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. INTERNATIONAL YEAR OF
/') Quantum Science
and Technology

» Plank’s Quantum theory of Radiation E = hv

> Photo-Electric Effect

Light Electron
»> Bhor’s hypothesis of discrete orbits for electron 2 % /!
2 +7
Photo-Electric Effect %ﬁ %‘ ' , /
Is light a wave or a particle? 22‘ T / === == gy Lovels
~ Metal 7

This theory says it's a particle - and won Einstein his Nobel Prize !

The idea that light exists as tiny packets, or particles, that we now call photons. Alongside Max Planck's
work on quanta of heat, and Niels Bohr's later work on quanta of matter, Einstein's work anchors the most
building block of 20th-century physics: we live in a quantum universe, one built out of tiny, discrete chunks

of energy and matfter.

1925 - Heisenberg's paper, “On quantum-theoretical reinterpretation of kinematic and mechanical relationships”
1926 - Schrodinger’s paper, “An undulatory theory of the mechanics of atoms and molecules”


https://quantum2025.org/

Quantum description: wave—particle nature

When both slits are open

If light behaves as
When only one slit is open particle we should get

If light behaves as
waves we should get

What we get ?

> When we track the photon path, we get A
> When we don’t observer which path the photon travelled, we get B




=WYsS Beam splitter and single photon
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Classical light splits into two paths. What will happen to single photon ?

Beam Splitter (BS) 50%
D1

»Demonstrates existence of photons as single particles

> Photons don’t split



50%

Beam splitters and single photon

i

Single beam splitter setting

Photon taking Path 0

O—.—. 50‘%

Photon taking Path 1

m o




Detector on

Detector off

Knowing which slit or path a photon
travel through is a form of measurement

One way to determine which path is by
maintaining different polarization state
in each path or slit

Measuring collapses its wavefunction

When particle behavior is observed,
interference fails to form

If no information exists to link photo to
specific path, the wave behavior
resumes, and interference pattern is
observed




How to understand the dynamics ?

Measurement
output can be
recorded

Process / Dynamics ?

Must be modeled

FN s ~ / B

Quantum theory

EEE—— developedto describe )
the dynamics/ process

N\ Y \ _J \_ _/

Needs complex space vector representation to model/ develop a quantum theory



Let us model the dynamics of the photon in
interferometer setup

Measurement

Source
is
known

Process / Dynamics ?
output can be
recorded

Must be modeled

:

— H 100%
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Photon in Path 0 — Photon in Path 1 —




Vector representation and complex numbers

After first BS :

1 |11 2| (1 1 |1
W) = — | . = —

/ 2 117 1 0 2 7
"'/ZO-—'—'Dlﬁo% ‘\/_ B - = - ‘\/_ .

After second BS :

Ws) —1 —1
This simple math shows how interference is 2 — \/— . - .
2 1t 1] /2 | 2

Making photon get detected only at D2



Quantum Superposition and Interference

Quantum state represented by atom, photon or
electron spin can simultaneously be at more than
one state at any given time.

QUBIT
5= 0)

scalar

~2=1)
vector

Classical bit at any given time can only be in 0 or 1
but qubit can simultaneously be in both 0 and 1.




Qubit Representation — 2D Hilbert Space

Light pulse of
frequency A for time
interval t/2

e classical bit :{0, 1}

e Qubit - Ideal two-state quantum system : |0)

] 419 = [

e photons (V and H polarization, transmission mode - path encoding)
o electrons or other spin-3 systems (spin up and down)
e systems defined by two energy levels of atoms or ions

logical /computational states

Allows superposition : |W) = «|0) +.ﬁ|l> Z *w)
o,BeC;|aff+|8°=1; |¥) =e"|V)

Z(10)-11)

] .
X ' 7B 1
1% (|0>+| )

)



Dirac Notations — composite system

Two qubit representation — Tensor product state — four-dimensional Hilbert space H AR H B

| 1] 1 . 0 0
0 0 1 1
0) ®10) = 0-1- = 1| =100 )@y =| r1|=[o] =01)
R B MBI
1] 0] 0] 0]
Olol] o 11 0
H®10)=1| 1] =[1| =110 DL =1 to1| = o] =1V
[ 1 . [0 0
Clof| [o] (1




Two-qubit state - Quantum Entanglement

Two or more quantum particles can exisit in an entangled states. - -

750041005+ 14115

For example : Two carefully preapred photons, A and B can be physically
saperated from one another and any change of state performed on photon
A will instantly result with a change of state on photon B (instantaneous
information transfer).

In Summary:

Superposition allows us to simultaneously explore all possible options /solutions.

Interference allows us to engineer constructive interference towards desired result
and distructive interference at undesired options.

Entanglement allows us to achieve instantaneous and secured information exchange.



Dirac Notations — composite system
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Three qubit representation — Tensor product state, 8-dimensional Hilbert space  7{ A X H B X ’HC

=Consider a 3 qubit register. An equally weighted superposition of all possible states would be denoted by :

|000) + |001) + |010) + |100) + ..... +|111)

General quantum states

» n-dimensional quantum system consists of n basis states :

W,) = a1|l) + a2|2) + as|3) + ........... + an|n)
o1 |2 + |aa]® + |as] + ....... + lan]? =1

> 2 dimensional system can be constructed as a tensor product of n qubit system



n-qubit registrar in composite system

et fRrsier sivenean

= In general, an n qubit register can represent the numbers 0 through 2"-1 simultaneously.

Sound too good to be true?...lt is!

= If we attempt to retrieve the values represented within a superposition, the superposition
randomly collapses to represent just one of the original values.



Quantum Operations

Unitary transformations :

» Linear transformations that preserve vector norm.

> In 2 dimensions, linear transformations that preserve unit circle (rotations and reflections).

Examples : Upit-flipl0) = 0=10) = {

> Bit flip

0) = |1)
1) = 10)

Upit-lipl1) = 0z|1) = {

gy LT LI -L

» Hadamard transformation |O> — % (|0> |1>) v2 b -1 0] V2l
1 — 11 1]0] 1

= L0 -1) \ myt ]t ]F-]

What will two times the above two operations return ?




Universal set of gates for QC

10 0 1 C'NOT|00) = |00)
Identity : ]| = Pauliz: ogz=X=
(0 1) (1 0) CNOT|01) = |01)
auligy: oyu=¥ = b = auli z : 0= = L4 NOTlO = |1
Pauli y : yy<i 0) Pauli  : ZZ(O—I) ( >jD
CNOT|11) = [10)
Hadamard : H = % £ 4 7/8 Phase : Ty/g = t v
il AR R
(1.0 0 0)
CNOT = 3(1)3(1) \ 1 0 0 0] o] [0
\0 0 1 0) 0 —H l  J00)+{11) (1) (13 8 2 2:8
0) b— | V2 0o 0 1 0| o] [1]




Measurements

yrsella fRrsner

0 \
» Measuring G:|0> + 5|1> in basis |0),|1) gives: ‘ >
=0 with probability |« |2,
=1 with probability |3 |2.

Prob. 1/2

> Measurement changes the state: it becomes |0) or |1) .

Prob. 1/2 :
» Repeating the measurement gives the same outcome. © |1>

General measurements

Even for any two orthogonal one-qubit states ‘?701) and |?,b2>

1Y) = a1|v1) + aglha)

It is equivalent to mapping them to |0),|1) and measuring.



Partial Measurements

syrella frsiret sivemst

Let us take a simple two qubit state and make measurement only on the first qubit :

W) = 5100) + 5101 + =10

First qubit collapses to |1)

First qubit collapses to|0)

1 1 U,) =10
751000+ o) W) = |10)

This will be 50% probability This will be 50% probability

W) =



Classical vs. Quantum
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et fRrsier sivenean

Classical Bits: Quantum Bits:

» Can be measured completely » Can be measured partially

» States don’t chance by measurements » States alter by measurements
» Can be copied » Cannot be copied (no cloning)

» Can be erased » Cannot be erased



No cloning of any arbitrary quantum state

Directly related to impossibility of measuring an arbitrary quantum state perfectly

» Let us imagine that we could copy quantum states :

0) = (0)|0)
1) = |1)|1)

» Then, by linearity condition we will get



Linear Algebra (short review)

Z* - complex conjugate
ifZ=a+b-ithenZ*"=a—b-i

) - vector, “ket” i.e.

C1
C2

Cn

y) - vector, “bra” i.e.

[€]3 €55 55 €3]

n

(p|y) - inner product between vectors |¢) and |y).

Note for QC this is on C" space not R"!

Note (@[y) = (Y|p)"
2

Example: |¢p) = 6i
.| 3

(o) = 2,61 |

@) ® |P) - tensor product of
Also written as |@) )

Example: |@)|y) = [

Jio-2]

— 6—24i

@) and |y).

@ ]o]3]

[ 2x8

2 x4
6i X3

_6i><4_




Linear Algebra (short review)

A" - complex conjugate of matrix A.

if A=

AT - transpose

if A =

3

1 6i

244

pf matrix A.

1 6i

3i 2440

then A™ =

then Al =

A" - Hermitian conjugate (adjoint) of matrix A.

Note A’
if A=

1 6i |

3i 2440

f_
then A™=1 6 2-4i

1 —3i




Linear Algebra (short review)

A* - complex conjugate of matrix A.

if A= [ I i ] then A* = [

1 —6i
3i 24-4i

—31 2—4i

AT - transpose of matrix A.

[ 1 6 1 3
lfA_[Bi 2+4i]the“A _[6i 2+4i}

A" - Hermitian conjugate (adjoint) of matrix A.
Note AT = (AT)"

1 61 1 —3i
. L T L

| ) || - norm of vector |[y)

1) [|= v/ (Wlw)
Important for normalization of [y) i.e. [{)/ || |Y) ||

(p|A|y) - inner product of |¢) and A|y).
or inner product of A'|p) and |)



Postulates of Quantum Mechanics

An 1mportant distinction needs to be made between quantum mechanics, quantum physics and
quantum computing. Quantum mechanics i1s a mathematical language, much like calculus. Just
as classical physics uses calculus to explain nature, quantum physics uses quantum mechanics to
explain nature. Just as classical computers can be thought of in boolean algebra terms, quantum
computers are reasoned about with quantum mechanics. There are four postulates to quantum
mechanics, which will form the basis of quantum computers:

e Postulate 1: Definition of a quantum bit, or qubit.
e Postulate 2: How qubit(s) transform (evolve).
e Postulate 3: The effect of measurement.

e Postulate 4: How qubits combine together into systems of qubits.



Postulate | : A Quantum Bit

Postulate 1 (Nielsen and Chuang, page 80):

“Associated to any isolated physical system is a complex vector space with inner prod-
uct (i.e. a Hilbert space) known as the state space of the system. The system is
completely described by its state vector, which is a unit vector in the system’s state
space.”



Postulate | : A Quantum Bit

Postulate 1 (Nielsen and Chuang, page 80):

“Associated to any isolated physical system is a complex vector space with inner prod-
uct (i.e. a Hilbert space) known as the state space of the system. The system is
completely described by its state vector, which is a unit vector in the system’s state
space.”

Consider a single qubit - a two-dimensional state space. Let |¢o) and |$p;) be orthonormal basis
for the space. Then a qubit | ) = a|pg) + b|¢1). In quantum computing we usually label the basis
with some boolean name but note carefully that this is only a name. For example, |¢o) = |0) and
|¢1) = |1). Making this more concrete one might imagine that “|0)” is being represented by an
up-spin while “|1)” by a down-spin. The key is there is an abstraction between the technology

(spin state or other quantum phenomena) and the logical meaning. This same detachment occurs
classically where we traditionally call a high positive voltage “1” and a low ground potential “0”.

Note that [) = a|0) + b|1) must be a unit vector. In other words, (Y|y) = 1 or |a|*+|b|* = 1. For
quantum computing {a,b} € C



Classical Bit : {0,1}

Qubit : [0)and |1) possible (allowed) basis states

Any quantum system with exactly two degree of freedom
(state of an hydrogen atom, spin of an electron)

) = «|0) + B|1) with \a\Q + \5\2 — 1

Superposition state
Y Y
In Dirac notation : ) = (

)



Bloch Sphere representation of Qubit

QUBIT

scalar

vector



Postulate 2 : Evolution of Quantum Systems

(-0 (-C)

From this information, we can construct the matrix for the NOT gate (in the
computational basis):

01

il

The gate acts on the state of a qubit by matrix multiplication from the left:

=23 ()~ () =

The NOT gate is often identified with the symbol X, and is one of the four Pauli
gates:

(10 01
UoEIE-Oll alzoxEXELOJ
O'QEO'yEYE(;BZ:I agzazEZE[é_?ll.



Postulate 2 : Evolution of Quantum Systems

Postulate 2 (Nielsen and Chuang, page 81):

“The evolution of a closed quantum system is described by a unitary transformation.
That is, the state |{) of the system at time 71 is related to the state of |[{’) of the system
at time #, by a unitary operator U which depends only on times ¢#; and #,.”

Example:

) = alo) + b1

o=V o]

w)=uw= | ol 5] =5 |-b0+a
Example:

Let [yp) = 1/0) +0[1) = [0)

o=%1




Postulate 2 : Evolution of Quantum Systems

Important: U must be unitary, that is UTU = I

Example:
1 1 1 1
1 ¥ 1
U_\/i[l A_thenU—ﬁ[l 1]
1 1 1 2 0
Uy — L. 1 _ 1 _
V2 V2 —1][1—1} 2[0 2} !




Postulate 3 : Measurement

Postulate 3 (Nielsen and Chuang, page 84):

“Quantum measurements are described by a collection {M,,} of measurement oper-
ators. These are operators acting on the state space of the system being measured.
The index m refers to the measurement outcomes that may occur in the experiment. If
the state of the quantum system is |{)) immediately before the measurement then the
probability that result m occurs is given by:

p(m) = (Y| M, My |p)
and the sta’gg c|)11; >the system after measurement is:

v (W IME M )
The measurement operators satisfy the completeness equation:

The completeness equation expresses the fact that probabilities sum to one:

1 =3, p(m) =3, (Y| M} Myp|p) ”




Postulate 3 : Measurement

Some important measurement operators are My = |0)(0| and M; = |1)(1|

1 1 0|
MO—_O_[LO]_-O 0_
0 0 0
Ml__l_[ovl]__o 1_

Observe that MSMO +M IMl — [ and are thus complete.

Example:

y) = al0) +b|1)
p(0) = (| M{Mo|p)

Note that MSMO — My, hence

p(0) = (Y|Mo|w) = [a",b] [ cl) 8 ] [ b ] -

-] | § | = la?

Hence the probability of measuring |0) is related to its probability amplitude a by way of |a| 2.



Postulate 4 : Multi-qubit Systems

Postulate 4 (Nielsen and Chuang, page 94):

“The state space of a composite physical system is the tensor product of the state
spaces of the component physical systems. [sic] e.g. suppose systems 1 through n
and system i is in state [{);), then the joint state of the total system is |{;) ® [Y) ®

D Pp)

Example:

Suppose |Y1) = a|0) +b|1) and |,) = ¢|0) +d|1), then:
V1) © [W2) = [Y192) = a-¢|0)|0) +a-d|0)[1) +-b-¢c[1)|0) +b-d[1)[1) =
ac|00) +ad|01) + bc|10) 4 bd|11)



Entanglement

Entanglement is a uniquely quantum phenomenon. Entanglement is a property of a multi-qubit
state space (multi-qubit system) and can be thought of as a resource. To explain entanglement we’ll
examine the creation and destruction of an EPR pair of qubits named after Einstein, Podolsky, and
Rosen.

Suppose you begin with a qubit [y;) in a zero |0) state.

11
.y — 1
LetU—H_\/ill _1]

Then let ;) = Htpr) = 2510} + L{1) = 1 (j0) +]1))

Now take another qubit ;) also in the zero |0) state. The joint state-space probability vector is
the tensor product of these two:

W) ® [Y2) = [Wiwa) = 5(00) +0]01) + —[10) +0]11)

Now define a new unitary transform:

CNot =

_o O O
O = O O

OO
o o = 0O




Entanglement

‘1000w [#
0100|]| 0 0
W)y =CNothyn) = | o 0 0 Y| =] o] =25000)+[11)
0010/ 1
: B AL B .

The key to entanglement is the property that the state space cannot be decomposed into component
spaces. That is, for our example, there does not exists any |@;) and |p2) such that |@;) ® |[@2) =

1(00) + [11)).



Quantum computing

Look inside ¥

Quantum
Computation
and Quantum

Information

MICHAEL A. NIELSEN

Look inside ¥

An Introduction to
Quantum Computing
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Classical vs Quantum computer

inQUt measurement result
4(3 0 =/>(= () w/probability ]
o) be 0,1}
| =//7(= | w/probability |
()) w/probability ol
)=o)+ All) —fxp— 1% 2
1) w/probability |3
2 2
o +|8 =1 o
el ol +1A e.g. Bloch sphere 2=0)
‘O a.feC parameterization
3 b
=2 . [oy+i1)
A
a =cos(8/2)

B=e?sin(0/2)  *T



Quantum computer

Quantum Computer : A device that uses a quantum mechanical representation of

information to perform calculations. Information in quantum computers is stored in qbits

and the states can be represented by l; normalized vectors in complex vector space,

W)= > alz)

z€{0,1}"

a; € C satisfies ) o 1yn [az|* = 1 and basis of state |z) is computation basis.
A wvector is l1 normalized if its integral over all space = 1 and ly if its integral of function
times complex conjugate =1.

For a finite set S, the normalized uniform superposition of its elements can be written as

If quantum computer stores state |1/) in one register and |¢) in another register the state

can be written as

[¥) @ [¢) = [¥)|d) = |9, ¢)



How do you make Programmable Quantum Computers !

A quantum
measurement
extracts the
algorithm’s
output

The qubits are §§ They undergo

prepared ina @ a sequence of

particular gquantum logic
state gates




CNOT =

Single and two qubit operations

o O = O

0) —

A\
N




Qubit rotations

CNOT

Qubit rotations

input circuit output
state symbol state

) o)=Rela) Reme==(€ 0 0

o) ) =Kla) Ky me

14) a:)=Refar) - e e

19.) q.)
Iq,) I\ |q¢ @q,)

L/

|
|

cos(a/2) -sinla/2 )]
sine/2) cosla/2)

cos(e/2) —isin(e/2)
~isin(la/2) cosla/2)

IQc)®'qa qu) \r l’t’%’(’f'qn)®lql>

i

U

(0.0,

(0.1,
CNOT = (l 0
et |

(lcll




Quantum

logic gates

Operator Gate(s) Matrix
. T 0 1
Pauli-X (X) X —B- [1 O]
Pauli-Y (Y) —Y | ) 4
. gl 1 0]
Pauli-Z (Z) Z 0 -1
e i [ 1
Hadamard (H) H 7 [1 _1]
Phase (S, P) —S 5
— T = 1 0
7l./8 (T) 0 eim/4

Controlled Not
(CNOT, CX)

Controlled Z (CZ)

SWAP

Toffoli
(CCNOT,
CCX, TOFF)

o

-

'OOOOOOO

CoCOoOCOoO~=COC

e = 1
oo+

1 0 0 0
0O 1 0 O
0O 0 0 1
0o 0 1 O
0o O O
1 0 O
o 1 0
0O 0 -1
1 0 0 O
0O 0 1 O
0O 1 0 O
0O 0 0 1
O o0 o0 0 0 07
0O 0O 0O 0O 0 o0
1 0 0 0 o0 o0
o 1 0 0 0 o0
O 0o 1 0 0 o0
0O 0o 0 1 0 o0
o 0 0o o0 0 1
O 0o 0 o0 1 o




Measurements and partial measurements

Suppose 3 qubits are in the superposition

1 1 1 1
V) = —-1000) + =|100) + —=|101) — —=|111
W) = £[000) + [100) + -[101) — - [111)

and the third qubit is measured. What are the probabilities
of the two possible measurement outcomes and what are

the resulting superpositions of the three qubits for each case 7



Measurements and partial measurements

Suppose 3 qubits are in the superposition
1 1 1 1

v) = —-1000) + =|100) + —=|101) — —=|111

W) = £1000) + [100) + [101) — _[111)

To determine the answer, we write

)= (3100 + 5110} 0)+ (5110 = 5 1)) .

The probability that the measurement outcome is 0 is

2

1 1
= ~ 11
||2|00>+2| 0)

and 1in this case the resulting superposition is

1 /| 1 1

The probability that the measurement outcome is 1 is

2

1 1 1
~10) — = |11 -
H2|o> S| =3

and in this case the resulting superposition is

1 | 1 1
V2 (5 10) - 5 |11>) 1) = 7 1101) — 7 111).



Quantum circuits

* Time goes from left to right
* Horizontal lines represent quits

e Operations and measurements are represented by different symbols

Example 1. The following diagram represents a Hadamard transform applied to a single qubit:

H

If the input is |1¢), the output is H |1). Sometimes when we want to explain what happens for a
particular input, we label the inputs and outputs with superpositions, such as:

710 -7 1) H 1)

Example 2. Measurements are indicated by circles (or ovals) with the letter M inside. For exam-

ple:
0) H @:

The result of the measurement is a classical value, and sometimes (as in the above diagram) we
draw double lines to indicate classical bits. In this case the outcome is a uniformly distributed bit.




Quantum circuits

Example 3. Multiple-qubit gates are generally represented by rectangles, or have their own special
representation. For instance, this is a controlled-not operation:

|a) 4 |a)

|b) i la ® b)

Here the action is indicated for classical inputs (meaning a,b € {0, 1}). Along similar lines, here
1s a controlled-controlled-not operation, better known as a Toffoli gate:

a) ® a)
b) ® b)
C) i c D (a A b))

Here the action is described for each choice of a, b, c € {0, 1}.



Quantum circuits

Example 4
—t— H ® H ———
[41) [42) [3) [4)

Suppose first that |¢);) = |00). Then

1 1 1 1 1 1
i = (5100 + f|1>) (75100+7510) = 51000+ 5 101) + 310) + 5 111).

= 3100) + 5100+ 3 111)+ 210) = (=100 + 75 10) (=100 + 5 1))
) = [00).
Next suppose that |1);) = |01). Then

i = (5100 + 1)) (5100 = 7= 1)) = 3100) = 310w+ 5 110) — 3 ),
1 1 1 1 1 1
i = 3100) = 2100+ 3 111) = 3 10) = (100 = = 1) (510 - 55 )

V) = |11).




Quantum circuits

Example 4 IS vy IS S By
[91) |9h2) |1b3) %)

Next suppose that |1);) = [10). Then

= (5100 = 7)) (75100 + 75 11) = 5100+ 3100 - 5110} 5 ),
1 1 1 1 1 1
= 3100) + 100 = 5 111) = 2 110) = (5100 = =) (510 + 5 1)

ths) = [10) .

Finally, suppose that |t);) = |11). Then

i = (5100 = 7 1)) (100 = 1)) = 3100) = 3100 - 7110+ 3 ),
1 1 1 1 1 1
) = 3100) = 2100 = 211+ 2110) = (5100 + 1) (510 - 75 1)

¢4> = |01>-




Quantum circuits

Example 4
—— H ® H —
[41) [4)2) [4)3) [4)

It turns out that the circuit is equivalent to this gate:

|a) = la @ b)

b) o b)




Superdense coding



Superdense coding

Alice and Bob are in different parts of the world. Alice has two bits : @ and b. She
would like to communicate these two bits to Bob by sending him just a single qubit.
Alice cannot encode two classical bit into a single qubit in any way that would give

Bob more than just one bit of information about the pair (@, b).

This can be accomplished with additional resources, if Alice and Bob share an
entangled bit (e-bit).



Superdense coding

Alice and Bob are in different parts of the world. Alice has two bits : @ and b. She
would like to communicate these two bits to Bob by sending him just a single qubit.
Alice cannot encode two classical bit into a single qubit in any way that would give

Bob more than just one bit of information about the pair (@, b).

This can be accomplished with additional resources, if Alice and Bob share an
entangled bit (e-bit).

Wap) =[¢") = —=(|00) + |11))

b
7

Bob



Superdense coding protocol

1. If a = 1, Alice applies the unitary transformation

1 0
Oy =
g =1

to the qubit A. (If a = 0 she does not.)

2. If b = 1, Alice applies the unitary transformation

0 1
Oy =
to the qubit A. (If b = 0 she does not.)
3. Alice sends the qubit A to Bob. (This is the only qubit that is sent during the protocol.)

4. Bob applies a controlled-NOT operation to the pair (A, B), where A is the control and B is the
target. The corresponding unitary matrix is

(100 0\
0100
000 1
\0 0 1 0/

5. Bob applies a Hadamard transform to A.

6. Bob measures both qubits A and B. The output will be (a, b) with certainty.



Superdense coding protocol

ab | state after step 1 state after step 2 state after step 4 state after step 5
00 | 1-100) + L |11y | 00y + L |11) (\—15 0) + 2 1)) 0) 00)
01 | 2-100) + L [11) | L |10) + L |01) (% 1)+ L 0)) 1) 01)
10 | 100y — 111y | L J00) — 1 |11) (% 0) — L 1)) 0) 10)
11| £100) — &111) | Z5[10)— Z5j01) | (1) = 10)) 1) |11

When Bob measures at the end of the protocol, it is clear that he sees ab as required.



Superdense coding protocol

ab | state after step 1 state after step 2 state after step 4 state after step 5
00 | 1-100) + L |11) | 1-100) + L |11) (% 0) + 2 1)) 0) 00)
01 | L |00) + L [11) | X |10)+ L |o1) (—}5 1)+ L 0)) 1) 01)
10 | 1-]00) — L [11) | 2 o0y — L |11) (71-§ 0) - L 1)) 0) 10)
11| L00) — 1) | L110) = L jo1) | (11— 510)) 1) —11)

When Bob measures at the end of the protocol, it is clear that he sees ab as required.

First gate represent b
a Controlled-o, = : . l
1 0 0 0 Alice
0 10 0
0 0 1 0
o 0 0 -1 I Hi— o)
: w b)




Quantum Teleportation



Quantum Teleportation

%) I H

Alice

67 < -

\

Let us assume that |¢)) = « |0) + (|1). The starting state is

(a0) + B1)) (% 100) + % |11>) - % (2|000) + & [011) + B]100) + B|111)).

First the CNOT gate is applied, which transforms the state to

1
— («|000) + « |011) 4 3 |110) + B |101)) .
V2
Next, the Hadamard transform is applied, which transforms the state to

-
- % 00) (a|0) + B ]1)) + % 01) (a|1) +B]0)) + % [10) (2 [0) — B (1)) + % 11) (a[1) — 30)).

a |000) + a [100) + o [011) 4+ o |111) 4+ £[010) — B]110) + 5]001) — 3 [101))



Quantum Teleportation

)

=]

Case 1: Alice measures 00. This happens with probability

Alice

2 16%)

Z.

Bob

|3(al0+ 81)

%)
Conditioned on this outcome, the state of the three qubits becomes

100) (]0) + G11))-

Alice transmits the classical bits 00 to Bob. Because both bits are zero, he does not perform either
of the two possible operations, and so his qubit remains in the state « |0) + 3 |1) at the end of the
protocol.

Case 2: Alice measures 01. This happens with probability

2

|50+ 510)

Z .
Conditioned on this outcome, the state of the three qubits becomes
101) ([1) + 3]0)).

Alice transmits the classical bits 01 to Bob. Because the first transmitted bit is 0 and the second is
1, Bob performs a NOT operation on his qubit. Thus, the state of his qubit becomes « |0) + 3 |1).



Quantum Teleportation

|4

B

Case 3: Alice measures 10. This happens with probability

Conditioned on this outcome, the state of the three qubits becomes

[10) («[0) — B 1)). |

Alice transmits the classical bits 10 to Bob. Because the first transmitted bit is 1 and the second is
0, Bob performs a o, operation on his qubit. Thus, the state of his qubit becomes « [0) + 5 1).

Alice

2 NN
1 1) ¢ e

1
>(@l0) - 1))

5

Case 4: Alice measures 11. This happens with probability
2
1

|3 -sion| =3

Conditioned on this outcome, the state of the three qubits becomes

[11) («[1) — 5810)).

Alice transmits the classical bits 11 to Bob. Because both transmitted bits are 1, Bob first performs
a NOT operation on his qubit, transforming it to o |0) — 1), and then performs a o, gate to it,
transforming it to the state o |0) + 3 |1).



Quantum Algorithms

Probabillistic versus quantum algorithms




Quantum Algorithms

Probabillistic versus quantum algorithms




Quantum Algorithms

Probabillistic versus quantum algorithms

Bool”

P
./
%ég 7& \@

No interference versus interference

r@OO

=




Quantum Algorithms

No interference versus

0 {HH<HH]

|¢21> ba)

DN DN =

1) = |0) with probability
Y71 11) with probability
|p2) = {

(|0) + |1)) with probability
(|0) — |1)) with probability

Nt

N N

[41) =

|¢2) —

Interference
o ~Hl-—H—
191) |12)

1 1
E|O>+E|l>-

1 1
H(E'O”E”)
1 1
1 1 1
f(f'(” f' >) 7 (559 75)

Rl |1) Fog |0> = —|1>

l\DIl—l

0
).

=)



Phase Kick-Back to control register




Phase Kick-Back to control register

CNOT : \o><|0>_‘1>> H|O><|0>—|1>>

V2 72



Phase Kick-Back to control register

CNOT : \o><|0>_‘1>> H|O><|0>—|1>>

V2

CNOT : |1) (’O>\El>) B <(_1) <\0>\;§!1>>) — (!0>\gl>>

V2




Phase Kick-Back to control register

CNOT : \0><|O>\;§‘1>> H|O><|0>\;§|1>>

CNOT : |1) (’O>\El>

0) + 1)

) —m (o

CNOT <: -

0) —

V2

()

uw)zﬁnom—

|O>\;§‘1>> <\0>

V2



Phase Kick-Back to control register

CNOT : \0><|O>\;§‘1>> H|O><|0>\;§|1>)

CNOT : |1) (’O>\El>> B <(_1) <\0>\;§!1>>) — (!0>\gl>)
CNOT ('0> 2”) ('0> ED) . (m%m) (\o>¢—§|1>>

CNOT - \b><|0>\;§|1>) . ( 1)b\b><|0>\;§|1>>




Phase Kick-Back to control register

0) — 1)

CNOT (a0|0>+a1\1>)< )—>(ao\0>—a1\1>)(

V2

/-operation on control qubit (phase kick-back to
control register).



Phase Kick-Back to control register

More general 2 qubit operation U; implementing an arbitrary function f : {0,1} —
{0,1} by mapping
Ur = [2)|y) — [z)|y @ f(2))

U ¢ o) (Io>\;§|1>) > (Uf|x>|o>\;§uf|x>|1>) o) (|O€Bf(a:))\;§|1@ f(a;)))

Depending on the two cases : f(z) =0 and f(x) = 1 we have

) (|0€Bf(x)>\;§|1 EBf(iE)>> _ |$>(_1)f(m) (|0>\;_2_|1>) _ (_1)f(x)|$> (|O)\;§|1))

When control qubit is in superposition

Us : (a0]0) + a|1)) (|0)\;§|1>) s (1) O |0) + (—1) Wy 1)) (|0)\;§|1)>
0)—[1)

You can notice that the state of the second registrar = is an eigenvector of U; and
the eigenvalue (—1)/@® is kicked back in front of the control registrar. This technique of
inputting an eigenstate to the target qubit of an operator and associating the eigenvalue

with the state of the control register will be very useful in eigenvalue estimation.



Quantum Phase Estimation

Hadamard operation is self-inverse operation (It does the opposite as well) and it can be

used to encode information into the phases.

Hlz) = f[|o> (- 1)“’|1>]=% S (1)),

1 T _
H (ﬁ 10y + (~1) |1>]) ~ o)

The value of x is encoded into the relative phases between the basis states |0) and |1).

Hadamard operation on an n—qubit basis state is given by

H@TLX XYY
0-L ¥ coom

Ye{0,1}"

Information about the value of X is encoded into the phases (—1)%Y.

T 2 (FUYTY) | = HEMHENX)) = (HHE)|X) = 1)),
Ye{01}n

Note that (—1)*Y are phases of specific form. General form is a complex number 2™ for
any real number w € (0,1) ( phase ”-1” corresponds to w = %) The n—qubit Hadamard

operation is not able to fully access information that is encoded in more general ways.
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Quantum Fourier Transform

Quantum Fourier Transform (QFT) is a unitary Discrete Fourier Transform (DFT) upon

the quantum state. DF'T of a discrete function f, ..., f; is given by

o= 1 Nz_l (2midk/N
JN LT
where fo, f1, fo, ceeeenn. , fzv—1 and fl, fg, ............... : fN_l are the input and output functions,
respectively.
The inverse transform is .-
£ = LN ¢~ 2midk/N .
k=0

amplitudes y;, are DF'T of amplitudes ;.



Quantum Fourier Transform

/11 1 1 - L)

1 W w? w3 ‘e wM-1

1 1 w2 W Wb o W2M—2

QFTy = \/—JT/[ 1 W3 w5 w2 Ww3M—3
\1 wM;'—l w?ﬂ./{—2 wS!':J—?) ) w(M—lt)(M—l))

Another way of writing this is to say that the jkth entry of QF Ty is w’*.

o=t 9)-5(: 1)

As you can see, QF T is simply equal to H®2,
How about QFT4? The primitive 4th root of unity is ¢, so that

) S . | 1
1 ¢ -1 -4
1 -1 1 -1
1 —=¢ =1 4

QFT, =

b | =




Quantum Fourier Transform

/11 1 1 - L)

1 W w? w3 ‘e wM-1

1 1 w2 W Wb o W2M—2

QFTy = \/—JT/[ 1 W3 w5 w2 Ww3M—3
\1 wM;'—l w?ﬂ./{—2 wS!':J—?) ) w(M—lt)(M—l))

Another way of writing this is to say that the jkth entry of QF Ty is w’*.

o=t 9)-5(: 1)

As you can see, QF T is simply equal to H®2,

How about QFT4? The primitive 4th root of unity is ¢, so that
1. 1 1 1

1 & -1 —i

1 -1 1 -1

1 —i -1 32

1
QFT; =3

[f) = 3010)+ 1) +2) +[3)) =

1
0
9)=10) =] 4|+ and [) = [1)
0
QFTy to |f).
1 1 1 1
t{ § =i =i
|f>=Z 1 -1 1 -1
1 =4 =1 i
QFT40H|Q):
1 1 1 1 1
_1 1 ¢ -1 —3 0
9=511 -1 1 —1]]o
{ < <t § 0
QFT; on |h):
1 1 1 1 0
11 &+ -1 =i [1
|h>=§ 1 -1 1 -1]1o
1 —i —1 i 0

()

(1)

o O O -

= = e



Quantum Fourier Transform

(e 7)) a1
If we need only probability, we don’t see any difference
Let |©) = Z; and |®) = gz . Then P y g
3 (&%)
1 1 1 1\ [og ap+ o1+ +az Bo
‘©>_1 1 ¢+ -1 — Qa1 _l ap+iog —ag —taz | | B
“2l1 -1 1 1) | T2l agp—ar+a—a3 | | B
1 —i -1 i) \os ap — iy — ag +ias) B3
1 1 1 1\ [og ap+ o1+ o+ o3 Bo
‘(i>> B 1 1 2 -1 — 1o %) B 1 —tag + o1 +iag —a3z | —1i51
201 -1 1 1] || 2| ~aytau—astas | | =B
1 —i -1 i/ \w iog + o — iy — ag ) i33

The important point here is that the only difference between ‘(:)> and

P

‘<I>> is a relative phase shift.

How many operations do we have to do for M X M matrix?



Quantum Fourier Transform

U1) 1 H [ Rz [|Raa[] Ra xr—
1 lj2) H [~1Rn-2[Rn1
A?) H R_} : :
Ijn—1> H | R
k) . H i) LTy
1 , , R .
Where Ry = [O gmmk] is a single qubit unitary rotation gate.
e

As an example, for n = 3 we have the 3-qubit product state

1 1 1 1 - 1
1 - 1 ey 1 e BT " 2 . M-t
Fglk]kgkg) s E(m) + e2m0.k.3|1>) ® ﬁ(lo) + e2m0.k3k3|1)) ® ﬁ(m) + 20k kzk.il]_))' i X ::-; $4 56 52"\4—2
QFTy = \/—E/f i @B s f Ww3M-3

1 wM-1 wzj{rf—z waiaf—s B w(M—f){M—l)

What is a quantum operational form QFT ?



Inverse Quantum Fourier Transform

To invert the QFT, we must run the circuit in reverse, with the inverse of
each gate in place to achieve the transform:

1 N—1
2RIV |1y |
VN kzzo k) — 17)

We have already seen that the Hadamard gate is self-inverse, and the
same is clearly true for the SWAP gate; the inverse of the rotations gate

Ry, is given by:
1 0
;
Rk - [0 e—27r'f,/2kj|
— R} HRY F{RIH H
R;’rll_R‘.j;-Z H . |
X RIH H
—*x—— H




Quantum Phase Estimation

Hadamard operation is self-inverse operation (It does the opposite as well) and it can be

used to encode information into the phases.

Hlz) = % 10) + (—1[1)] = — 57 (~1)=[y).

1 - B
H (ﬁ 10y + (~1) |1>1) ~ |a)

The value of z is encoded into the relative phases between the basis states |0) and |1).
Hadamard operation on an n—qubit basis state is given by

Z XY|Y

Ye{o 1}n

H@n‘X

Information about the value of X is encoded into the phases (—1)%Y.

o | 30 (DY) | = HEESIX) = (HEHO)X) = 11X).
Ye{0,1}"

Note that (—1)*"Y are phases of specific form. General form is a complex number e?™ for

any real number w € (0,1) ( phase ”-1” corresponds to w = 3). The n—qubit Hadamard

operation is not able to fully access information that is encoded in more general ways.



Useful notations and identity

Notation for binary fraction :

I
w=0.21T2T3""""" ——+— —+ ------
12223 5 92 + 93
similarly, k0w = 21 T9T3 -+ T, . The1Theo - -+ and e?™F =1 for any k,
i(2Fw .
e2mi(2w) exp|2mi(X1T2x3 - - - Tk - Ths1Tht2 - )]
= exp[27ri(a31xga:3 v Q?k)] exp[27rz'(a:k+1:1:k+2 cee )] = exp[27ri(0.:1:k+1a:k+2 """ )}
3
_ 93l+1 L142 T
O . xl$l+1$l+2 ...... .':C 2 _|_ 22 _|_ ? _I_ ...... _|_ 2n_l_|_1

Product representation :

211.1

4 6211'?1(2”_1(4)) 1 0) + e?wi(Qn_zw) 1
262ﬂ-zwy|y ) | >® | ) | )

V2 V2 SN

|0> 4 eQmﬁ(O D T 1T Tyl ) ’1)

\/2_'"»

V2 V2



Algorithm : Quantum Phase Estimation

Input : The state \/% Z;n:_gl > y)

Problem : Obtain a good estimate of the phase parameter w

If the input is one-qubit (n = 1), w =0 . z; then we get

You can recall that Hadamard operation on the preceding expression will return you the

value of z; and hence the value of w for one-qubit.



Algorithm :

Input : The state \/% 251—01 e2miwy|y)

Problem : Obtain a good estimate of the phase parameter w

When we have a two qubit state (n =

we get

‘ ) + eQm;(D . $2)|1)

Quantum Phase Estimation

2), w= 0. z125 then using product representation

‘O) + 6211".6(0 . 11:111:2)'1)

Z 2mi( w)y|y 262‘“(0 . :I:1.T2)y‘y> —

b2y

V2 V2

Hadamard operation on the first qubit will return the value for z5. If x5 = 0 the value of

x1 can be obtained but not if 2, = 1.

To obtain x; when zo = 1 we need to define a phase rotation operation,

1 0 1 0
Ry = ‘ = ‘ in base 2
0 827.'1;"22 0 e2mi(0.01)
1 0
Ry' = |
( 0 e-—?m(ﬂ.ﬂl) )

If z, = 1, R, followed by an Hadamard operation (H) will return the value of ;.



Algorithm : Quantum Phase Estimation
Input : The state Sy eRmevly)

Problem : Obtain a good estimate of the phase parameter w

for a three-qubit, H on first qubit will return z3, if 3 = 0 you can find x,, if zo = 0 find 2,
directly. If 3 = 1, R, " followed by an H will return z, and if z, = 1, Ry followed by R,*

and H will return z;. See the circuit diagram below where,

|0> + 62?1'71(0 . a:3)|1> |0> + 6271'71(0 . w2$3)|1> |0> + e2m§(0 . 331332$3)|1>

1) = 7 » lp2) = 7 » ls) = 7

|(P1> H ® IX 3>

|o,> R, H X5

P> ®R)—®)— u]-1x,>




Grover’s Search Algorithm  (Unstructured database)

Problem : Find ¢ such that z; =1
Queries : ask %, get x;
Classically : N — 1 queries required (worst case) [N elements in search space]

Quantum : O(vV/N) queries [grover, 1996]

Steps Grover’s algorithm

Il
o =

{ U,lz) = —|z) for z = w, that is, f(z)

1. Begin with the computer in state |0)®*". Use Hadamard transformation to put the U,|lz) = |z}  forz # w, that is, f(z)

computer in equal superposition state,
=
16} =—= ) |=).
P

2. Repeat O(v/N) times the following two steps (Grover iteration)

e Apply the Oracle O |z) — (—1)/@|z)

e Apply the operator U; = 2|S)(S| — I = H®"(2/|0)(0] — I)H®"

3. Measure the resulting state



Grover’s Search Algorithm (quadratic speedup) (Unstructured database)

Intuition for a quadratic speedup (heuristic argument)
Let's take a database of N items and assign a number to each item :
[alj (}{2, s aN]
These are all real numbers in the classical case for which we will assign a probability foreach item -1, 1, 2,3, .........

Q; .
Pi= =x (classical) Probability of finding it" item

D i1 @

Qyy = O(N) (classical)). Good chance of finding item index m when p,, = O(N)

In the quantum case, probabilities are defined using amplitudes in the wavefunction, which are in general
complex numbers.

(quantum) Pm NOW goes by |am|2 Implies am =0 (\/ﬁ) (quantum)



Grover’s Search Algorithm

Problem : Find ¢ such that z; =1

(Unstructured database)

0

0

0

0

0

0

Queries : ask %, get x;

Classically : N — 1 queries required (worst case) [N elements in search space]

Quantum : O(vV/N) queries [grover, 1996]

Define the problem using quantum states

N =2" elements can be represented using n qubits

Unsorted database

w)

Goal: Find one
“marked” item



Grover’s Search Algorithm (Unstructured database)

Phase rotation operator ' <w |¢%>
10 0 0 ? i
0 —1 0 0 0 1 2 3 4 5 6
— |0 0 1 0
: (D))
-O 0 O ]_- @ o o @ ® ®
i
0 1 2 3 4 5 6




Grover’s Search Algorithm (Unstructured database)

14 2 2 2
Diffusion operator 2 14+ 2 2
N N N
D= , .
2 2 2
. W -1+ 5

v EEER
Yy EEmE




Grover’s Search Algorithm

Problem : Find ¢ such that z; =1

(Unstructured database)

R R RRR R R R 0

0

0

0(107]0

R R R R ER

Queries : ask %, get x;
Classically : N — 1 queries required (worst case) [N elements in search space]

Quantum : O(vV/N) queries [grover, 1996]

Steps Grover’s algorithm

1. Begin with the computer in state |0)®*". Use Hadamard transformation to put the

computer in equal superposition state,
=
16} =—= ) |=).
P

2. Repeat O(v/N) times the following two steps (Grover iteration)

e Apply the Oracle O |z) — (—1)/@|z)

e Apply the operator U; = 2|S)(S| — I = H®"(2/|0)(0] — I)H®"

3. Measure the resulting state

{

U,lz) = —|z) for z = w, that is, f(z)

Uplz) = |z)

for ¢ # w, that is, f(z)



Grover’s Search Algorithm (Circuit from book Nelsen and Chuang)

O(VN)
& e B
L — = = [ measu
& G ‘ G
oracle 7 — -
workspace — — —

Figure 6.1. Schematic circuit for the quantum search algorithm. The oracle may employ work qubits for its
implementation, but the analysis of the quantum search algorithm involves only the n qubit register.

Phase:
n — m o R i fp—
qubits = HE" E lz) = —|z) H H=" E
oracle forxz >0
) = (—1)F®)|z)
oracle  —
workspace =

Figure 6.2. Circuit for the Grover iteration, G.



Grover’s Search Algorithm  (Geometrical picture)

1
D) = o [|[wrong) + |wrong) + - - - 4+ |wrong) + |z) + |wrong) + - - - + |wrong)]
1. Reflect about the correct solution |z).
1 2. Reflect about the equal superposition state (initial guess) |®).
‘Z > (z|®) = N
A The first reflection can be written

R, :=2|z)(z| - I
and the second reflection can be written
Ry :=2|®){(P| — 1
where I is the identity operator.
these two reflections rotate any state vector [¢) closer to the correct state |z).

Grover iteration G := RgR, on the initial state |®)

R.|®) =

2
ﬁl@ - |®)

RoR.|®) = R (\/22?|z) _ \@)) _ (% _ 1) 13) — \/2271|z).

The amplitude of z is increased




Quantum Simulation Algorithm



Simulation of Hamiltonian

m We want to simulate the evolution

[Y,) = e HE [y)

m The Hamiltonianis a sum of terms:
M
H = z Hg
=1

m We can perform

e—ngt

m Forshorttimes we can use

—iH15te—iH28t —iHM_15te—iHM6t —iHé6t

e . €

= e

m Forlongtimes
[e—iHlt/re—int/r _"e—iHMt/r]r ~ g~ iHt



Simulation of Hamiltonian

For short times we can use

—iH16te—iH25t . —iHM_lcgte—iHM(St ~ e—iHSt

e . €

This approximation is because
e—lH16te—lH26t e

= (1 —iH,6t + 0(6t2))(1 — iH,5t + 0(5t2)) ...
. (I — iHy 6t + 0(5t2))

=1 —iH8t + 0(5t?)

= g HHOt 4 0(6t?)
If we divide long time t into r intervals, then

p—iHt — (e—th/r)" _ [e—iHlt/re—int/r _eTiHmMt/T 4 0((1./7,)2)]"
_ [e—iHlt/re—int/r e—iHMt/r]"” + O(tz/r)

Typically, we want to simulate a system with some maximum allowable
error €.

—iHM_15te—iHM5t

Then we need r o« t?/e.



Quantum Simulation Algorithm
Quantum walk

Random wallk : time=0 ——
Quantum wallk : time=0 ——

0.8

0.6 +

0.4 ¢

Probability

0.2 t

-200 -150 -100 -50 O 50 100 150 200

Space



Continuous walk on a graph (Classical)

The walk position is any node on the

O
graph.
N Describe the generator matrix K by
. Y a*a,aa’ €G
o K,o = 0, a#a,aa’ &G
— \\\\ _d( a) y’ a= al
> - \ . .
The quantity d(a) is the number of
e ‘\.b edges incident on vertex a.
,,:_-_-;;;;_j"""'""""'"""""j_f_;-_-_;.\ An edge between a and a’ is denoted
e e ™~ \ / aa’.
N T The probability distribution for a
e continuous walk has the differential
. equation
g 9.

:“-. 7 d pa ( t) Z
~ = K aa'Pa’ (t)
dt 4



Quantum walk on a graph

dpa(t)
:ilt — Z Kaqpg (t)
a

* Quantum mechanically we have

. d _
i W) = H[Y(0)

d
i—(alp(®) = ) (alHla'Na [p(D)

Ay /.ff .

e e * Thenatural quantum analogue is
N e e g /f N _

e I / ((ll H | a ) =K aa’

, B hn a B ff
,,.-""'."""-.,,_,

- e * Wetake
7 e S n_ V¥ a#dad,aad €G
~ (alHl|a') =1, .

L . _ ) otherwise.
h =a . 4

— * Probability is conserved because H is Hermitian.



Quantum walk on a graph

The goal is to traverse the graph from entrance to
exit.

e Classically the random walk will take exponential
time.

Forthe quantum walk, define a superposition state

1

col j) = \/ﬁjZaEcolumnj |a)

N, — 27 0<j<n
T 22t pn+1<j<2n+1

e Onthese states the matrix elements of the
Hamiltonian are

» (col j|H]|col G £ 1)) =2y

EIXXXXRRRRX B

\\ » ////
Send e —e
ender . )
1 1 1 1 1 1
ENTRANCE @ . o —e ° ® o — - - . —e® . ® EXIT
col0 col 1 col 2 coln—1 coln coln+1 coln+2 col2n—1 col2n col2n+1



Quantum walk on a graph

e Addrandom connections between the two
trees.

* Allvertices (except entrance and exit) have
degree 3.

* Again using column states, the matrix
elements of the Hamiltonian are

\/iy J#Fn

(col j|H|col (j + 1)) = 2y j=n

e Thisis a line with a defect.

* There are reflections off the defect, but the
quantum walk still reaches the exit efficiently.

1 1
ENTRANCE @ L *— - - .« —@ & L *— - - - —® & ® EXIT
col 0 col 1 col 2 coln—1 coln coln+1 coln+2 col2n—1 col2n col2n+41




Continuous-time Quantum walk on a graph

e CTQW has its position space defined by a graph I'(V, E)

e Adjacency matrix Aj; is defined on I :
A {1 edge (i,j) € E
7 10 otherwise
The vertices are labeled by the computational basis states {|1),(2),...,|N)}

e Hamiltonian Hf :

B =L ==(D — A), wol |
(—y i#j, (ilj)€E

Z 0.0100 A

= Hr, =40 i#j, (i,j)¢E
iy =],

LU
70 0 0

0.0000

-200 ~150 —~100
Position

CTQW will simulate the Schrodinger equation (Hamiltonian of that form)



Quantum walks

@ Quantum analog of classical random walks



Quantum walks

@ Quantum analog of classical random walks

@ Controllable quantum evolution in discrete space



Quantum walks

@ Quantum analog of classical random walks
o Controllable quantum evolution in discrete space

@ Operational (algorithmic) approach to control quantum dynamics
- a tool for quantum algorithms and quantum simulations
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Classical random walk



Classical random walk and stochastic problems

Classical random walk

REVIEWS OF
MODERN PHYSIC

Votusa 15, Nowres | Januany, 1943

& Tar Ferker-Planck Equstien, The Grneraisstion of Livaviiv's Thesmen
. Remarte
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Continuous-time quantum walk

e CTQW has its position space defined by a graph I'(V, E)

e Adjacency matrix Aj; is defined on I :

1 edge (i,j) € E

0 otherwise

The vertices are labeled by the computational basis states {|1),]2),...,|N)}

A,‘j =

e Hamiltonian Hr :

Hr =L =~(D — A),
- ’#.h (17./)€E
— Hr, =30 i), (ij)¢E
diy =],



Continuous-time quantum walk

e CTQW has its position space defined by a graph I'(V, E)

e Adjacency matrix Aj; is defined on I :

1 edge (i,j) € E

0 otherwise

The vertices are labeled by the computational basis states {|1),]2),...,|N)}

A,‘j =

e Hamiltonian Hr :

Hr =L =~(D — A), -l | \

= Hr. =<0 "7éj7 (“J)%E “““

diy =], \\ |
i \( WMMMW Wu&




Continuous-time quantum walk

for every pair j,k € V. The other important matrix associated
with the graph G is the generator matrix H given by
diy j=k,
H,=1-y UKEeE, 2)
0 otherwise,
where d; is the degree of the vertex j and y is the probability
of transition between neighboring nodes per unit time.
If p;(r) denotes the probability of being at vertex j at time
¢, then the transition on graph G is defined as the solution of
the differential equation

d
P10 ==Y Hpo). €
keV

‘The solution of the differential equation is given by

pin) = e p(0). )

By replacing the prot pi by g }
aj(t) = (j|¥(1)), where | j} is spanned by the orthogonal basis
of the position Hilbert space H,,. and introducing a factor of
i, we obtain

d
Jd—,a.(l)= ;Hi.kﬂk(’)- (5)
We can see that Eq. (5) is the Schrodinger equation
d
i— =H|y). 6.
LT 1¥) ¥} (6)
Since the generator matrix is an Hermitian operator, the
normalization is preserved during the dynamics. The solution
of the differential equation can be written in the form

W) = W |y (0)). 4

‘Therefore the continuous-time quantum walk is of the form of
the Schrodi ion, a ivisti luti




Discrete-time quantum walk

e Walk is defined on the Hilbert space H = H, ® H,

H. (particle) is spanned by | 1) and | )
M, (position) is spanned by |}),j € Z



Discrete-time quantum walk

e Walk is defined on the Hilbert space H = H, ® H,

H. (particle) is spanned by | 1) and | )
M, (position) is spanned by |}),j € Z

e Initial state :|W;,) = [cos(d)| 1) + e sin(d)| )] ® |j = 0)



Discrete-time quantum walk

e Walk is defined on the Hilbert space H = H, ® H,

H. (particle) is spanned by | 1) and | )
M, (position) is spanned by |}),j € Z

e Initial state :|W;,) = [cos(d)| 1) + e sin(d)| )] ® |j = 0)

e Evolution :
cos(0) — isin(0)

o Coin operation :  C(0) = —isin(0) cos(6)



Discrete-time quantum walk

e Walk is defined on the Hilbert space H = H, ® H,
H. (particle) is spanned by | 1) and | )
M, (position) is spanned by |}),j € Z
e Initial state :|W;,) = [cos(d)| 1) + e sin(d)| )] ® |j = 0)

e Evolution :

o Coin operation :  C(0) = [—/Z?r?gzg N ,cf)lg((oe))}

e Conditional unitary shift operation S:

S=2jez INT IR -DUl+H{ e+ 1></'|}

state | ) moves to the left and state | J) moves to the right



Quantum walk

e Each step of QW : W = S(C(0) ® 1)

0.09 ‘ ‘ ‘ ‘ — Quantum walk ‘
- - -Classical random walk ‘

0.08

0.07
0.06

ity

s

0.05

Probabil
o
o
R

0.03
0.02

0.01

0 .
-100 -80 -60 -40 -20 0 20 40 60 80 100
Particle position

100 step of CRW and QW [S(C(7/4) ® 1)]*®on a particle with initial state
(D +il4)
e G. V. Riazanov (1958), R. Feynman (1986)

o K.R. Parthasarathy, Journal of applied probability 25, 151-166 (1988)
®Y. Aharonov, L. Davidovich and N. Zugury, Phys. Rev. A, 48, 1687 (1993)



From discrete-time quantum walk to relativistic equations
:Klein-Gordon, Dirac

(free quantum field dynamics)

Quantum simulations using quantum walks



Symmetric evolution of DQW and hyperbolic PDE

i = [ nE1n]el=0 g [ o) )




Symmetric evolution of DQW and hyperbolic PDE

cos() sin(0)

Win) B(9) = {—sin(f)) c05(9)]

LD ilh]eix=0

Vi) = Z5[I1) £ 1 0] @ Ix=0) B(g):[ cos(?) fsin(ﬂ

—isin(0) cos(6)




Symmetric evolution of DQW and hyperbolic PDE

cos() sin(0)

Vin) = 25 [I DER] M ®x=0)  pg) = {_sin(f)) c05(9)]

Vi) = L[ D] @k=0 g - [Eg; Egﬂ

In the form of left moving and right moving component

¢g,t+1 = COS(9)1/)2+1,t - isin(@);/))l(_l,t
1/)>1<,t+1 = COS(9)¢i_1,t - I'Sin(9)1/12+1,t




Symmetric evolution of DQW and hyperbolic PDE

Vi) = L[ 1= D] @x=0) B(g)_{_gﬁs((ee)) 12((99))]

W) = %“ | i)} @lx=0) p(g) = {,Cs?sgzg Icsg;ggﬂ

In the form of left moving and right moving component
0 0 - 1
wx,t+1 = C05(9)1/’x+1,t - Ism(e)qva—l,t
1 1 - 0
1/)x,t+1 = COS(9)¢X_1,t - ’S'n(9)¢x+1,t
Differential equation form in continuum limit :Klein-Gordon equation

9? 9?

@—cos( )8 5 + 2[1 — cos(0)] wﬁf,}):o

CMC, SB and RS, PRA, 81 062340 (2010)

Quantum simulations using quantum walks



Dirac equation from Discrete-time QW

Dirac equation

0 . 0 0 N
(ihat - HD> V= (ihat + ihcé - Fri 5mc2> V=0
From DTQW when 6 = 0, the expression in continuum limit takes the form

L0 .0
|:Ihat - /hog,ax} V(x,t)=0

David Mayer (1996) and Fredrick Strauch (2006)
For 8 #0
Giuseppe Molfetta - Fabrice Debbasch (2013) and CMC (2013)

Quantum simulations using quantum walks



Dirac equation from Discrete-time QW

Dirac equation

0 . 0 0 N
(ihat - HD> V= (ihat + ihcé - Fri 5mc2> V=0
From DTQW when 6 = 0, the expression in continuum limit takes the form

L0 .0
|:Ihat - /hog,ax} V(x,t)=0

David Mayer (1996) and Fredrick Strauch (2006)
For 8 #0
Giuseppe Molfetta - Fabrice Debbasch (2013) and CMC (2013)

Quantum simulations using quantum walks



Quantum simulation of Dirac equation

@ Dirac equation

0 o« L0 0 5, _
(Iﬁat—HD>W—<lhat+lhcaax_ﬁmc>w_0



Quantum simulation of Dirac equation

@ Dirac equation
L0~ L0 0 s, _
(Iﬁ@t—HD>\U—(Ihar:—FIhC(X'aX—ﬁmC)“U—O

e Dirac cellular automaton (DCA) from discretization of Dirac equation :

boes= (5 L) malT el Teo b 4 - B e

« corresponds to the hopping strength, 5 corresponds to the mass term.
To=x=10l 5 [ Ty = Ix+1)(x|
VU(x) = W(x—1) ; V(x) = V¥(x+1)



Quantum simulation of Dirac equation

@ Dirac equation
L0~ L0 0 s, _
(Iﬁat—HD>\U—(Ihar:—FIhC(X'aX—ﬁmC)“U—O

e Dirac cellular automaton (DCA) from discretization of Dirac equation :

boes= (5 L) malT el Teo b 4 - B e

« corresponds to the hopping strength, 5 corresponds to the mass term.
To=x=10l 5 [ Ty = Ix+1)(x|
VU(x) = W(x—1) ; V(x) = V¥(x+1)

o Associated Hamiltonian in momentum basis, produces DH,

—kec  mc?
H(k) = cr ( mc? ke )

with the identification 3 = ™2, k is a eigenvalue of momentum operator.
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DTQW

The general form of the evolution operator

cos(f) T- —isin(f) T_
Uow = ( —isin(f) T, cos(0) T, )

Uow = cos(0){T- & [) (T + T @ [1) (U } +sin(0){T- & [1) (L) + T @ [4) (1] }



DTQW

The general form of the evolution operator

cos(f) T- —isin(f) T_
Uow = ( —isin(f) T, cos(0) T, )

Uow = cos(0){T- & [) (T + T @ [1) (U } +sin(0){T- & [1) (L) + T @ [4) (1] }

Uoes = 5 ) malTo el T ) 4 - 8 00

O[T+

By taking the value of & — 0 the off-diagonal terms can be ignored and a massless
DH can be recovered.

David Mayer (1996) ; Fredrick Strauch (2006) ; CSB (2010)



DTQW and DCA



DTQW and DCA
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DTQW and DCA

—Quantum walk
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DTQW and DCA
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DTQW and

—Quantum walk

Probability
=4
o
=S

o
o
o

vi. L T——
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Time
B % 4 & M 00 Al @ sl 4 8
0.06
— Dirac cellular automaton
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DE with mass term : Split-step



DE with mass term : Split-step




DE with mass term : Split-step

B cos(fy1) —isin(61) ) B cos(6y) —isin(62)
C(0n) = ( —isin(6y) cos(61) ) P C2) = ( —isin(022) cos(922) )

and a two half-shift operators,
T_ 0 / 0 T_ 0
5“(0 /)’ 5*‘(0 T+) 5_(0 T+>
T_-=[-04l i Ti=l+1{l

Usow = S+(C(92) ® /)5_ (C(el) ® /) = s<C(92) ® /)5(C(91) ® /)



DCA and SS-QW

0.08
0.05|
. 006 ] R
% —?00 0 100 l %
80.04 — 5
s N
0.02
Il 1
| b R
foo 50 0 50 100 oo 50 0 50 100
Position Position
SSQW :
54 C(02)S5_C(01) when (01 = 0,0, = w/4) = DCA
U B cos(p)T—  —isin(6a)!
ssQW = —isin(62)/ cos(62) T

which is in the same form as Upca where 8 = sin(62) = "2 and a = cos(6-).

CMC (2013) ; CMC & Mallick (2015) ; SS et. al. (2021)



DTQW/ DCA on circuit-based quantum processor



DTQW/ DCA on circuit-based quantum processor

Single and two qubit gates

. 1 0
Identity : 1= 1.0 Pauliz az—Z—<O _1)
01
1 1 1
; . _x_( 01 Hadamard H_( >
Pauli x .O’X—X_<1 0) AGEE
0 —i 8Phase : T.a—( . 0
Pauli y :gy—Y—<I_ 0> 7/ ase e WL
1000
] 0100 |0) MRl
CNOT = =14 0 0 1 = 100) + [11)
0010 ) & V2




DTQW/ DCA on circuit-based quantum processor

Single and two qubit gates

Identity : 1= < (1)

Paulix : o,=X=
Pauliy : o, =Y =
1
0
CNOT : = 0
0

(g

Mapping of position

| Position

Qubit basis

0 Pauliz : JZ—Z—<(1) 01
1 _
1 1 1

01 Hadamard . H=— (

( 10 ) vail -1
0 —i /8 Phase : T,5= 10
i 0 S 0 ein/4

0 0 O

1 0 O |0)

001 00) +|11)

H]
0 1 0 |0) &

0 qubit gates

V2
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10}
[0}

Coin

Position

ARTICLE

Quantum walks and Dirac cellular automata on a
programmable trapped-ion quantum computer

OPEN

2@, 3 @ aE, @ @, as ., @
¢ € @ @ i) I )
) & ! ot
Step 1 Step 2 Step 3 Step 4 Step 5
DOW DCA
(0)/10y [0} =it} jo} +if1)
h{v){—q b t— —t = - . 2
c ! sop RXX R XX R XX
=l . H .. B = g 1 52 6 2 5 2
o —] LR S R ST [ A g 2 w4 w4 12 8
i v p g 3 124 124 1 4
o e @ z ¢ BU B 7N
0 — S 5 W11 W 1% 11
— H = =1 =
Towl 7832 T 2 N 32




ARTICLE s DA A roread

open
Quantum walks and Dirac cellular automata on a
programmable trapped-ion quantum computer

o)y @@ aE, @3 @

1 2@, @
10} ‘? T
10} i3} li P Bt + @
10) > @ ) /) 4
)
10) @ @ @ 7] ]
Step 1 Step 2 Step 3 Step 4 Step 5
DOW DCA
" (03/103 [0} +il1h o} +3f1)
y ) —y i |= = %
Coin i £ #p RXX R XX R XX
s B oS B B =! g 1 52 6 2 5 2
f g SsE. s [lE 1 weomgon
2 o e @ Z ¢ BB 71
S 2 5 /11 2% 11 2% 11
o — o = — =

Towk 78 32 T 82 832

)Ex jeriment
q

Step

7
Position Pesition Position Position
Nature Communication 11, 3720 (2020) ; Phys. Rev. A 104, 062401 (2021)
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Directed quantum walks and equivalence
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Directed quantum walks and equivalence
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o, -
ih () = H (1)

0\v(t) _ ¢

e 1L 10)
o) [T ig
0 ‘/o. "
In [¥(7)) — In [¥(0)) = —%m

U (7)) = e AW (0)),



Simulation of Hamiltonians

m Two scenarios:

1. The Hamiltonian is given as a sum of interaction terms:
J

2. The Hamiltonian is sparse, in that it has no more than d nonzero elements in any row or column.



Standard methods

Decompose the Hamiltonian as

M
H — ZHR
k=1

The individual Hamiltonians H;, can be limited-dimension interaction
Hamiltonians (Lloyd, 1996).

Approximate evolution for short time as

e

—iHT _

M

k=1

e

—iHkT

For longer times, we divide the time up into many short times

M

r

o~ IHT — ‘ ‘e—inT/r

k=1



Standard methods

* More generally, we would like to be able to simulate sparse
Hamiltonians.

( 0 0 2 0 0 2i 0 \
0 3 0 0 0 1/2 0
2 0 0 0 0 0 —V34i
0 0 0 1 et™/T () 0
H = 0 0 0 e~im/T 9 0 0
—V/2i 1/2 0 0 0 0 0
\ 0 0 —V3—-i 0 0 0o --- 1/10 )

* Positions and values of non-zero elements are given by oracle.

Jj, k) J, k)

10)

> |Hjg)

* This enables application to many other problems.



Standard methods

* Theindividual H, can be 1-sparse Hamiltonians obtained by a
decomposition technique (2003).

* Efficiency can be increased by improved decomposition techniques (2007;
2010).

* Higher-order decomposition formulae can also be used to obtain greater
efficiency (2007).



Quantities involved in simulation

We want to simulation qguantum evolution under a Hamiltonian

d |
—19) = —iH©)l)

» ¢ —allowable error in the simulation

» T —time of evolution under the Hamiltonian

» d — sparseness, i.e. maximum number of nonzero elements
> ||H|| = norm of the Hamiltonian to be simulated

> ||H'|| - norm of the time-derivative of the Hamiltonian

» N —dimension of the system



Standard methods - Limitations

The scaling is always polynomial in the allowable error, €.

The scaling for time-dependent Hamiltonians depends heavily on the
derivatives of the Hamiltonian.

The scaling in T is always superlinear, whereas lower bound is linearin T.

The scaling is at best d? in the sparseness.



Known results

It is possible to decompose a sparse Hamiltonian into O(dz) 1-sparse Hamiltonians with complexity
O(log* n).

This can be improved to 0(d) Hamiltonians, at the cost of complexity linearin d.

Arbitrary order Lie-Trotter-Suzuki formulae can be used to obtain scaling as O ((||H||T)**1/?¥) for
arbitrarily large integer k. The scaling in terms of the allowable erroris O il :
g2k

Using quantum walks without a decomposition enables complexity strictly linear in || H||T, but as scaling
in the error of 0(1/+/¢)

Similar scaling can be obtained for time-dependent Hamiltonians, but the complexity now depends on
the higher-order derivatives.

An algorithm with randomised times enables complexity independent of the derivatives of the
Hamiltonian, at the expense of worse scaling in €.



1. Decompose Hamiltonian to 1-sparse

» Sparse Hamiltonian has no more than d nonzero elements in any row or
column,e.g.d =2

( 0 0 2 0 0 |2 0 \
0 3 0 0 0 |[1/2 0
2 0 0 0 0 0 —v3+1
0 0 0 1 e'™/T| 0 0
H = 0 0 0 e~im/7 |2 0 0
—/2i| |1/2 0 0 0 0 0
\ 0 0 |—v3—4d 0 0 0o --- [1/10 }

* A 1-sparse Hamiltonian has no more than one nonzero element.

* We could decompose Hamiltonian into //; and /1, shown in blue and yellow.

D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Comm. Math. Phys. 270, 359 (2007).




2. Decompose 1-sparse to self-inverse

* We further divide the 1-sparse Hamiltonian into X, Y and Z components, in

this example for H;. off-diagonal real
-al I

( 0 0 0 0 [V2i]--- lo \
0 3 0 0
2l o 0 0 —V3l+i
0 0 0 0
H,= 0 0 0 0
—v2i| 12 0 0
// . . . .
off-diagonal \ 0 0 =v3Li 0 - }
imaginary

on-diagonal real

* The X and Y components are proportional to Pauli X and Y matrices in each
2 X 2 subspace.

* The Z componentis a phase shiftina 1 X 1 subspace.



2. Decompose 1-sparse to self-inverse

 Considerjustthe X component. We further decompose itinto components of
magnitude 2¢&y.

0 0 0 0 0
( o B E 0 0 ' 0 )
2 o 0 0 0 0 - |=/3
0 0 0 I 0 0
Hy x= 0 0 0 0 0
=v2il /2 o 0 0 0 0

\ 0 0 BB o 0 o0 .- [
Take ey = 1/4. Then we can approximate

1 1
—V3~—= -+0
ool

T take component 2



2. Decompose 1-sparse to self-inverse

* Considerjustthe X component. We further decompose itinto components of
magnitude 2¢&g.

0 0 0 0 0
( 0o |3 E 0 0 ' 0 )
2] o 0 0 o 0 - |-1/2]8
0 0 0 I 0 - 0
Hyx,= 0 0 0 0 0
—v2il /2 o 0 0 0 0

\ o o |-1/20 o 0 0 - -)
» Take ey = 1/4. Then we can approximate
1 1

—V3~—= =+0
2 2

\ take component 2



2. Decompose 1-sparse to self-inverse

* To obtain self-inverse matrices, we want +1 or —1 to appear in each column
once.

bﬁ)azzz

0
0
0
0

* We further expand

1_

_|_

SN
NI
el
e B



2. Decompose 1-sparse to self-inverse

To obtain self-inverse matrices, we want +1 or —1 to appear in each column
once.

( 1 0 [2] 0 0 0
0 |1] 0 0 0 0
2 o 0 0 0 -1
0 0 0 1 0
Hyxo4+= 0 0 0 1 0 €H
—v2il [i2 o 0 0 0
\ 0 0 [ 0 0 1 /
* We further expand take first
4/component\‘
11,1 1|11 NEL
2" 1734 2 L4l 4 “lal 4

* To make it 1-sparse we fillin on the diagonal as needed.



3. Trotter expansion

m The Hamiltonian evolutionis

exp(—i(H, + H,)T)

m More generally time-dependent evolution

T
time ordering —, exp l—ij(l‘h(t) + Hy(8))dt
0

m  This can be thought of as the limit of a large number, r, of small intervals.
r

lim e—iHl(tj)6te—iH2(tj)6t t] = ]5{:
o j=1 ot=T/r
m  We can approximate the time evolution using finite r. The error scales as
(AT)? ,
0 - A = max(||H|l, [[H']])
m Tobounderrorby &, canuse
(AT)?
r X

&



4. Using CGMSY’09 technique

m H; = eyUq, where U, is self-inverse, so

e tH10t — [cos@ — iU, sin O 0 = eyot

m  Implement the operation probabilistically with a control qubit.

Vcos 8 |0) — iVsin |1) ' . Vcos 0 (0| + Vsin 6 (1]

) . e ~H13t )

R. Cleve, D. Gottesman, M. Mosca, R. Somma, and D. Yonge-Mallo, In Proc. 41st ACM
Symposium on Theory of Computing, pp. 409-416 (2009).




4. Using CGMSY’09 technique

R=(5 L)
B =+sin@
Pz((l) _Ol)

m H; = eyUq, where U; is self-inverse, so

—iH,8t _

e =1l cosf —ilU;sin@ 0 = eyot

m  Implement the operation probabilistically with a control qubit.

V)

E» o

e_iH16t|l/J>




Density Operator

Suppose we have an apparatus which prepares quantum systems in certain
states. For instance, this could be an oven producing spin 1/2 particles, or a
quantum optics setup producing photons. But suppose that this apparatus is
imperfect, so it does not always produces the same state. That is, suppose that
it produces a state |11) with a certian probability ¢ or a state |¢3) with a
certain probability g5 and so on.

All that we assume is that they behave like classical probabilities (classical uncertainty)

¢ €[0,1, and » g=1

Now let A be an observable. If the state is |1 ), then the expectation value of
A will be (1| Altp1). But if it is |¢2) then it will be (2| A|1p2). To compute the
actual expectation value of A we must therefore perform an average of quantum
averages:

(A) = Z qi (Vi Alvps)

What is important to realize is that this type of average cannot be writen as
(p|A|g) for some ket |¢). If we want to attribute a “state” to our system, then
we must generalize the idea of ket.

(Gl A = b [AW(W] — (=T 0t [Awi)wz-] — tr {A;mwé)(«m}



Density Operator

i) = (Al = (4 - Sait [Awm-] —tr {A;qmw}

This motivates us to define the density matrix as

p= Zqi\wmw

With this idea, we may now recast all of quantum mechanics in terms of density matrices, instead of kets.

Therefore, most general representation of a quantum system is written in terms of an operator 0 called the

density operator, or density matrix. It is designed in a way that naturally encompasses both quantum and
classical probabilities.

When P = |¢> <¢| we say we have a pure state. And in this case, it is not necessaryto use @ atall.One
may simply continue to use ket notation.

A state which is not pure is usually called a mixed state. In this case kets won’t help us and we mustuse p



Example

To start, suppose a machine tries to produce qubits in the state [0). But it is
not very good so it only produces |0) with probability q. And, with probability
1 — g it produces a state |7,b) = CO0S 9|0) + sin 2/1), where 6 may be some small

angle. The density matrix for this system Wlll then be

p = q|0)(0] + (1 — q)|9) (¢| = (?+(;)Sln) COZS% (1(13)2;11%%8%)

Forinstance, machine can produce ‘O>; |¢1>: |¢2>; |¢3>; and so on.

The mixed state will have all these states with some probability.



Example

Let us consider a 50 : 50 mixture of states |0) and |1)

p= 30001+ vl =3 (5 9)-

Let us consider a 50 : 50 mixture of states |+)

p= g+ 51 =5 (5 9)-

We see that both are identical. Hence, we have no way to tell if we began with
a 50-50 mixture of |0) and |1) or of |4+) and |—). By mixing stuff, we have lost
information.




Interpretation of matrix element in density matrix

For an arbitrary state c| 1) +¢| |),

Diagonal elements = probabilities

Off-diagonal elements ="coherences"
(provide info. about relative phase)



Example

Let us consider a 50 : 50 mixture of states |0) and |1)

p= 0000+ vl = (5 7).

We can see the off-diagonal element appearing for the superposition state (coherence/ relative phase).



What happens when we don’t look at part of the system ?

When you calculate expectation values, you trace over the system.
If your operators depend only on a subsystem, then it makes no
difference whether you trace over other systems before or after:

Tipd = X (ilpAli
= T3 il Al

>{"j'|'|"'
— Z <'E.' SYS Z <j|f-m~-‘0 j>rm' A

i J
= 5 (il A Trenap} Al

— Tlh{jhphujw*_l y
withpg,, = Tre.p.

i>5yﬁ




Decoherence arise from loss of information

Taking this trace over the environment retains only terms diagonal
in the environment variables —i.e., no cross-terms (coherences) remain
if they refer to different states of the environment.

(If there is any way — even in principle — to tell which of two
paths was followed, then no interference may occur.)

Suppose that the environment has a record of the spin
of our system, such that the total state of the universe

is | 1)l T)e +1 Dol 1)
([ 1/2 0 (0 1/2 )

p.whenenvis T /: 0 0 0 0
P 0 0 0 0
L L1/2 0 0 1/2 ) f—

pswWhenenvis \!



Decoherence arise from loss of information

coherence
lost

1/2 0
0 1/2

T]_-{:” i‘J'(“} —

There is still coherence between and 17, butif the environment is not part of your
interferometer, you may as well consider it to have "collapsed" to | or

This means there is no effective coherence if you look only at the system.



Density operators - summary

p= Zle%)(%’l-

(Characterization of density operators). An operator p is the density oper-
ator associated to some ensemble {p;, [1;)}; if and only if it satisfies the following conditions:

i) p has trace equal to one, i.e., Tr(p) =1

it) p is positive (and, thus, Hermitian), i.e., p > 0.
Please prove this as an exercise

(Pure density operators). The density operator describes a pure state (i.e., a
single state vector) if and only if Tr (p?') =1.



Density operators - summary

(Pure density operators). The density operator describes a pure state (i.e., a
single state vector) if and only if Tr (p?') =1.

Proof.

Tr (pz) = Tr (ijpk CARCACTY (¢k|)

ik
= pipeTr (195) (W [¥r) (Yrl)
i
=D pipk [(W;1vk)|?
i 2
< ijpk
%

= L



Density operators - summary

1) We denote the space of density operators on H by D(H).
2) We call Tr (p?) the purity of p. It satisfies 1/dim(#H) < Tr (p?) < 1.
3) If p is not pure, i.e., Tr (p?) # 1, then we say that p is mixed.

4) If Tr (p?) = 1/dim(H), we say that p is maximally mixed.

Note that different ensembles can give rise to the same density operator. For example, with

la) = v/3/410) + v/1/4]1) and [b) = /3/4]0) — \/1/4|1), the ensemble {(1/2,a}), (1/2,[b))}

gives rise to the same density operator as {(3/4,(0)), (1/4,|1))}, since

1 1
p= 5 la)al + S [b)(d]

1(3 V3 V3 1
=3 (Z|o><0| + =0t + - [1)(0] + ZI1><1I)
n % (%0)((” = §|0)(1| - ?ID(OI + ilD(l)

3 1
= 2[0) (0] + 4111



Evolutions in density operators

The evolution of the closed system is described by a unitary transformation.

When states are evolved, action of unitary operator will be :
) = [¢') = Ulp)

When density operators are evolved, action of unitary operator will be :

/
p—p =UpUT
The evolution of the open systems is described using Kraus operators. We will not discuss that here.

The von Neumann equation : Time evolution o any ket in density operator |¢( )> — e—’th|wu(0)>.

—tHt iHt —tHt ':,Ht
p(t) = Z i€ [4:(0))(%:(0)[e™" = e p(0)e von Neumann’s equation:

Differentiating with respect to ¢ we then get

% — (—iH)e Htp(0)elHt + e Ht p(0)e (i H) = —iH p(t) +ip(t) H dt [H, pl p(t) p(0)




Quantum Errors’ and Quantum Error corrections

Classical Errors’: Binary symmetric channel

One of the simplest models for single-bit (classical) errors is the binary
symmetric channel, in which each possible state of the bit, 0 and 1
“flips” to the other with some probability p.:

Note that, without loss of generality we can assume p. < 0.5, because if
p. > 0.5 then it is more likely than not that a bit-flip has occurred, so we
can interpret a received 0 as a 1 and vice-versa. In the case where

pe = 0.5 we cannot recover any information from the channel.



Errors in quantum computers

e (lassically, bits can flip. (Or be erased.)
o ie,0->1and1->0 with some probability p.
e Qubits have a larger state space, therefore more things can go wrong.
o Any operation which can be considered a gate can also be
considered an error.
o Example: Pauli errors

X[10)=[1)| | z]0o) =0y | |Y]|0) =i|1) = iX Z|0)
X|1) =10) | |Z|1) = —[1)] [Y|1) = —i|0) =iXZ|1)

Bit flip Phase flip Bit & phase flip

Depolarizing channel

0 1 0 —i 1 0
X = s Y = s = .
(o) S =l

5(,0):(l—p)p+§(XpX+YpY+ZpZ)

X*=Y*=Z"=1=Y MM, =(1-p)+3(p/3)[=1



Classical Errors’: the three bit repetition code

If we wish to send a single bit over a binary symmetric channel, then we
can encode the bit, by simply repeating it three times. That is, if we wish
to transmit a 0, we send three bits (sequentially) in the state 0, and
likewise for 1. This can be denoted as:

0 — 000
} —% 111

Once the three bits have been received, they are decoded by a “majority
vote”. So in order for an error to occur, it is necessary that either two of
the three bits have been flipped (which can occur in three different
ways), or all three have been, that is:

pl, = 3p2(1 — pe) + P

Which is less than p, if p. < 0.5. Typically, p. is small, and we can
describe this as suppressing the error to O(p?).



Can | do the same for qubits ?

It appears that we cannot directly transfer the classical error correction techniques to the problem of
quantum error correction for the following three reasons:

1. The no-cloning principle forbids the copying of quantum states
2. Measurement destroys quantum information

3. Quantum states are continuous: ch|0> + ﬁ|1>
Therefore, quantum errors are also continuous :

al0) + B|1) = (a + €)[0) + (8 + €1)[1)

Thus, classical techniques cannot be directly applied to qubit errors.

Nevertheless, with some ingenuity, techniques to correct quantum errors have been developed.



Three qubit bit-flip correction code

The three-bit repetition code guarantees to return the correct bit value, so long as at most one of
the bits in the code is flipped. We now use this as inspiration for the three-qubit bit-flip code, in

which entanglement rather than cloning plays the role of the repetition. Thatis, we encode the
computational basis states:

|0) — |000)
1) — |111)

Which is achieved using the following circuit:

a|0) +811) i '
0) S
0) D

The above circuit will resultin : ((};‘0) —|— ﬁ‘l))‘())@z — (1“000> —|— ﬁ‘]_]_]_)



The three-qubit bit-flip code: error detection and recovery

To detect and recover bit-flip errors, we supplement the circuit with two ancillas that we use for error detection:

............................................................................

a|0) +A[1)
=
(]
|0) — §
: L K ; With this circuit, we can
0) S S R detect and recover a single-qubit
noisy channe | bit-flip errors
L 10) —0-© (A
1) :  [Y2)
: 10) P—F |
Bit-flip 1) M; M, Recovery I2h2)
- a]000) + B[111) 0 0 I®I®I «l000)+ B|111)
1 al100)+81011) 1 0 X®I®I «|000)+ B]|111)
2 a |010) 4+ 5|101) 1 1 I X®I «l|000)+ B8|111)
3 al001)+8]110) 0 1 I®I®X «|000)+ B|111)

In the circuit we have made we have made comparative parity-check measurements that tell us only about the error
and not about the quantum state itself, and so these measurements have not destroyed the quantum state.



The three-qubit phase -flip code: error detection and recovery

To detect and recover phase-flip errors, we again supplement the circuit with two ancillas that we use for error detection:

2(0) +811) s - 1
i Y g
10) =& H A A S With this circuit, we can
10) o y : H U = detect and recover a single-qubit
noisy channel i bit-flip errors
|0) O 92
2 |¥2)
0) S £

Phase-flip sends : |::> oy |::>

Pha se-f@ip )1 ) M, Ms Recovery 2)
- |+ 44+ ———) 0 0 IQIQ®I oal+++)+8——-)
1 | = Jeob i == 1 08 Zgigd e t++r+8———)
2 i =il 1 1 I®ZQ®I oal+++)+8|——-)
3 gt r=ftdl=—tF D 1 TFTelgaZ aH-+++8l==—)




The three-qubit bit-flip code: error detection and recovery (Recap)

To detect and recover bit-flip errors, we supplement the circuit with two ancillas that we use for error detection:

............................................................................

a|0) +A[1)
=
(]
|0) — §
: L K ; With this circuit, we can
0) S S R detect and recover a single-qubit
noisy channe | bit-flip errors
L 10) —0-© (A
1) :  [Y2)
: 10) P—F |
Bit-flip 1) M; M, Recovery I2h2)
- a]000) + B[111) 0 0 I®I®I «l000)+ B|111)
1 al100)+81011) 1 0 X®I®I «|000)+ B]|111)
2 a |010) 4+ 5|101) 1 1 I X®I «l|000)+ B8|111)
3 al001)+8]110) 0 1 I®I®X «|000)+ B|111)

In the circuit we have made we have made comparative parity-check measurements that tell us only about the error
and not about the quantum state itself, and so these measurements have not destroyed the quantum state.



The three-qubit phase -flip code: error detection and recovery ((Recap)

To detect and recover phase-flip errors, we again supplement the circuit with two ancillas that we use for error detection:

2(0) +811) s - 1
i Y g
10) =& H A A S With this circuit, we can
10) o y : H U = detect and recover a single-qubit
noisy channel i bit-flip errors
|0) O 92
2 |¥2)
0) S £

Phase-flip sends : |::> oy |::>

Pha se-f@ip )1 ) M, Ms Recovery 2)
- |+ 44+ ———) 0 0 IQIQ®I oal+++)+8——-)
1 | = Jeob i == 1 08 Zgigd e t++r+8———)
2 i =il 1 1 I®ZQ®I oal+++)+8|——-)
3 gt r=ftdl=—tF D 1 TFTelgaZ aH-+++8l==—)




The Shor code -9-qubit code

The Shor code is a 9-qubit code which is constructed by concatenating the three-qubit bit-flip and
three-qubit phase-flip codes:

o Concatenation is an important, often used concept in error correction.
o The idea is simply to combine the two codes.

e Step 1: Apply bit flip code to physical qubit.

e Step 2: Apply phase flip code to the logical qubit.

This encodes the computational basis states as follows:

0) — |0r) = (|OOO> + [111))(|000) 4 |111))(|000) + |111))

2 -5

1) = [1) = (|000> [111))(]000) — [111))(]000) — |111))



How do we generate a 9-qubit state

0) — |0z) = 7(|ooo> + |111))(]000) + |111))(|000) + |111))
1) = r) = 7(|000> [111))(|000) —[111))(]000) — |111))
) H

|0)

10)

|0) b H

0}

10)

|0) & H

0)

10)

1
ﬁ(a(mom +1111))(]000) 4 [111))(]000) + [111))
+ B(|000) — [111))(]000) — [111))(]000) — |111)))



Correcting bit-flip with Shor code »

The Shor code can detect and correct a bit-flip on any single qubit. For
example, suppose we have an arbitrary quantum state a|0)+ |1). which

[=]

we encode with the Shor code as:

1
7 (a(|000> +[111))(]000) + [111))(]000) + |111))

+ 6(]000) — |111))(]000) — |111))(]|000) — |111)))

If a bit-flip occurs on the first qubit, the state becomes:

1
—— | «(]|100) + [011))(|000) 4+ |111))(|000) + 111
2\/5(0 ) +1011))(|000) + |111))(|000) + [111))
+ B([100) — [011))(|000) — [111))(|000) — [111)))
Which can be detected (and thus recovered from) by parity-check measurements between the

first three qubits as in the three-qubit bit-flip code. By symmetry we can see that the same
principle applies to all of the nine qubits.

(=]




Correcting bit-flip with Shor code

The Shor code can also detect and correct a phase-flip on any single
qubit. If a phase-flip occurs on the first qubit, the state becomes:

1
Wi (a(|000> — [111))(]000) + |111))(]000) + [111))

+ B(]000) -+ [111))(/000) — [111))(000) — [111)))

)

=]

[=]

(=]

The key idea here is to detect which of the three blocks of three qubits has experienced a change

of sign. This is achieved using the circuit shown on the following slide.

We can also correct combinations of bit- and phase-flips in this way.




Circuit for correcting phase-flip with Shor code

Shor encoded
qubit

10)

0)

Parity-check
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Shor enco
qubit

ded |

[0)

|0}

Circuit for correcting phase-flip with Shor code W #]

The bit-flip error will be identified by two W

parties of each triplet of the qubit o

ZQZRQIRIRIRQIRIRIRI,
ZQIRZRQIQIRQIRIRIRI,

IQRIRIRZR~ZQIRQIRIRI,

IQRIRIR®RZRIIRQ~ZIRTIRIRI,

IRIRIRIRIRIRZLZRZR T,
IQRIRIRIRIRIRZRIRZ.

[#] —{#]
H H
J
(4]
g &
3 25
&
L] — #]
H H
arar Ir71|
¥ £
Parity-check

Phase-flip error will be identified by

XQXR3XR3XQXR3XQIQ®IR®I,
IRITRIQIXRIXRXIXRIXRX.



The depolarising channel

When studying the (classical) three-bit repetition code, we saw that in
practise it is more useful to think of it as a code that suppresses the error
in the binary symmetric channel from p. to O(p?).

In the quantum case, we can see something similar: Consider the
depolarising channel, in which a physical qubit is left unchanged with
probability 1 — p.; experiences a bit-flip with probability %ﬂ; experiences a
phase-flip with probability % ; or experiences both a bit- and phase-flip
with probability £-.

An analogous argument to that made for the binary symmetric channel
can be made to show that the Shor code suppresses the error from p, to
O(p?) in the depolarising channel.



Correcting any single bit-flip with the Shor code

Suppose the first qubit encounters an error which sends
0) = a|0) +b|1) and |1) — ¢|0) + d|1). We thus have the state:

% ((a]000) + b [100) + ¢[011) + d [111))(|000) + [111))(|000) + [111))

+ (2]000) + b[100) — ¢[011) — d[111))(|000) — [111))(|000) — [111)))

Lettingk+m=a, k—m=d,l+n=band [l —n = c, we get
1

S (k(a(|000) + [111))(]000) + [111))(|000) + [111))

+ B(/000) — [111))(|000) — [111))(|000) — |111)))
+l(a(|100) +1011))(|000Y + |111))(]000) + |111))
+ B(]100) — [011))(|000) — [111))(|000) — [111)))
—|—m(a(|000) — |111))(]000) + |111))(]000) + [111))
+ B(|000) + 111))(|000) — [111))(|000) — [111)))

+n(a(|100) — [011))(|000) + |111))(]000) + |111))

+ B(|100) + |011))(|000) — [111))(]000) — \111))))



Correcting any single bit-flip with the Shor code ....

We first perform parity-check measurements to detect a bit-flip. The parity check for a bit-flip in the first
block of three qubits requires two ancillas (the first comparing the first and second qubits, the second

comparing the second and third qubits), whose state (after the parity-check CNOTs) we can append to the
Shor code state:

1
75 (k(a(OOO) + [111))(|000) + [111))(]000) + |111))

+ B(|000) — [111))(|000) — [111))(|000) — [111)) ) [00)
—|—l(a(|100) +1011))(]000) + [111))(|000) + [111))
+ B([100) — 011))(|000) — [111))(|000) — [111)) ) [10)
—|—m(a(|000) — [111))(]000) + [111))(]000) + [111))
+ B(|000) + [111))(|000) — [111))(|000) — [111)) ) 00)

—|—n(a(|100) — |011))(|000) + [111))(|000) + |111))

+ B(]100) + [011))(|000) — [111))(|000) — |111>)) 10))



Correcting any single bit-flip with the Shor code ....

If the parity-check measurement outcome is 00, the state collapses to (un-normalised):

k-(o:(|000) + [111))(]000) + [111))(]000) + |111))

+ B(]000) — |111))(]000) — |111))(]000) — |111))) ';;":2‘3‘;;13 there

-|—m(o:(|000) — |111))(]000) + [111))(]000) + [111))

+ 8(]000) + |111))(|000) — |111))(|000) — |111>))

If the measurement outcome is 10:

l(a(|100) +[011))(]000) + [111))(|000) + [111))

+ B(]100) — 011))(|000) — [111))(|000) — [111)))

In which case a bit-flip
+n (a(|100) — |011))(]000) + [111))(J000) + |111)) has occurred we can

then correct

+ B(]100) + |011))(|000) — |111))(|000) — |111>)))



Correcting any error by correcting only bit- and phase-flips

Following the bit-flip parity-check measurement (and correction if necessary) we perform a parity-check
measurement to check for a phase flip. Using the same argument as for the bit-flip detection,
if we measure 0 the state collapses to:

o(]000) 4 [111))(]000) + |111))(|000) + |111))
+ 8(]000) — [111))(|000) — [111))(|000) — |111))

Orif we measure a 1 we get:

a(]000) — [111))(]000) + |111))(|000) + |111))
+ B(]000) + [111))(]000) — |111))(]000) — |111))

i.e., a phase-flip has occurred which we can then correct. Therefore we have recovered the original state.

Therefore performing bit- and phase-flip parity-check measurements collapses a general state into the case where
either the bit / phase flip has occurred or not as per the measurement outcome. This remarkable property allows
us to correct a continuum of errors by performing only bit- and phase-flip checks.



Hamming code

Repetition codes are useful for demonstrating the principle of error correction, but are rather too inefficient to
use in practise. One particularly elegant code is the (7,4) Hamming code, a linear code that encodes a 4-bit
data-word, d, as a 7-bit code-word c.

From Wiki

In coding theory, Hamming (7,4) is a linear error-correcting code that encodes four bits of data into seven bits
by adding three parity bits. It is a member of a larger family of Hamming codes, but the term Hamming code
often refers to this specific code that Richard W. Hamming introduced in 1950. At the time, Hamming worked

at Bell Telephone Laboratories and was frustrated with the error-prone punched card reader, which is why he
started working on error-correcting codes.

Code word ¢= Gd mod 2, where G is the generator matrix:

S = =
o O
_0 =

Any errors are detected by
applying the parity-check
matrix, H, to a given code-
word

|
o O =
o = O
_= = O

0

|
OO OO - = =
OO =R OO M-
oo, OO
_ OO M~ O - =



https://en.wikipedia.org/wiki/Coding_theory
https://en.wikipedia.org/wiki/Linear_code
https://en.wikipedia.org/wiki/Linear_code
https://en.wikipedia.org/wiki/Linear_code
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Parity_bit
https://en.wikipedia.org/wiki/Hamming_code
https://en.wikipedia.org/wiki/Richard_W._Hamming
https://en.wikipedia.org/wiki/Bell_Telephone_Laboratories
https://en.wikipedia.org/wiki/Punched_card

Hamming code - example

Four databit : (1011)

Parity check

d 1 (0)

1
p:d2:0 101010 1\]1 2 0
d3 1 z=Hc=[0 1100 1 1]||lo|l=4]=]0
d, 1 0001111/]o0 2 0

1

\1)

Transmitted code word ¢ z is syndrome vector, it indicated whether an error has

1 1 0 1 9 0 occurred or not. If zis null vector, no error

1 0 1 1\ 1 (3\ (1\ (0\ (0\ (0\
1 0 0 O g 1 1 1 0 1
c=Gp=]0 1 1 1 1 —1l21=10 1 0 ]
0O 1 0 O 1 0 0 cil=c+e= |0l +101l =10
K0 0 1 0) \1) \]_) 0 1 1
0 0 0 1 1 1 1 0 1

\1/ \o/ \1)

0110011. will be transmitted in place of 1011



0110011. will be transmitted in place of 1011

z is syndrome vector, it indicated whether an error has
occurred or not. If zis null vector, no error

cl=c+e =

(0

Hamming code

1 0 1 0

Hc1 = 0 1 1 O
0 0 0 1
Corrected c1 =

—_ O

(0

e e B B

== O

e




Quantum error correction codes from Hamming code - Steane code

Classical linear codes are efficient, in the sense that code-words are generated by multiplying the data-
word by a matrix, which can be compactly described. There is a technique for using classical linear codes
to find quantum error correction codes. These codes are known as CSS (Calderbank-Shor-Steane) codes

Among them one particular CSS code, the Steane code, which is constructed from the (7,4)
Hamming code and encodes the logical states 0 and 1 as follows:

1
0L) = ﬁ(

1
1) = %(

0000000) +

0001111) +

1111111) +

1110000) +

1010101) +

1011010) +

0101010) +

0100101) +

0110011) +

0111100) +

1001100) +

1000011) +

1100110)

1101001) )
0011001)

0010110) )



Quantum error correction codes from Hamming code - Steane code

Classical linear codes are efficient, in the sense that code-words are generated by multiplying the data-
word by a matrix, which can be compactly described. There is a technique for using classical linear codes
to find quantum error correction codes. These codes are known as CSS (Calderbank-Shor-Steane) codes

Among them one particular CSS code, the Steane code, which is constructed from the (7,4)
Hamming code and encodes the logical states 0 and 1 as follows:

1

0L) = ﬁ( |0000000) + |1010101) 4 |0110011) + |1100110)
/0001111) + [1011010) + [0111100) + [1101001) )
1) = %( |1111111) + |0101010) + |1001100) + |0011001)
11110000) + |0100101) + |1000011) + |0010110) )
L. & B U ) )
1 0 1 1 Any errors are 1 0 1 0 1 0 1
I 000 detected by applying H=10 1 1 0 0 1 1
= |0 1 1 1 -
S o b the p.arlty-check. _O O 0 1 1 1 1_
matrix, H, to a given
O 0 1 0
0 0 0 1] code-word




Quantum error correction codes from Hamming code - Steane code

Classical linear codes are efficient, in the sense that code-words are generated by multiplying the data-
word by a matrix, which can be compactly described. There is a technique for using classical linear codes
to find quantum error correction codes. These codes are known as CSS (Calderbank-Shor-Steane) codes

Among them one particular CSS code, the Steane code, which is constructed from the (7,4)
Hamming code and encodes the logical states 0 and 1 as follows:

0L) = %( 0000000) + |1010101) + |0110011) + |1100110)
0001111) + |1011010) + [0111100) + |1101001) )
1) = %( 1111111) + |0101010) + |1001100) + |0011001)
1110000) + |0100101) + |1000011) + [0010110) )

Like the Shor code, the Steane code guarantees to correct any bit- and / or phase-flip
that occurs on a single qubit. Thus we can see that it also suppresses the error of the
depolarising channel from p, to O(p2,).



Summary - QEC

We have seen that there are three obstacles to applying the techniques and principles of
classical error correction directly to quantum error correction, each of which can be worked
around:

« The no-cloning principle means that we cannot simply copy quantum states in repetition
codes — instead, we can use entangling to “copy” the information.

« Measurements destroy quantum information: so instead we design the error correcting codes
so that the measurements only tell us whether an error has occurred, and nothing about the
quantum state itself.

* Quantum errors are continuous, but we have seen that the process of error correction
effectively digitises the errors.

Additionally, we have seen that, in practice, classical error correction codes are typically more
sophisticated and efficient than simple repetition codes, and that these can be used to design
quantum error correction codes, of which the Steane code is an important example.



Recap — Superposition and interference

After first BS :
1 [1 4
U)=—|.
H D2 ‘ ) ‘\/5 _% 1_

- —Q——»—. 100%

After second BS :

Wa) =

This simple math shows how interference is
Making photon get detected only at D2

| |
v2 [P 1]




Entanglement and Non-locality

Quantum non-locality

Entangled states are those that cannot be written as atensor product of separate states
The most famous example is the EPR pair:

Alice will have the first qubit

1 : .
Bob will have the second qubit
\/5 ( | 00> —I_ | ]‘ ]‘> ) ' (no constraint on where they should be located)

If Alice makes measurement, Bob’s state also collapses and vice versa — Instantaneous information exchange

Does not violate locality — No information is transferred from Alice to Bob
It's realist because the measurement has a definite outcome

But still, no local realist theory explains this phenomena

John Bell devised an entanglement-based experiment to explain this



Entanglement and Non-locality
Two party setting to explain this

Inputs: T Y

Alice receives input x and Bob receives input y, and they
produce outputs a and b, respectively, that have to be

Bob correlated in a certain way (which depends on the game).
They are not allowed to communicate.

Outputs: a b This setting captures all local realist models.

In the quantum model Alice and Bob are allowed to share entangled states, such as EPR-pairs.
The goal is to show that entanglement-based strategies can do things that local realist strategies
cannot.



CHSH: Clauser-Horne-Shimony-Holt

CHSH game
Inputs: T Y ao @ bo _ 0’
apo b1 = 0,
Bob
a1 Dby = 0,
Outputs: a b a1 D bl = 1.
adb=xANy,

It's impossible to satisfy all four
(‘A’ is logical AND; ‘@’ is parity, i.e. addition mod 2) equatl?ns simultaneously )
summing them modulo 2 yields 0 = 1

ag,a; be the outputs Bob give on inputs x =0 and z =1

bo, b1 be the outputs Bob give on inputs y =0 and y =1

Probabilistically, you can have a
success of % times.



CHSH: Clauser-Horne-Shimony-Holt

Quantum strategy for CHSH game

adb=xANy,
Triputs: # "
apg@® by = 0,
Alice ag P bl — 0,
a1 D b() — 0,
Outpute g b G @b = 1

Alice and Bob are supplied with a shared 2-qubit
system initialized to the entangled state

1
ﬁ(|00> +[11)).

Recall the unitary operation that rotates the qubit

by angle 6
cosf@ —sinf
sin 0 cos 6

R(6)

If x= 0 then Alice applies R(—11/16) to her qubit; and if
x= 1 she applies R(311/16). Then Alice measures her
qubit in the computational basis and outputs the resulting
bit a. Bob’s procedure is the same, depending on his
input bit y. It is straightforward to calculate that if Alice
rotates by 6, and Bob rotates by 85, the state becomes

L

7 (cos(64 + 05)(|00) — [11)) + sin(64 + 05)(|01) + [10)))

After the measurements, the probability that
b=20i v 05)?
a®b=01s cos(fa + 0p
ifxAy=20
then 64 + 0 = +7/8, while if z A Y — 1 then 04+ 0p = 371'/8.

Hence the condition a @ b=z Ay, is satisfied
with probability COS(W/ 8)? for all four input possibilities

P =0.85 is higher than what can be achieved classically



CHSH in equality

Inputs: i Y
@
Outputs: a b

ag,a; be the outputs Bob give on inputs z =0 and z =1
by, b1 be the outputs Bob give on inputs y=0and y =1

Suppose that the observables ag, a;, by, b; take values in 0 or 1

We will define
a=(-1)%, a=(-1)*",
b=(-1», b =(-1).

If a, @’ = +1, it follows that either a4+a’ = 0, in which case a—a’ = +2,
or else a — a’ = 0, in which case a + @’ = +2; therefore

C=(a+ad)b+(a—a)b=+2.
(O <{IC]) =2,
so that

/

|{(ab) + (a’b) + (ab’) — (a'b')| < 2.

ag D by
ag D by
a1 @ by
a; @ b

?

?

!

0
0
0
= 1

Suppose that Charlie generates the input bits at random.
Then there is a very simple strategy that enables Alice
and Bob to win the game three times out of four: they
always choose the output a= b= 0 so that they lose only
if the input is x=y= 1.

if we denote by p,, the probability that above equation
satisfied when the input bits are (x,y), then

(ab) =2pp—1,
(a,b’) = 2p01 —1 ]
(a’'by =2p1p—1,
(@'b) =1-2pq;

the value of ab is +1 when Alice and Bob win and -1 when

they lose.
;2 (Poo + po1 + p1o +p11) —4 < 2
1 3

(p) = — (Poo + po1 + P10 +p11) < —

4 !



CHSH in equality .......

% (cos(8.4 + 055)(00) — [11)) + sin(04 + 0)([01) + [10))) ;
After the measurements, the probability that 1
' v (p) = 1 (poo + po1 + P10 + p11) =0.853
a®b=0is cos(f4 + 0g)>
S Ak We will get

then 64 + 0 = +n/8, while if Ay = 1 then 64 + 65 = 37/8.
Hence the condition a ® b = x A y, is satisfied 2 (pOO + Po1 + P10 + pll) —4 S 2\/§

with probability coé(ﬂ/ 8)? for all four input possibilities

P =0.85is higher than what can be achieved classically

(ab) + (ab') + (a'b) — (a'b) < 2v/2

Upper bound - Cirel’son bound for a quantum state

For classical, we only get 2




How do we test if
the given state is
entangled or not

Lets take two
photons
entangled in
polarization
degree of
freedom
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Other ways to measure entanglement

Given a classical probability distribution {p;}, the Shannon entropy is

S=-) pilogp
Similarly, the von Neumann Entropy for a quantum state p is

S(p) = —trplogp
e S(p) >0 and S(p) = 0 if and only if S(p) is a pure state.

e In a NV dimensional Hilbert Space, the entropy takes its maximum value S = log N

Entanglement Entropy for a bipartite system will be : Concurrence
Negativity

E(pAB) = S(pA) — S(trB p) — S(trA p) — S(PB) Are other measures



DiVincenzo Criteria - Desired condition

1. A scalable physical system of well-characterized qubits;

2. the ability to initialize the state of the qubits to a simple fiducial state;

3. long (relative) decoherence times, much longer than the gate-operation time;
4. a universal set of quantum gates; and

5. a qubit-specific measurement capability.

Two additional criteria, which are necessary conditions for quantum computer
networkability are

6. the ability to interconvert stationary and flying qubits and

7. the ability to faithfully transmit flying qubits between specified locations.



DiVincenzo Criteria - Table of QC approaches

The DiVincenzo Criteria

Quantum Computation QC Networkability
QC Approach 2 " " o
This is a table from 2004
NMR
Trapped lon

Neutral Atom

©
&
©
&
©

@@@@@@@ ®

@D@@@J@J@J@%
loIce]ioaion ooy

SO B®
SO ®

Cavity QED

. N
Optical @ O ) What has changed now to
Solid State o) O green is marked in red circle
Superconducting Q® ’_
Unique Qubits This field is so diverse that it is not feasible to label the criteria with “Promise” symbols.

Legend: @ = a potentially viable approach has achieved sufficient proof of principle

& - a potentially viable approach has been proposed, but there has not been sufficient proof of principle

& =no viable approach is known

#1.
#2.
#3.
#4.
#5.
#6.
#7.

A scalable physical system with well-characterized qubits.

The ability to initialize the state of the qubits to a simple fiducial state.

Long (relative) decoherence times, much longer than the gate-operation time.
A universal set of quantum gates.

A qubit-specific measurement capability.

The ability to interconvert stationary and flying qubits.

The ability to faithfully transmit flying qubits between specified locations.



Quantum computing platform: from varying size to coupling with environment

coupling

micro . PHOTONS with environment

* NUCLEAR SPINS
* [IONS

*« ATOMS

« MOLECULES

« QUANTUM DOTS

« SUPERCONDUCTING CIRCUITS

MACRO



Superconducting qubits — a timeline
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1985

1957 1962

1933

1911

- engineered Hamiltonian with "LEGQO" blocks:
capacitors, inductors and Josephson junctions

- FIRST DEMONSTRATION BY DEVORET,
MARTINIS, CLARKE (1985)

Circuits are quantized!!
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Superconducting circuit (building an artificial atoms)

Rydberg atom Superconducting
LC oscillator

velocity of electron — voltage (charge) across capacitor
force on electron — current (flux) through inductor



Superconducting circuit (building an artificial atoms)

Quantum LC oscillator condcln e el
// o= -
] &)2 Q2 &T = —¢ L 3 o L (i) > S vaknce  eleodion
=30+ 30 e N\
1 A 1 4
| L E == C =1 Q+ é
A = sho {ala+ aa'| 2Chw © ' V2Lhw o sy
Jost

Valence and conduction energy levels

The first quantum circuit we will introduce is the LC oscillator, as it is the simplest
example of a quantum integrated circuit. Studying the simplest case will help us understand
the circuits of the superconducting qubits and their Hamiltonians. LC circuits consist
of an inductor L connected to a capacitor C. All of the wires connecting the elements
must be superconducting for the circuit to be quantum, this way the energy levels in the
superconducting gap will be discrete. The LC circuit obeys the equations of motion of
the linear harmonic oscillator. The flux in the inductor ® is analogous to the position
coordinate and the charge Q on the capacitor is analogous to the conjugate momentum.
The ® and Q variables are conjugate quantum operators, which do not commute [®, Q] = ik
The inductance L of the system can be thought as the 'mass’ and the inverse of de
capacitance 1/C as the ’spring constant’. Knowing the LC oscillator is analogous to the
harmonic oscillator we can write the Hamiltonian in terms of the raising and lowering
operators w = 1/v/LC being the resonance frequency of the circuit



Superconducting circuit (building an artificial atoms) —

Cooper pairs and Josephson Junction
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How Electrons Form Cooper Pairs
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Cooper Pair

The Josephson Junction

Superconductor

Cooper \
A NNANNNL
LV
Pair

—
o
©
.
v
=
/ Cooper
NSNSNS NS NN
@~ @
Superconductor Pair

P1(2) density of electrons on
either side of the SC

7Y1(2) phase of the SC

Equations of motion from a toy model

. 0 [y 2¢V K\ (i1 K — tunneling energy
’h& <w2> - ( K 0) (1/;2) 2eV — energy across the junction



Superconducting circuit (building an artificial atoms)

N
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Superconducting phase,qﬁ

(a) Circuit for a parallel LC-oscillator (quantum har-
monic oscillator, QHO), with inductance L in parallel
With capacitance, C. The superconducting phase
on the island is denoted ¢, referencing ground as
Zero.

(b) Energy potential for the QHO, where
energy levels are equidistantly spaced wr apart.

(c) Josephson qubit circuit, where the nonlinear
inductance LJ (represented with the Josephson
-subcircuit in the dashed orange box) is shunted
by a capacitance, Cs.

(d) The Josephson inductance reshapes the
quadratic energy potential (dashed red) into
sinusoidal (solid blue), which yields non-equidistant
energy levels. This allows us to isolate the two
lowest energy levels |0)and |1), forming a
Computational subspace with an energy separation
w01, which is different than w12.



Superconducting circuit
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Cooper pairs are formed by alternating regions of
high and low density of positive charge (phonons)
represented by the density of red dots.
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Circuit with a Josephson junction and a gate capacitor



Example of two qubit operaiton

g (b) —|11)
1 T g2 —|01)
L *2R1 -1 - |01)
50 _ g2 -7-[10)
; % T 271, —— |10)
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¢ d 2 2
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Schematic circuit diagram of
two fixed frequency
transmons coupled through a
resonator yielding an overall
coupling coefficient g. Qubit 1
driven at the frequency of
qubit 2 leads to the CR gate.
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Two transmons connected through a coupling capacitor



Superconducting circuit (building an artificial atoms)
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Superconducting circuit (building an artificial atoms)

Josephson
junction

gprn Ay,

IBM Superconducting Qubits Architecture
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QCCD- quantum charged
couple devices

[ ] [ [ ] [ ]
Trapped ion qubits — timeline
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1989 (Paul and Dehmelt) - Development of ion trap technique
2012 (Wineland) - Development of ion trap technique and using it for guantum computing



Trapped ion qubits




Ion trap systems for qubits

Laser Modulators \ f

Complex qubit organization: eachrow is a

VocosQpt + U, separate image of 53 trapped ion qubits, with each
Phsiodetagiors qubit fluorescing (state 1) or dark (state 0) upon
measurement.
Qubit representation: Hyperfine (nuclear spin) state of an Initial state pre pa!ration; Cool the_ atoms
atom and phonons of trapped atoms to ground state using optical pumping
Unitary evolution: Readout: Measure population of

Laser pulses manipulate atomic state hyperfine states

Drawbacks: Phonon lifetimes are short,
and ions are difficult to prepare in their
ground states.

Qubits interact via shared phonon state



Cold atoms for qubits

Incident Atom

- - Excited Atom
comomentum = p & omentum = p-h/A
G.S. EXCITED
ATONM L ATOM
Resonant Laser EXCITATION
momentum = h/A §{
G.S EXCITED
ATOM AW\ " on

SPONTANEOUS

Incident Atom ‘/@’N ' EMISSION
% omentum = p'=p-AhA

Can | take sample of atoms from this room and
cool them using lasers?

Cooling cycle

Atoms respond only to a very specific color
(frequency) of light

Only atuned laser can do that
Foreach specimen of atoms we need to find

lasers with frequency that can be absorbed
by atom and excite to higher energy level



Z.eeman slower

IN2 Trap Laser

Collimator Laer — Pumps

MOT
Chamber
Zeeman Slower

What happens when we have atoms
going at different speeds?

If the laser was set to slow fast ones,
wouldn'’t it just blast the slow ones in
the other direction, and leave them
faster and hotter?



Cold atoms (Doppler effect)

‘Atom going towards laser [igﬁt_’ Blae of }ﬁ

‘Atoms going away from [aser —> 2of s ﬁ
ed shi
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‘Amount (_)f Sﬁiﬁ 6&3}96116{:5 on tﬁe .?}9866[ (j’ an atom

Qf the atom s moving sfow[}/, or in wrong direction, the
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excite the electron, just goes Ey the atom




Example of qubit array

Qubit Array

| Cold Atom
Reservoir

Internal lon
F\ Pump & Getters

AquaCell side view

:

AquaCell top view

Reservoir
Transport atom reloading

| Cold Atomn
Reservoir

B lield
F madout.coaling,
/ optical pumping,

faman, fydberg

852 nm
o Camera
532 nm . lor readout.
Moving ‘;;D'- 2l \ e
| Molases vy “ !
532 nm
beam dump

852 nm e ]
459 nm

= o readout, cooling, atom refoading
? Reservoir Rydberg
Transport

AC Stark compensation,

What is Bose-Einstein condensation (BEC)?

= Y

S
AT
Zv N\ 7z

High
Temperature T:
thermal velocity v

density d

"Billiard balls"

Low
Temperature T:
De Broglie wavelength
hdg=h/mv o T-12
"Wave packets"

T=Tcr|-t:
Bose-Einstein
Condensation

rag=d
"Matter wave overlap"

T=0:
Pure Bose
condensate
“Giant matter wave"



Cold atoms for qubits - > "“"'[‘""'“ (

Cold atomic gas
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a. An optical standing wave is generated by superimposing two laser
peams. The antinodes (or nodes) of the standing wave act as a perfectly
periodic array of microscopic laser traps for the atoms. The crystal of light

in which the cold atoms can move and are stored is called an optical
attice.

"
] ‘ m..
8

y. “D D '
A $

b, If several standing waves are overlapped, higher-dimensional lattice
structures can be formed, such as the two-dimensional optical lattice
shown here.



NMR system for qubits

Qubit representation:

~ mi_:_r..cr . .
sample tube . *@Q N = Spin of an atomic nucleus
| . . | o a I
i i capacitor ; directional A RF ,
: - | L] ircctiona (o o
i : ' A El coupler lf..,..-j oscillator ;Lﬂmpurcr
N | ooy ;_ A & | Unitary evolution:
/ g'r.(_;"."'i. .1"1_."1._ bagsgl | [/ YV e ] \>Q' L |
|I | |I .f_.- M‘LI .I II 'I I Il N HH“*; o .
l‘ |] i L T f1 f--' = amplifier Transforms are constructed from magnetic
. B m w i I R . . . .
] il 1___#“**5 | ‘ TTTT & field pulses applied to spins in a strong
T = (] magnetic field. Couplings between spins are
R o | knu:___ﬂ# L 11 j| | .I:
VAN e VA provided by chemical bonds between
TN T .-'I- |,"I . e | I'-. IIl, W |,|l _I . . .
\M/ 72 ] * \N\/ neighboring atoms.
T A static field
RF coil B eoil

NMR apparatus



NMR system for qubits

A molecular computer
The computing is done by the
0 OF  and '°Cnuclear spins.
C5H5 cO
5 Flourine atoms nuclear spin and 2 Carbon - 13 atoms nuclear
® ¢ O O spins carry the qubits of a quantum computation.

9 13- c  Fe

They can be programmed by radio pulses, they
can interact, and they can be read out by
NMR_ instruments.

perfluorobutadienyl iron complex

Using Shor’s quantum factoring algorithm 15 was factored using the above 7 qubits.

The answer : 3 X 5 was obtained in about 720ms.



Quantum supremacy using programmable Superconducting qubits ?

___________ ﬂ.

Column

Row
\A'Time L

Cycle 1 2 3 4 5 6 7

b 4

@, Oxﬁ OxQ 0830 X 4

.00
OxQ QxQ OxO Ox P

L ¥ A W
QOxOQxQOxQOOOO

OxQ OxQ Oxb OxQ OxQ Ox

QOxQOxOOxOOOOQ

OxQ OxQ OxO OxQ Oxf Ox

K, KN K

X, X
x N X
K, N, N

H,
.
2 4

€0 0.0 009009000

OxQ OxQ OxQ OxO Ox

X X X
€ cusi

OxQ

¥

X X

’ Adjustable coupler

54 qubit Sycamore chip - google
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Cross-entropy benchmarking fidelity, 7.,

Quantum supremacy using programmable Superconducting qubits ?

Classically verifiable b Supremacy regime
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This claim has been questioned by

54 qubit Sycamore chip - google an alternative classical algorithm



For realization of quantum computation, the system should have

DiVincenzo criteria for Quantum Computation

Well-defined state space of qubits

Ability to initialize the state of the qubits

Long decoherence time

Ability to implement a universal set of quantum gates

Qubit-specific measurement capability

single rail encoding, dual rail encoding ‘9’@,,)
s

You can initialize the multi-qubit states

Photons interact very weakly with
The environment. Decoherence time is long.

Combinations of beamsplitters, waveplates,
and phase-shifters—an optical interferometer
implements universal gates

Projective measurement techniques of
photonic quantum states are well
developed



Quantum Computation with photons

Advantages

o The quantum operations can be done at room temperature

o More robust against the external environment

o Access to multiple degrees of freedom of photons

o Most of the hardware and fabrication techniques are common between
classical and quantum optical devices

Challenge
Designing controlled operations between multiple photons

Controlling fast-moving photons



Models for photonic quantum computation

qubit1 2

Universal quantum computation 1 - LIS x
qubit2
* Discrete variable (DV) using single photons Il beam splitter [l phase shifter
Dual rail encoding — polarization, paths, frequency, time bin, qudits lin) = lout) = NSin)
BN - 1 photon) measure 1 photon
 Continuous variable (CV) using Gaussian state of light Iomtms)ﬁmsumomotms

GKP states and Gaussian operation

 Cluster states using squeezed modes
Measurement-based / one-way computation

* Hybrid CV-DV cluster approach using higher-dimensional encoding
Fusion based

Special purpose quantum computation

* Bosonsampling

Different schemes for realizing operations under each model has been proposed and experimentally realized



Quantum operations on photonic qubits

DV as qubit CV as qubit

a Polarization b x-Parity c y-Parity
c I 'l‘x) I 'l{y)
2 | +1 | +
=8 - -
5% s 4 . . . . 0 0
Cc3 | - - |
5 - s
2 |y |Hy ey 0y e o)
[ H) ley ley)
o e < e,
@ " 74 D Id—>
s 7y /il \\ e
[ (= ;)f‘{: - \
‘w Li ]
g \ )
(4 [y

Pauli Z Pauli X

Rotation

Projection

Operations of polarization qubit

a | b H) [H>
s
D V) |H>+|v>.IH>—Iv> ID)Q [A)
%) V>
c d
Hadamard gate alH) +BIV) al0)
A/ o
[H) |-|2 (IHY + VD) / V2 : PBS | + &
vy U amy-vnsve Y B

2 45 45 L



Quantum operations on photons

limitation
a Beam Splitter b Polarizing Beam Splitter 01
by
input H,V
modes @3 aq HV & H Y,
> N-—» >N\ Py
a2 V az H az
output
b2 modes bz b2
d by b by
a3 as B a1
5 a2
I Quarter-/Half- b2 b
wave plate 2

Bosonic behavior limits photon-photon interaction



Two photon interaction

o | Annililation and creation operators a,a', and b bt
eam Splitter

Fock state representation : |0), Corresponds to mode @ empty (vacuum)

modes a 1)a Corresponds to one photon in mode @

C

d St One input photon along mode @ : |1), = a'[0),
modes

Two input photon, one along mode @ and other along b :

1,10 = @' b'|0,0)a

When we have one input photon along mode

’ L 7 >
a'(0), — 7 (CT + dT) 00)cs, = —(|l} +|1)q) = —=(|0) + |1)) qubit representation

L
7

N L



Two photon interaction

Annililation and creation operators a,a', and b bt
1, L)y = 1510, 0)ap

Beam Splitter

input b
modes a < 1 ot d\T
B - _’_ a |0>a — E (C + ) |00>cd,
d output
modes et d' 4ot =g
al — and b —
V2 V2

Two mode beam splitter matrix
When we have two photon inputs along two modes

a 1 (1 1\/[¢ ) i
(8)_)5(1 —1)((;{)‘ ‘1?1>ab:&TbT|OaO>ab_>§(éT-l‘d )( )|0 0)e
1 7.0 A \2 0)ed — [0,2)¢q
T2 (CT )|0 0)ca V2 ’ Root 2 is from

normalization



Quantum operations on photons

e Single photon operations

H) H) +|V)
@ > Easy

Wave plate at 6

Two photon operations

‘ H> " ‘ \(;))ntrol I H>‘ H>
- = +

1
o Target CNOT >} ’V)‘ V> Hard !!!!
H)

This 1s the problem with linear optics - 1t 1s linear
and the CNOT 1s a nonlinear operation



CNOT operation on photon using (NS)

non-linear sign shift operation
2 lin) —CHl— lout)=Nsin) Operations on dual rail qubits

b

lin) - lout) = NS|in)
Why sign change operation and CNOT gate relation [ pnoto x )( Measiie 1 phdtoa
|0 photons) measure 0 photons
[+ ) 5
? - N
i ’ d z qubit2

B beam splitter [l phase shifter

NS — Non-linear phase shifter

One single NS operation

[P)in = al0) + BI1) +vI2) ¢ [¥)out = al0) + B11) —y|2)
Ancilla |1) ) 1
g 25% probability of success
Ancilla |0 0
ncilla |0) 9, A

Knill, Laflamme and Milburn (2001)
¢ = 180° 8; = 65.5302° By ==05= 225° KLM model



CNOT operation on photon using (NS)

non-linear sign shift operation
a in)—{EEHE— lout) = NSlin)

[Y)in = al0) + BI1) + y2)

1

[ beam splitter [l phase shifter

Ancilla |1)
25% probability of success

0

Ancilla |0)

((1-v2

1
V2
3
\Vvz

¢ = 180° 6, = 65.5302° 6, = —63= 22.5°

We can look at three cases individually :

10)1[1)2]0)5 — (cos? 07 cos Oz + sin® 0;) [0)1|1)2]0)3
11)1[1)2]0)3 — — (cos? By cos 205 + sin® 6y cos f) [1)1]1)2|0)3
12)1[1)2]0)3 — — cos b (5 cos? 61 {3cos 205 — 1} + sin” 61 cos B2) [2)1]1)2]0)

Choose cos? §; = 4_;\@ cosZ 0y = 3 — 2¢/2

(@|0)1 + B[1)1 +7(2)1)[1)2[0)3 — (a|0)1 + B[1)1 — v[2)1)|1)2

Thus,

_1 3
7 V2
1 11
2 2~ 2
1 1
v V273

1
2

jout) = NS|in}

" lin}y
“ =2 @m eeeee 1 photon
|¢)out = a]0) ‘l' ﬁ[l) — ]/IZ) 10 photans) measure 0 photons
qubit 1 '1'




' ' Quarter- & half-wave plate @ Polarlsmg.b.e amsplltter/-
non-polarising beamsplitter

' Half-wave plate ’ Polarising beamsplitter

- Calcite beam displacer
Fiber polarisation
controller

Fiber coupler/launcher
and single mode fiber

e Lens - Single photon detector

Using bulk optics



Single photon in four wave mixing — 16 qubit

: L= > N
C D _ |
& | o
e $0-OmG o
XX = W T i
S L =
> 1) =
S L _ > "
25505055 == =
XXX XXX 0 o =~
XXX XXX il =
XX XS 0 o =~ |
— ) .
a = 1_1 . R
s U
S _ Y, ‘
s -
& Ly .t £ &
—
o s S O -
X . =
: Ll L R,

_Q SFWM source  J={beamsplitter = ) crosse LI~ phase-shifter = grating coupler <@ pump <.photon-pair % signal - idlerf




Special task photonic system — boson sampling

Optical circuit, maximum of 76 photons detected in one test Science 370, 1460-1463 (2020)
and an average of 43 across several tests.




Boson sampling

| s | | R e Multi-photon input state Not universal quantum
* Pure linear optics network computing but still can
U * Passive - no feedforward, no memory perform what is classically
. . * No qubits, no qubit gates like CNOTs etc. hard
l l l l l l, * Number-resolving measurement
P(S) tAt signal,
SPDC /
| | [2,0) —10,2)
With two-photon Input state we evolve to 7%
2 \ signal,
A 1
The |1,1) term ‘dips’ because Per( V2 V2 ) =0 .
) ﬁ _E HOM d|p | average
& o0 %
3
& o0




Boson sampling details and calculating permanents

» Matrix permanent problem. Calculating, or even approximating Perm[A] is #P-
complete (by Valiant).

Ais the amplitude matrix
per (4) = 3~ [ owro

o€ESy i=1

 When we do a measurement
[Yin) = 11,5 10, Opg1, -, On) Pr[S] = |as|? = |(4|S)|?
L [1) (1) ]0)[0) [0)

aI—:»ZUija;[ [/ 9
j l l : i l l : i . Resylt: gr 5] = IPe'r(As)|' |
P(S) A sl 8!

S
wout Z’}/ |n1 y T SV)>



Special task photonic system — boson sampling

76 photons and 144 modes - Jiuzhang (specific task photonic QC)

0.5
04
0.3
0.2
0.1

1 2 3 4 5 6 7 8 9 10 11 12 0
Output modes

(a) (b)

Input modes

BBO

(c

~—

Input modes

PBS Filter

R

et

Qur 1 2 3 4 5 6 7 8 9 10 11 12

Output modes

The dimension of the entangled state grows exponentially with both the number of photons and the
modes, which quickly renders the storage of the quantum probability amplitudes impossible. The state-
of-the-art classical simulation algorithm calculates one probability amplitude (Permanent of the
submatrix) at a time. The Permanent is classically hard, and because at least one Permanent is
evaluated for each sample, the sample size loophole can be avoided. In addition, boson samplers use
photons that can be operated at room temperature and are robust to decoherence.

2020 - 2021



QC using different degrees of freedom of photons

(@) R R
788 nm >0
laser pulse OAM-polarization swap gate
LBO (T s i e e s e e e )
I I
394 nm : OAM :
dichroic " > ”' ! : :
i 1 I
mirror I Beo+HWP+BBO 2 ' polarization —<7 ;
I
I______________‘ ___________ I
(b) PBS (c) (d) OAM-to-polarization converter (e)
o—> Pt QWP i DP@22.5° HWP@45
> U : o C, o
aH+BV qoPP 1B 1. iEs <2 1 T b~
PathD U 2@ [ ‘ I i b (P8
’i-g Prism HWP PBS 4 \ 0n N D\’
- — T~ Ul
P@-22.5°
Hyperentanglement Spatial Polarization Dl e
generation Measurement Measurement OAM Measurement
(g) 0.997 —— OAM measurement (h)
’ ——— Spatial measurement
2 0.996 |
F
$oges|
0.994

0 1

0 20 30 40 50 60 70

Time (h)

18 qubits using 6 photons




Gate operations using different degree of freedom of photons

Particle and position space as qubits

Mapping of position state to multi-qubit state

| Position) -7 -6 -5 -4 -3 -2 -1 0
") s e Ee @ e R
% — o - o — o - o
Ee) o - - o o - - (=]
= o =] o i - - - (=]
2] - - - O o o o o
& T U U o T T com. )

1 2 3 4 5 6 7
- o = 86 - o =
(=] ~— ~— o (] - ~—
< o o - ks - L i
o o o — —-— 3 -

/‘/ = span(|0).11))

[1=0) 10)

=1 1Y)

100) 101)

| 10) |11)

Hadamard operation

— A

|0) 10)

(a)
ﬂ , (b)
) H ) o o |~
-:‘.E 3 8 @ Lo =
22 m |2 = =
- . nim - ' H :
Theoreticall "'-""ﬂ—' = ]
. }r. . w— . Theoretically
[y, = HHREVL Theoretically
1% fin wa R [0 WL
= [P0 AN [y, = |H) (E*;,L=.) Bs — v 1 J =
T W - ' 1 1 ) L b b W a = T | _ .I'I.-:U:' HIIILI
H(x/8) = —= Al A2 @ oF |H) |0 vz [~ [¥) e = = v B
V21 -1 22 e = 1
R Trwad Siats

i
W aret )
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Limitations of NIQS / near-term quantum computers

 Available coherence time resulting in short circuit depth

 Limited connectivity between qubits results in more gates to perform controlled
operations

 The quality and number of qubits are still very small in number for error corrections

To perform simulations of large quantum systems on near-term quantum hardware:

We need quantum algorithms with a short circuit depth that finish within the available
coherence time.

A way to stay within the limits of coherence is to design and optimize gates for specific
algorithm of interest optimized to the hardware of choice.

Or use the combination of classical and quantum systems to implement an algorithm



Some simple and interesting problems being simulated

Real-time dynamics of lattice gauge theories using a four-qubit system (quantum
Monte Carlo methods describe equilibrium phenomena, no systematic techniques

exist to tackle the dynamical long-time behaviour)

nnoep

i:
o
®

Coherent real-time dynamics of particle - antiparticle creation by realizing
the Schwinger model on four 4°Ca* ion qubit quantum computer.

Real-time quantum simulations of non-Abelian lattice gauge theories ?

2016



Quantum optimization

We don’t expect a quantum computer to solve worst case instances of NP-hard

problems, but it might find better approximate solutions, or find them faster.

Hybrid quantum/classical algorithms.

Combine quantum evaluation of an expectation value with a classical feedback

loop for seeking a quantum state with a lower value.

Quantum approximate optimization algorithm (QAOA).
Seek low-energy states of a classical spin glass.

Variational quantum eigensolvers (VQE).

™

|

Quantum
Processor

|

Energy
Lowered

|

Classical
Optimizer

|

i

Energy
Measured

Seek low energy states of a quantum many-body system with a local Hamiltonian

H. (Much easier than algorithms which require simulation of time evolution
governed by H.)

Classical optimization algorithms (for both classical and quantum problems) are
sophisticated and well-honed after decades of hard work. Will NISQ be able to do

better?




Variational Eigenvalue Solver (Classical — Quantum)

3 tooueg

Return lowest
Hamiltonian expectation

a
|00) (o ® oY)
QPU CPU

F=TrEEEEEEEEEEEEEEE=S 1 F=-TTrEEEEEEEEEEEEEES 1 deg Optimization

. D .
' Classical computer ' ' Quantum computer ' - de, do, 3_( i g — algorithm
: | | : o DX s 35 D> g > )
I [] ] ] ‘
I I 1 1 9> {0/}
| i I ' '
i i 1 ) (o)}
[ 1 I 3 )
I i I | oA
I 1 I = = = H UJJJJ
' Choose parameter values ! I Run circuit to prepare ' j J
: ; parameterised state )
: : Repeat until b :
I Repeat until \ sufficient From CPU ,/
: converged : measurements |
: Evaluate Hamiltonian y Measure state abiained '

, - A

| expectation i R 9
: : R —
i N
i
I
i
I
i

e Calculating the ground-state molecular energy for He-H*



Variational Eigenvalue Solver (Classical — Quantum)

* Biological nitrogen fixation by the enzyme nitrogenase

chemically active species
embedded in proper environment

structure structure orbital optimization 4-index integral
generatlon optimization for active space transformation
kinetic modeling of temperature and
reaction mechanism entropic corrections

Classical computer Quantum computer

compute
correlated
energy

CAS-QFCI

Fe protein MofFe protein

(A)

-

®) E

F cluster P cluster M cluster
A\
Fe-S. Fe Fi s ~F Fo-S.
s\Fe\s>Fe re/:\n/ s\Fe;s—re F :<F:/C\'Fc>s\nc - CHCH,CO0
Fe-S s fe / \S 7 (g) ,COO"



From Prof. Preskill’s slide

A complete description of a typical quantum state of just 300 qubits

requires more bits than the number of atoms in the visible universe.



Quantum Fourier Transform

Quantum Fourier Transform (QFT) is a unitary Discrete Fourier Transform (DFT) upon

the quantum state. DF'T of a discrete function f, ..., f; is given by

o= 1 Nz_l (2midk/N
JN LT
where fo, f1, fo, ceeeenn. , fzv—1 and fl, fg, ............... : fN_l are the input and output functions,
respectively.
The inverse transform is .-
£ = LN ¢~ 2midk/N .
k=0

amplitudes y;, are DF'T of amplitudes ;.



Quantum Fourier Transform

/11 1 1 - L)

1 W w? w3 ‘e wM-1

1 1 w2 W Wb o W2M—2

QFTy = \/—JT/[ 1 W3 w5 w2 Ww3M—3
\1 wM;'—l w?ﬂ./{—2 wS!':J—?) ) w(M—lt)(M—l))

Another way of writing this is to say that the jkth entry of QF Ty is w’*.

o=t 9)-5(: 1)

As you can see, QF T is simply equal to H®2,

How about QFT4? The primitive 4th root of unity is ¢, so that
1. 1 1 1

1 & -1 —i

1 -1 1 -1

1 —i -1 32

1
QFT; =3

[f) = 3010)+ 1) +2) +[3)) =

1
0
9)=10) =] 4|+ and [) = [1)
0
QFTy to |f).
1 1 1 1
t{ § =i =i
|f>=Z 1 -1 1 -1
1 =4 =1 i
QFT40H|Q):
1 1 1 1 1
_1 1 ¢ -1 —3 0
9=511 -1 1 —1]]o
{ < <t § 0
QFT; on |h):
1 1 1 1 0
11 &+ -1 =i [1
|h>=§ 1 -1 1 -1]1o
1 —i —1 i 0

()

(1)

o O O -

= = e



Quantum Fourier Transform

(e 7)) a1
If we need only probability, we don’t see any difference
Let |©) = Z; and |®) = gz . Then P y g
3 (&%)
1 1 1 1\ [og ap+ o1+ +az Bo
‘©>_1 1 ¢+ -1 — Qa1 _l ap+iog —ag —taz | | B
“2l1 -1 1 1) | T2l agp—ar+a—a3 | | B
1 —i -1 i) \os ap — iy — ag +ias) B3
1 1 1 1\ [og ap+ o1+ o+ o3 Bo
‘(i>> B 1 1 2 -1 — 1o %) B 1 —tag + o1 +iag —a3z | —1i51
201 -1 1 1] || 2| ~aytau—astas | | =B
1 —i -1 i/ \w iog + o — iy — ag ) i33

The important point here is that the only difference between ‘(:)> and

P

‘<I>> is a relative phase shift.

How many operations do we have to do for M X M matrix?



Quantum Fourier Transform

U1) 1 H [ Rz [|Raa[] Ra xr—
1 lj2) H [~1Rn-2[Rn1
A?) H R_} : :
Ijn—1> H | R
k) . H i) LTy
1 , , R .
Where Ry = [O gmmk] is a single qubit unitary rotation gate.
e

As an example, for n = 3 we have the 3-qubit product state

1 1 1 1 - 1
1 - 1 ey 1 e BT " 2 . M-t
Fglk]kgkg) s E(m) + e2m0.k.3|1>) ® ﬁ(lo) + e2m0.k3k3|1)) ® ﬁ(m) + 20k kzk.il]_))' i X ::-; $4 56 52"\4—2
QFTy = \/—E/f i @B s f Ww3M-3

1 wM-1 wzj{rf—z waiaf—s B w(M—f){M—l)

What is a quantum operational form QFT ?



Quantum Phase Estimation

Hadamard operation is self-inverse operation (It does the opposite as well) and it can be

used to encode information into the phases.

Hlz) = % 10) + (—1[1)] = — 57 (~1)=[y).

1 - B
H (ﬁ 10y + (~1) |1>1) ~ |a)

The value of z is encoded into the relative phases between the basis states |0) and |1).
Hadamard operation on an n—qubit basis state is given by

Z XY|Y

Ye{o 1}n

H@n‘X

Information about the value of X is encoded into the phases (—1)%Y.

o | 30 (DY) | = HEESIX) = (HEHO)X) = 11X).
Ye{0,1}"

Note that (—1)*"Y are phases of specific form. General form is a complex number e?™ for

any real number w € (0,1) ( phase ”-1” corresponds to w = 3). The n—qubit Hadamard

operation is not able to fully access information that is encoded in more general ways.



Algorithm : Quantum Phase Estimation

Input : The state \/% Z;n:_gl > y)

Problem : Obtain a good estimate of the phase parameter w

If the input is one-qubit (n = 1), w =0 . z; then we get

You can recall that Hadamard operation on the preceding expression will return you the

value of z; and hence the value of w for one-qubit.



Algorithm :

Input : The state \/% 251—01 e2miwy|y)

Problem : Obtain a good estimate of the phase parameter w

When we have a two qubit state (n =

we get

‘ ) + eQm;(D . $2)|1)

Quantum Phase Estimation

2), w= 0. z125 then using product representation

‘O) + 6211".6(0 . 11:111:2)'1)

Z 2mi( w)y|y 262‘“(0 . :I:1.T2)y‘y> —

b2y

V2 V2

Hadamard operation on the first qubit will return the value for z5. If x5 = 0 the value of

x1 can be obtained but not if 2, = 1.

To obtain x; when zo = 1 we need to define a phase rotation operation,

1 0 1 0
Ry = ‘ = ‘ in base 2
0 827.'1;"22 0 e2mi(0.01)
1 0
Ry' = |
( 0 e-—?m(ﬂ.ﬂl) )

If z, = 1, R, followed by an Hadamard operation (H) will return the value of ;.



Algorithm : Quantum Phase Estimation
Input : The state Sy eRmevly)

Problem : Obtain a good estimate of the phase parameter w

for a three-qubit, H on first qubit will return z3, if 3 = 0 you can find x,, if zo = 0 find 2,
directly. If 3 = 1, R, " followed by an H will return z, and if z, = 1, Ry followed by R,*

and H will return z;. See the circuit diagram below where,

|0> + 62?1'71(0 . a:3)|1> |0> + 6271'71(0 . w2$3)|1> |0> + e2m§(0 . 331332$3)|1>

1) = 7 » lp2) = 7 » ls) = 7

|(P1> H ® IX 3>

|o,> R, H X5

P> ®R)—®)— u]-1x,>




The phase estimation procedure can solve a variety of interesting problems.

Order-finding problem
and These two are equivalent to each other

factoring problem

Useful inputs from number theory :

e Order of an element x in a group is the least integer r, such that " = 14

e Order-finding : Given x and n, x < n and ged (x,n) = 1, the order of x in Z, is the

least positive integer r such that 2" =1 (mod n)



Shor’s factoring algorithm

Factoring : given n = P(Q, find factor P and Q)

Best algorithm - 2°“"*); T- number of digits

The fastest classical computers can factor the number with approximately 100 digits
Shor’s Factoring Algorithm - O(L?) [Shor, 1994]

Ref : Ekert and Jozsa, Rev. Mod. Phys. 68, 733 (1996) along with Nielsen and Chuang

When do we need Quantum algorithms?

1. If n is prime number : factors are 1 and n

2. If n is even number : one of the factor is 2

3. If n = p° (power of prime number) : one of the factor is p



Shor’s factoring algorithm

4. If n is none of the above : choose a random number £ < n

(a) If ged (z,n) =d > 1: one of the factor is d.

(b) If ged (z,m) =1: That is, when « and n are co-prime, solution is non-trivial. Use

quantum computer to find the order r of x mod n
Look for order finding algorithm

5. If r is even and z™/2 # +1(mod n) : Find ged (z2 —1,n) > 1 and ged (z2 +1,n) > 1,

one of them is non-trivial factor of n

6. If r is odd return to step 4 and choose and other number z.



Useful inputs from number theory :

e Order of an element z in a group is the least integer 7, such that z" = 14

e Order-finding : Given x and n, x < n and ged (z,n) = 1, the order of x in Z, is the

least positive integer r such that " =1 (mod n)

e If n is a non-prime number and y # 1 (mod n) is a solution of y* = 1 (mod n), one

of the ged (y — 1,n) and ged (y + 1,n) is a non-trivial factor of n.

e Ifged (r,n) = 1, x has an even order r [2" = 1 (mod n)]. Therefore, = z"/2 (mod n) #
+1 (mod n) is the solution of " and one of the ged (z"/2 —1,n) and ged (z7/2 + 1, n)

is a non-trivial factor of n.



Order-finding algorithm

Create a quantum register and partition it into two sets, register 1 (source) and register 2
(target). Pick a integer ¢ = 2* such that n? < ¢ < 2n? . Register one must have enough
qubits (k) to store a number (¢ — 1). Register 2 (target) must have at least N = logon
qubits, so that it can store (n — 1) or more basis states. Note that the total number of

qubits required is then given by the sum of £ < 1+ 2log,n and N < log, n.

1. Both the registrar are initialized in the state |0) ® |0).

2. Load register 1 with an equally weighted superposition of all integers from 0 to (g—1).

The total state of the quantum memory register at this point is:

1 f
|a, 0)
\/6 a=0



3. Apply a gate U, (transformation) that implements a — f(a) = 2® mod n to the
content of source registrar 1 and store the result in register 2. Note f is distinct on
[0,7—1] and f(a) will have r as its smallest period (see Nielsen and Chuang page-228).

The state of the quantum memory register at this point is:

—1

fn]

1
Vi

Here g > n? values of the function f(a) are computed in parallel. Since r < n, the

la, z* mod n)

I
o

period r must manifest itself in the resulting sequence of function values now stored

in the second register. So there can only be r different function values.



4. Measure the second register. When we measure, we must get some value which has to
be one of the r distinct values of f(a). Suppose it is f(ag). Then all superposed states
of the register 1 inconsistent with this measured value must disappear. For simplicity,
we shall restrict ourselves first to the case where ¢ = mr, i.e., there are m different
values of a which have the same value of f(a). Then exactly q/r states of register
1 will contribute to the measured state of register 2, and after this measurement the
combined state of the two registers must be given by

g/r—1

\/;7 S Lo + o)l f(a0))

We now have a periodic superposition of state in register 1, with period . From now

on second registrar is irrelevant and can be dropped from the discussion.



5. First registrar has a periodic superposition whose period is the value we want to
compute. This can’t be done by simply measuring first registrar directly. Instead, we

apply QFT modulo ¢ to the state :

q/r—1

QFT |¢an o

r—1
1 ; q
— — wlt=)
\/'F; r

where w is a primitive rth root of unity, w = e



6. Now we measure register 1. The measurement gives us a value C' = tZ where ¢ is a
random number between 0 and »r — 1. Now we have ¢, C, and hence also the ratio
C/lq=t/r. If ged (t,r) = 1, we can reduce the ratio C/q to an irreducible fraction,
e.g., 1/r. Since t is chosen at random in the measurement, then the probability that
ged (¢,7) = 1 is greater than 1/logr for larger values of r (see Appendix A.3 in Ekert
and Jozsa, RMP 68, 733 (1996)). So one can repeat it and it is easy to see that with
big probability ged (k, ) = 1. Then by repeating the calculation O(logr) < O(logn)

times, one can amplify the success probability to as close to one as desired. So we

have an efcient determination of the order r.

Once we know the order, we can find the factors



Quantum Computation and Algorithms

Chandrashekar, QT 207 November 2025 , IISc

Quantum Computer : A device that uses a quantum mechanical representation of
information to perform calculations. Information in quantum computers is stored in gbits

and the states can be represented by [, normalized vectors in complex vector space,

)= > ale)

ze{0,1}"

a, € C satisfies Y0 g1y la;|> = 1 and basis of state |z) is computation basis.
A wvector is 11 normalized if its integral over all space = 1 and ly if its integral of function
times complex conjugate =1.

For a finite set S, the normalized uniform superposition of its elements can be written as
1S) = o 3 I
= — s).
5T 2

If quantum computer stores state |¢)) in one register and |¢) in another register the state

can be written as
V) ® o) = |[¥)|¢) = ¥, d)

Single and two qubit operations

) 10 . 0 1
Identity : 1= Pauliz: o,=X=
0 1 10
. 0 —i _ 1 0
Pauliy: o,=Y = Pauli 2 : 0, =4 =
t 0 0 -1
1 1 0
Hadamard : H = 7/8 Phase : T, /3 = '
-1 0 6171'/4

CNOT =

(@) () (@) —

(@) (@) — o

— (@) (@] o El,_.

(@] — (@) o ~ N
— [ S Y .



I. PHASE KICK-BACK TO CONTROL REGISTER

Phase Kick-Back using CNOT operation

CNOT : [0) (%) o) <%)

w1 (252) =i (0252 < ()
oo (53) (282) () (45

CNOT : |b) (%) — (—=1)"|b) (%)
Ot < (enf0) +en1) (L) — G ity (1212

— Z-operation on control qubit (phase kick-back to control register).

More general 2 qubit operation U; implementing an arbitrary function f : {0,1} —
{0,1} by mapping
Up : |o)ly) — |o)|y & f(2))

Uy - ) (%) . (Uf‘$>‘0>\;§Uf’$U>|1>) ) <\0€Bf(a:)>\;§]1@f(x)>)

Depending on the two cases : f(z) =0 and f(z) =1 we have

1) (|0@f(x)>\;§|1 ® f(l’)>) — |2)(~1)/@ (%) — (—1)f @) (%)

When control qubit is in superposition

Ur @ (a9|0) + aq]1)) (%) . ((_1)f(0)%’0> i (_1)f(1)a1|1>) (|0>\;§|1>>

You can notice that the state of the second registrar % is an eigenvector of U; and

the eigenvalue (—1)7®) is kicked back in front of the control registrar. This technique of
inputting an eigenstate to the target qubit of an operator and associating the eigenvalue

with the state of the control register will be very useful in eigenvalue estimation.

Note : For Deutsch, Deutsch-Jozsa and Simon’s algorithms refer :
(1) Quantum Computation and Quantum Information, Nielsen and Chuang

(2) An Introduction to Quantum Computing, Kaye, Laflamme and Mosca



II. QUANTUM PHASE ESTIMATION

Hadamard operation is self-inverse operation (It does the opposite as well) and it can be

used to encode information into the phases.

Hz) = 7[!0> - 1>ﬂ1>1—% S (—1)7y).

ye{0,1}

1 xr _
H (ﬁ 10) + (~1) |1>]) ~ |2}

The value of x is encoded into the relative phases between the basis states |0) and |1).
Hadamard operation on an n—qubit basis state is given by
H"X)=— Y  (-1)*|y).
Ye{o 1}

Information about the value of X is encoded into the phases (—1)XY.

> ()Y | = HOHENX)) = (HP"H®™)|X) = 1]X).
Ye{0,1}»

\/_

Note that (—1)%Y are phases of specific form. General form is a complex number ™ for

any real number w € (0,1) ( phase ”-17 corresponds to w = 3). The n—qubit Hadamard

operation is not able to fully access information that is encoded in more general ways.

Useful notations and identity

Notation for binary fraction :

=0 .21ToLa-"---- = — _|_ —= _|_ — _|_ ......
w T1T9T3 9 22 23
similarly, 2k = 2120T3 - - T, . T 1Tppo - - and > = 1 for any k,
(25w .
e2mi2tw) — exp|2mi(z122%3 - Tk . Tpp1Tha2 )]
= exp2mi(z129x3 - - - Tk)] exP 27T (T 1Tpr2 - -+ )] = exp[2mi(0.2p 1 Tpi2 - - - )]
3
O'xlxl-‘rl'xl-i-Q ...... $n:§—|—2—;—|—2_—§+ ...... _{_W

Product representation :

2n1

Z 27rzwy|y > + 627ri(2n—1w)‘1> o ’0> + e27ri(2n—2w)|1> B o ’0> + e27ri(w)|1>
V2n V2 V2 /5
B ’0> + 270 - wnappye )|1> o ‘O) + 20 - Tp 1Ty )|1> I . ’0> 1 e2mi(0 . a1zpwsee )’1>

V2 V2 V2



Algorithm :
Input : The state \/127232;6162”W|y>

Problem : Obtain a good estimate of the phase parameter w

If the input is one-qubit (n = 1), w =0 . x; then we get

1 1
1 270 . @1}y 1 2mi(2 )y
e YI¥A R — e Yi¥3 D) 7T'L Zly
5 ) 1Y) NG g:o ly) = E ly)

fz 1))y = jﬁ (10) + (= 1) |y))

You can recall that Hadamard operation on the preceding expression will return you the
value of z; and hence the value of w for one-qubit.
When we have a two qubit state (n = 2), w = 0 . z122 then using product representation

we get

’0> 4 627ri(0 . x2)|1> ‘O) + 627ri(0 . x1x2)|1>

2mi(w)y 627r2(0 T122)Y _ ®
Z ly) = \/— Z ) 7% 7%

Hadamard operation on the first qubit will return the value for x,. If x5 = 0 the value of
x1 can be obtained but not if x5 = 1. To obtain x; when x5 = 1 we need to define a phase

rotation operation,

1 0 1 0 _
R, = = in base 2
0 627ri/22 0 e2mi(0.01)
and
1 0
Ryl =

0 e—2mi(0.01)

If 2, = 1, R, ! followed by an Hadamard operation (H) will return the value of z;. Similarly
for a three-qubit, H on first qubit will return x3, if x3 = 0 you can find x5, if 29 = 0 find
directly. If z3 = 1, Ry* followed by an H will return x5 and if x5 = 1, R3"! followed by R;*

and H will return x;. See the circuit diagram below where,

|0> 4 6271'1'(0 . x3)‘1> |0> 4 6271'1'(0 . z2x3)|1> |0> 4 627rz'(0 . x1x2x3)|1>

|(P1> = \/5 ) |(P2> = \/i ) |§03> = \/5



o, > H ® X 3>
|p,> @ H X ,>
Q> @ (Ry)— H —Ix,>

Exercise 1 : Expand the n qubit state

2m—1

1 .
627rzwy ’y>

S

y=0

with |0) and |1) as computation basis in tensor product representation.

III. QUANTUM FOURIER TRANSFORM

Quantum Fourier Transform (QFT) is a unitary Discrete Fourier Transform (DFT) upon

the quantum state. DF'T of a discrete function fi, ..., fi is given by

. | V=l
fk = Z 627rijk:/ij’
VN ‘=
where fo, f1, fo, .o onn. fver and fi, fay e, , fx_1 are the input and output functions,
respectively.
The inverse transform is N
1 — . ~
fj = Z 6—27‘(‘2‘]]{3/ka.
VNS

In QFT we do a DFT on the amplitudes of a quantum state :

N-1

: 1 ]

1j) — \/_NZGZ ]k/N|kZ>
k=0

N—-1 N—-1
Z zjlj) — Z Y| k)
7=0 k=0

amplitudes y; are DF'T of amplitudes x;.
Exercise 2 : Find an operator F which transform a state into its DFT and show that its

unitary.



IV. PERIODIC STATES

A superposition of state in the form

m—1
|brp) = \/% ; |zr + b),

is a periodic superposition of the state with period r, offset [, and m repetitions of the
period.
Exercise 3 : Performing DFT on the above periodic state, |¢.;) — |¢), obtain |¢)

V. SHOR’S FACTORING QUANTUM ALGORITHM

Factoring : given n = P(Q), find factor P and @)

Best algorithm - 20" - number of digits

The fastest classical computers can factor the number with approximately 100 digits
Shor’s Factoring Algorithm - O(L?) [Shor, 1994]

Ref : Ekert and Jozsa, Rev. Mod. Phys. 68, 733 (1996) along with Nielsen and Chuang

Summery of Shor’s Algorithm

1. If n is prime number : factors are 1 and n
2. If n is even number : one of the factor is 2
3. If n = p°® (power of prime number) : one of the factor is p
4. If n is none of the above : choose a random number x < n

(a) If ged (z,m) =d > 1 : one of the factor is d.

(b) If ged (x,n) = 1: That is, when x and n are co-prime, solution is non-trivial. Use
quantum computer to find the order r of x mod n (Look below for order-finding

algorithm)

5. If r is even and 27/2 # £1(mod n) : Find ged (22 —1,n) > 1 and ged (22 +1,n) > 1,

one of them is non-trivial factor of n



6. If r is odd return to step 4 and choose and other number .

Useful inputs from number theory :

e Order of an element z in a group is the least integer r, such that 2" = 14

e Order-finding : Given x and n, © < n and ged (x,n) = 1, the order of x in Z, is the

least positive integer r such that 2" =1 (mod n)

e If n is a non-prime number and y # +1 (mod n) is a solution of y*> = 1 (mod n), one

of the ged (y — 1,n) and ged (y + 1,7n) is a non-trivial factor of n.

e If ged (z,n) = 1, x has an even order r [z" = 1 (mod n)]. Therefore, = 2/ (mod n) #
+1 (mod n) is the solution of 2" and one of the ged (27/2 — 1,n) and ged (272 +1,n)

is a non-trivial factor of n.

Order-finding algorithm

Create a quantum register and partition it into two sets, register 1 (source) and register 2
(target). Pick a integer ¢ = 2% such that n? < ¢ < 2n? . Register one must have enough
qubits (k) to store a number (¢ — 1). Register 2 (target) must have at least N = logan
qubits, so that it can store (n — 1) or more basis states. Note that the total number of

qubits required is then given by the sum of £ < 1+ 2log,n and N < log, n.

1. Both the registrar are initialized in the state |0) ® |0).

2. Load register 1 with an equally weighted superposition of all integers from 0 to (¢—1).

The total state of the quantum memory register at this point is:

T = |CL,0>
\/6 a=0

Exercise 4 : Show that you can obtain the preceding expression by applying k& qubit
Hadamard operation and also by applying Fourier transform. What does this tell you

about the relation between Hadamard and Fourier transform?

3. Apply a gate U, (transformation) that implements a — f(a) = z® mod n to the

content of source registrar 1 and store the result in register 2. Note f is distinct on



[0,7—1] and f(a) will have r as its smallest period (see Nielsen and Chuang page-228).

The state of the quantum memory register at this point is:

1
% Z |a, z* mod n)
a=0

2 values of the function f(a) are computed in parallel. Since r < n, the

Here ¢ > n
period r must manifest itself in the resulting sequence of function values now stored

in the second register. So there can only be r different function values.

. Measure the second register. When we measure, we must get some value which has to
be one of the r distinct values of f(a). Suppose it is f(ag). Then all superposed states
of the register 1 inconsistent with this measured value must disappear. For simplicity,
we shall restrict ourselves first to the case where ¢ = mr, i.e., there are m different
values of a which have the same value of f(a). Then exactly ¢q/r states of register
1 will contribute to the measured state of register 2, and after this measurement the
combined state of the two registers must be given by

1 q/r—1

N > Jzr + ao)|f(ao))

We now have a periodic superposition of state in register 1, with period r. From now

on second registrar is irrelevant and can be dropped from the discussion.

. First registrar has a periodic superposition whose period is the value we want to
compute. This can’t be done by simply measuring first registrar directly. Instead, we

apply QFT modulo ¢ to the state :

/r—1 r—1
1 1 q
FT :|¢g) = — —>—§ tao |y 2
Q |@as) i ;:0 |27 + ao) \/thow | r>

2

. e ey . 2
where w is a primitive rth root of unity, w = e~
Exercise 5 : The sum got changed from ¢/r terms to r terms during QFT. This was

a result of destructive interference in the QFT on the state. Show how it happened ?

. Now we measure register 1. The measurement gives us a value C' = ¢t where ¢ is a

random number between 0 and » — 1. Now we have ¢, C, and hence also the ratio



C/q =t/r. If ged (t,7) = 1, we can reduce the ratio C'/q to an irreducible fraction,
e.g., 1/r. Since t is chosen at random in the measurement, then the probability that
ged (t,7) = 1 is greater than 1/logr for larger values of r (see Appendix A.3 in Ekert
and Jozsa, RMP 68, 733 (1996)). So one can repeat it and it is easy to see that with
big probability ged (K, ) = 1. Then by repeating the calculation O(logr) < O(logn)
times, one can amplify the success probability to as close to one as desired. So we

have an efficient determination of the order r.

VI. GROVER’S SEARCH ALGORITHM

Problem : Find ¢ such that z; = 1

Queries : ask i, get x;

Classically : N — 1 queries required (worst case) [V elements in search space]
Quantum : O(v/N) queries [grover, 1996]

Steps Grover’s algorithm

1. Begin with the computer in state [0)®". Use Hadamard transformation to put the

computer in equal superposition state,
| V=
1S) = —= ) |=).
>

2. Repeat O(v/N) times the following two steps (Grover iteration)

e Apply the Oracle O |z) — (—1)7@)|z)

e Apply the operator Us = 2|S)(S| — I = H®"(2|0)(0| — I)H®"

3. Measure the resulting state
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VII. CLASSICAL RANDOM WALKS TO QUANTUM WALKS

(Classical random walks are widely studied in two forms, discrete-time classical random
walk (DTCRW) and Continuous-time classical random walk (CTCRW). They have been
successfully used as algorithms in classical computers, to understand and model dynamics
in various systems from biology to social behavior for many decades now. Its quantum
version, quantum walks has also also been explored in two forms, discrete-time quantum

walk (DTQW) and continuous-time quantum walk (CTQW) for over decade now.

Classical random walk : Lets first recall the structure of the discrete-time classical
random walk in one-dimension. The discrete-time classical random walk takes place on the
position Hilbert space H,, with instruction from the coin operation. A coin flip defines the
direction in which the particle moves and a subsequent position shift operation moves the
particle in position space. For a walk on a line, a two sided coin with head (H) and tail (T)

defines the movements to the left and right, respectively.

........ -3 -2 -1 0 1 2 S T OO

1. Initial state : Particle at position z = 0
2. Evolution : (Coin, Position) = (Hor T, z € Z)

(a) (H, 2) = (z—1)

(b) (T, z) = (z+1)

3. Probability : P, and ) P, =1

Note: Each step evolution is independent of its previous step.

A. Discrete-time quantum walk (DTQW)

The DTQW also has a very similar structure to that of its classical counterpart. The
coin flip is replaced by the quantum coin operation to evolve the particle (walker) into the

superposition of the basis states. The quantum coin operation is followed by the unitary
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conditional shift operation which defines the direction of propagation of the particle de-
pending on the basis state of the particle. If the particle is in superposition of its basis sate
the unitary shift operation evolves the particle in the superposition of the position space.
The process is iterated without resorting to intermediate measurement to implement a large
number of steps. During the walk on a line, interference between the left and the right
propagating amplitude results in the quadratic growth of variance with the number of steps.

DTQW in one-dimension: The DTQW on a line is defined on a Hilbert space
H="H.QH,,

where H, is the coin Hilbert space and H, is the position Hilbert space. For a discrete-
time quantum walk in one dimension, H,. is spanned by the basis state (internal state) of
the particle |0) and |1) and H, is spanned by the basis state of the position [¢;), where

j € Z. One of the simple form of quantum coin operation is the Hadamard operation

1
H = \/Li and the shift operation S can be written as

1 -1
S =100l @ Y [y—0) (Wl + (L @ D 1) (W41,
jez jez
The operator S delocalizes the wave packet in different basis states |0) and |1) over the
position (j — 1) and (5 + 1). To implement the DTQW on a particle at origin in state
S
V2

operation H is applied on the particle state followed by the operation S,

W) = 0) @00} 5 (1) ®[0) i —= (10) +il1)® o) ; or any other superposition state,

W =5(H®1)

For t step of the walk W is iterated ¢ times, W' without intermediate measurement. For
generalized form of the DTQW evolution, Hadamard operation is replaced by B € U(2) as

the quantum coin toss operation.

_ i ooy ifoy ivo,
B<7a7577 - e e e e )

where 0,, 0, and o, are the Pauli spin operators. Parameters of the coin operations ¢, a, 8,7y
gives different superposition state of the particle. Therefore, each step of the walk is im-
plemented by S(B¢a,s, ® 1). A three parameter SU(2) operator is an other useful form of

quantum coin operation.
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B. Continuous-time quantum walk (CTQW)

To define the CTQW, it is easier to first define the CTCRW and quantize it by introducing
quantum amplitudes in place of classical probabilities.

The CTCRW takes place entirely in the position space. To illustrate, let us define
CTCRW on the position space H, spanned by a vertex set V' of a graph G with edges
set £, G = (V,E). A step of the random walk can be described by a adjacency matrix A
which transform the probability distribution over V, i.e.,

. 1 (j,k)eFE
0 (k) ¢E
for every pair j,k € V. The other important matrix associated with the graph G is the

generator matrix H given by

diy j=k
Hj:k = -7 (j, k) ekl,
0 otherwise

where d; is the degree of the vertex j and « is the probability of transition between neigh-
boring nodes per unit time.

If Pj(t) denotes the probability of being at vertex j at time ¢ then the transition on graph
G is defined as the solution of differential equation

SR =~ 3 HA().

keV

The solution of the differential equation is given by
P(t) = e ®P(0).

By replacing the probabilities P; by quantum amplitudes a;(t) = (j]¢(t)) where [j) is
spanned by the orthogonal basis of the position Hilbert space H, and introducing a factor

of 7 we obtain

. d
Zaaj(t) = ZHj,kak<t>-
keV
We can see that the preceding expression is the Schrodinger equation

d
i) = Hlv).
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Since generator matrix is an Hermitian operator, the normalization is preserved during the

dynamics. The solution of the differential equation can be written in the form

(1)) = e ™[1(0)).

Therefore, the CTQW is of the form of Schrodinger equation, a non-relativistic quantum
evolution.

To implement the CTQW on a line, the position Hilbert space H, can be written as a
state spanned by the basis states |¢;), where j € Z. The Hamiltonian H is defined such
that,

Hly;) = —v[¥j-1) + 29[¢5) — v|¥j41)
and is made to evolve with time ¢ by applying the transformation
U(t) = exp(—iHt).

The Hamiltonian H of the process acts as the generator matrix which will transform the
probability amplitude at the rate of v to the neighboring sites, where v is time-independent

constant.
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