaced by the quantum coin operation to evolve the particle (walker) into the

superposition of the basis states. The quantum coin operation is followed by the unitary

11

conditional shift operation which defines the direction of propagation of the particle de-

pending on the basis state of the particle. If the particle is in superposition of its basis sate

the unitary shift operation evolves the particle in the superposition of the position space.

The process is iterated without resorting to intermediate measurement to implement a large

number of steps. During the walk on a line, interference between the left and the right

propagating amplitude results in the quadratic growth of variance with the number of steps.

DTQW in one-dimension: The DTQW on a line is defined on a Hilbert space

H = Hc ⊗Hp,

where Hc is the coin Hilbert space and Hp is the position Hilbert space. For a discrete-

time quantum walk in one dimension, Hc is spanned by the basis state (internal state) of

the particle |0⟩ and |1⟩ and Hp is spanned by the basis state of the position |ψj⟩, where

j ∈ Z. One of the simple form of quantum coin operation is the Hadamard operation

H = 1√
2

 1 1

1 −1

 and the shift operation S can be written as

S = |0⟩⟨0| ⊗
∑
j∈Z

|ψj−1⟩⟨ψj|+ |1⟩⟨1| ⊗
∑
j∈Z

|ψj+1⟩⟨ψj|.

The operator S delocalizes the wave packet in different basis states |0⟩ and |1⟩ over the

position (j − 1) and (j + 1). To implement the DTQW on a particle at origin in state

|Ψin⟩ = |0⟩⊗ |ψ0⟩ ; |1⟩⊗ |ψ0⟩ ;
1√
2
(|0⟩+ i|1⟩)⊗|ψ0⟩ ; or any other superposition state,

operation H is applied on the particle state followed by the operation S,

W = S(H ⊗ 1).

For t step of the walk W is iterated t times, W t without intermediate measurement. For

generalized form of the DTQW evolution, Hadamard operation is replaced by B ∈ U(2) as

the quantum coin toss operation.

Bζ,α,β,γ = eiζeiασxeiβσyeiγσz ,

where σx, σy and σz are the Pauli spin operators. Parameters of the coin operations ζ, α, β, γ

gives different superposition state of the particle. Therefore, each step of the walk is im-

plemented by S(Bζ,α,β,γ ⊗ 1). A three parameter SU(2) operator is an other useful form of

quantum coin operation.

12

B. Continuous-time quantum walk (CTQW)

To define the CTQW, it is easier to first define the CTCRW and quantize it by introducing

quantum amplitudes in place of classical probabilities.

The CTCRW takes place entirely in the position space. To illustrate, let us define

CTCRW on the position space Hp spanned by a vertex set V of a graph G with edges

set E, G = (V,E). A step of the random walk can be described by a adjacency matrix A

which transform the probability distribution over V , i.e.,

Aj,k =

1 (j, k) ∈ E

0 (j, k) /∈ E

for every pair j, k ∈ V . The other important matrix associated with the graph G is the

generator matrix H given by

Hj,k =


djγ j = k

−γ (j, k) ∈ E

0 otherwise

,

where dj is the degree of the vertex j and γ is the probability of transition between neigh-

boring nodes per unit time.

If Pj(t) denotes the probability of being at vertex j at time t then the transition on graph

G is defined as the solution of differential equation

d

dt
Pj(t) = −

∑
k∈V

Hj,kPk(t).

The solution of the differential equation is given by

P (t) = e−HtP (0).

By replacing the probabilities Pj by quantum amplitudes aj(t) = ⟨j|ψ(t)⟩ where |j⟩ is

spanned by the orthogonal basis of the position Hilbert space Hp and introducing a factor

of i we obtain

i
d

dt
aj(t) =

∑
k∈V

Hj,kak(t).

We can see that the preceding expression is the Schrödinger equation

i
d

dt
|ψ⟩ = H|ψ⟩.

13

Since generator matrix is an Hermitian operator, the normalization is preserved during the

dynamics. The solution of the differential equation can be written in the form

|ψ(t)⟩ = e−iHt|ψ(0)⟩.

Therefore, the CTQW is of the form of Schrödinger equation, a non-relativistic quantum

evolution.

To implement the CTQW on a line, the position Hilbert space Hp can be written as a

state spanned by the basis states |ψj⟩, where j ∈ Z. The Hamiltonian H is defined such

that,

H|ψj⟩ = −γ|ψj−1⟩+ 2γ|ψj⟩ − γ|ψj+1⟩

and is made to evolve with time t by applying the transformation

U(t) = exp(−iHt).

The Hamiltonian H of the process acts as the generator matrix which will transform the

probability amplitude at the rate of γ to the neighboring sites, where γ is time-independent

constant.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Phase Kick-Back to control register
	Quantum Phase Estimation
	Quantum Fourier Transform
	Periodic states
	Shor's Factoring Quantum algorithm
	Grover's search algorithm
	Classical random walks to quantum walks
	Discrete-time quantum walk (DTQW)
	Continuous-time quantum walk (CTQW)

	pbs@ARFix@3:
	pbs@ARFix@4:
	pbs@ARFix@5:
	pbs@ARFix@6:
	pbs@ARFix@7:
	pbs@ARFix@8:
	pbs@ARFix@9:
	pbs@ARFix@15:
	pbs@ARFix@16:
	pbs@ARFix@17:
	pbs@ARFix@10:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@13:
	pbs@ARFix@14:
	pbs@ARFix@19:
	pbs@ARFix@20:
	pbs@ARFix@21:
	pbs@ARFix@22:
	pbs@ARFix@23:
	pbs@ARFix@24:
	pbs@ARFix@25:
	pbs@ARFix@26:
	pbs@ARFix@27:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@32:
	pbs@ARFix@33:
	pbs@ARFix@34:
	pbs@ARFix@35:
	pbs@ARFix@36:
	pbs@ARFix@37:
	pbs@ARFix@38:
	pbs@ARFix@39:
	pbs@ARFix@40:
	pbs@ARFix@41:
	pbs@ARFix@42:

