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I am going to assume that everyone reading these lectures/taking this course has done special
relativity and two courses in quantum mechanics (perturbation theory). For students familiar with
at least one course in quantum field theory, this will mainly be a revision of concepts1.

Books (I will specify which chapters) and refs (I will keep adding refs in suitable places):

1. Quantum Field Theory and the Standard Model, M. Schwartz, CUP–(MS)

2. Quantum Computation and Quantum Information, M. Nielsen and I. Chuang, CUP–(NC)

3. Simulating Quantum Field Theory with a Quantum Computer, J. Preskill, arXiv:1811.10085–
(P18)

1I have used AI in writing portions of this lecture; especially, when you see overly itemized (bullet point) items.
Be careful of those sections! I will attempt to indicate these sections with a ∗. After I have critically examined
them, I will remove the *.
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1 The biggest embarrassment and an opportunity

Figure 1: The cosmological pie-chart

Fig.(1) represents the biggest embarrassment at present in theoretical physics as well as a
fantastic opportunity for young (and old!) researchers. In a quantifiable way, the figure shows
that we do not understand 95% of what makes up the universe. The frameworks that enable us to
study this question involve general relativity and quantum field theory. The figure demonstrates
that something major is missing in our understanding. It could need a paradigm shift to solve.

In the history of physics, progress has sometimes happened when physicists have tried to recast
(at that point of time) known physics in new language. For instance, before Maxwell, electricity
and magnetism were thought of as separate phenomena. Maxwell’s equations changed all that.
Quantum field theory and general relativity are also thought to be different frameworks. However,
the AdS/CFT correspondence or the holographic principle suggests that these may be two sides of
the same coin, although in different spacetime dimensions. Closer in spirit to this course, we can
talk about Kenneth Wilson’s work on the renormalization group. This deep conceptual Nobel prize
winning insight was obtained by thinking about quantum field theory on a classical computer.

Talking more about the last example, Wilson’s work did not wait for powerful classical com-
puters to emerge. He came up with deep conceptual insights by imagining how to do things on a
classical computer. See table 1 for a comparison of what existed during his times. Despite the lim-
ited computing resources, Kenneth Wilson’s development of the renormalization group approach
revolutionized our understanding of phase transitions and critical phenomena. His work earned
him the Nobel Prize in Physics in 1982 and laid the foundation for many areas of modern physics,
including condensed matter physics, quantum field theory, and statistical mechanics.

Somewhat coincidentally, the year before Wilson got his Nobel prize, Richard Feynman pro-
posed the idea of a quantum computer in 1981. This groundbreaking idea was presented in his
famous lecture titled "Simulating Physics with Computers", which he delivered at the First Con-
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Resource 1960s–1970s Modern Equivalent

Processor Speed ∼2.2 MHz (e.g., IBM 7090) ∼3 GHz (modern CPU)
Memory ∼32 KB ∼16 GB (modern computer)
Storage ∼MB (magnetic tape, disk drives) ∼TB (modern SSD/HDD)
Programming Language Fortran Python, C++, Julia, etc.
Computational Power ∼100,000 FLOPS ∼1012 FLOPS (modern GPU)

Table 1: Comparison of Computing Resources: 1960s–1970s vs. Modern

ference on the Physics of Computation held at MIT. His take was that nature is fundamentally
quantum and to simulate phenomena governed by quantum principles like entanglement, it would
be desirable to develop a quantum computer. Curiously, Feynman, John Hopfield (Nobel Prize 24,
AI/ML) and Carver Mead signed up to give a course in CalTech called "The Physics of Compu-
tation" in 1981.

At present, especially since the last two decades, there is a major endeavour in pushing the
frontiers of quantum computing and technology. Can we hope to solve some of the major unsolved
mysteries such as the one shown in fig.(1)? Many physicists believe that quantum field theory will
be eventually replaced by a more useful framework—something like string theory but perhaps a
different version of it. Can thinking about quantum field theory on a quantum computer enable
us to probe such grand questions?

In any event, the goal of this course is to motivate some of you to take up these grand-challenge
questions. Hopefully, we will learn together over the next 3 months.

2 Where QM fails
The non-relativistic Schrodinger equation is studied in great depth in any introductory course in
quantum mechanics. It has had great success in describing physics, where relativistic effects can
be ignored. The spacetime symmetries that leave the Schrodinger equation invariant are the so-
called Galilean symmetries. Specifically consider the free particle Schrodinger equation in 1-space
dimension:

− ℏ2

2m
∂2xψ = iℏ∂tψ. (1)

The Galilean symmetries act on the partial derivatives to leave them invariant as follows:

t→ t , x→ x+ vt (2)

where v is the velocity of the new frame of reference. Unlike special-relativitistic transformations,
clearly time and space are treated on different footings. The non-relativistic wave equation is
usually “beaten to death" in any introductory course on quantum mechanics. Many body gener-
alizations of this equation have also been enormously successful in explaining many observations
in the micro-cosmos, for instance, how various elements exist. After two courses on quantum
mechanics, many students plunge into quantum field theory.

There are many reasons to believe that there are several important gaps in our understanding
at this stage:

1. Special relativity

3



The first logical step to overcome this shortcoming is to write a wave-equation that is consis-
tent with special relativity. The simplest wave-equation is the Klein-Gordon equation
( c = 1).

(∂2t − ∂2x +m2)ϕ = 0 . (3)

To check the correctness of signs for a usual positive m2 situation, we substitute ϕ =
exp(iEt − ikx). This leads to −E2 + k2 + m2 = 0, which is the correct relativistic dis-
persion relation. Note: “dispersion relation" is used in at least 2 different contexts in modern
QFT. This is one of them.

This is the famous Klein-Gordon equation discovered by Klein and Gordon in 1926. Schrodinger
had initially considered this as a contender for the wave equation in 1925. Schrodinger had
found that this relativistic wave equation gives the wrong fine-structure and discarded it,
favouring his non-relativistic wave equation. When one tries to interpret the KG equation
as a wave equation, there are other problems, including negative probability densities. The
correct way of using the Klein-Gordon equation is to interpret ϕ (which implicitly depends
on x, t) as a quantum field (more on this later). For now, it is sufficient to point out that
this field corresponds to a “scalar" object of spin-0. We will elaborate on what these words
mean in a bit.

2. How wave function collapse happens

This is an unsolved problem and a cause of great agony amongst all physicists. There
are various schools of interpretation. Historically, a well-known school of thought was the
Copenhagen interpretation. We will not go into the philosophical issues. We can rephrase
the problem as asking:

Can we not use quantum mechanics to describe everything? Why do we resort to a classical
picture?

This is a subtle issue. A typical experimental situation will consist of an observable and an
observer. We usually think of these as distinct entities. In beginning courses, we also ignore
any entanglement between the observer and the observable.

We typically teach students to “shut-up and calculate". Most often we get away with this.
For instance, if you open PDG (Particle Data Group) handbook which is freely available,
you will see millions of experimental results which are well explained using this approach.
We also typically invoke the Ehrenfest theorem which enables us to derive classical equations
when considering expectation values w.r.t. wave functions with large quantum numbers. In
the next point of discussion, we will consider a situation where this appears to fail.

However, we encounter all kinds of conceptual questions—Einstein famously asked “Is the
moon there when no one is looking?" We will not attempt to answer such (important)
questions. But I encourage you to think of them.

Can we observe the wave function? To avoid talking about such “auxiliary" constructs in
our description of nature, our founding fathers (eg Heisenberg) wanted to come up with a
framework which directly dealt with observables, avoiding the wave function or the quantum
field, and find equations for these observables based on various consistency conditions. This
point of view is called the “Bootstrap" approach and forms a major theoretical effort
in modern times. Keep this in mind. Here, we usually do not have a Hamiltonian (we
don’t assume a fundamental Lagrangian) approach. It will lead to interesting philosophical
ramifications later on.
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3. Quantum/classical chaos

Chaos theory has long been a cornerstone of classical mechanics, describing systems where
small changes in initial conditions lead to exponentially diverging outcomes—a phenomenon
famously encapsulated in the “butterfly effect.” In classical mechanics, chaos is well-understood
and can be quantified using tools like Lyapunov exponents, which measure the rate of di-
vergence of nearby trajectories. However, when we transition to the quantum realm, the
concept of chaos becomes much more subtle and less straightforward.

Quantum systems are governed by the Schrödinger equation, which is linear and does not
exhibit the same sensitivity to initial conditions. However, quantum systems can still exhibit
behavior analogous to classical chaos, known as quantum chaos. This is often studied
through the statistical properties of the energy spectrum and the eigenfunctions of the
quantum system.

One of the key phenomena in quantum chaos is the quantum scar, where certain eigenstates
exhibit enhanced probability density along unstable classical periodic orbits. While this
provides a link between classical and quantum chaos, it also highlights the conceptual gap
between the two regimes: in classical mechanics, chaos is about trajectories, while in quantum
mechanics, it is about the statistical properties of the wavefunctions.

A situation that is discussed in the popular media (see Sabine Hossenfelder’s video on this)
pertains to Hyperion, a satellite of Saturn, which exhibits chaotic trajectory. There is an
interesting argument in the literature that suggests if Hyperion were treated as an isolated
quantum system, quantum mechanics would predict that it would fall out of chaos within
a finite time. This argument is based on the idea that quantum systems cannot exhibit true
chaos in the same way classical systems do, due to the linearity of the Schrödinger
equation and the discrete nature of quantum states. For Hyperion, this timescale has
been estimated to be on the order of 20 years, though the exact number depends on the
system’s parameters and the assumptions made in the calculation.

This prediction highlights a fundamental tension between classical and quantum descriptions
of chaotic systems: while classical mechanics predicts that Hyperion’s chaotic rotation will
persist indefinitely, quantum mechanics suggests that the system will eventually decohere
and settle into a more regular, non-chaotic state. This raises important questions about the
quantum-classical correspondence and how classical chaos emerges from the underlying
quantum dynamics. Zurek and Paz (1996) claim that decoherence is crucial to explain this
discrepancy. The decoherence picture typically instructs us to consider a tensor product of the
object of interest with its environment. In effect, Hyperion is interacting with the dust and
photons that surround it. The correct description of Hyperion is a massive state which tensors
all the constituents of Hyperion with whatever it is interacting with. This is something that
will be worth simulating and getting to the bottom of. Simulating such dynamics classically
appears quite hard and one has to go beyond the realm of classical computing. This does
create something of a conundrum though. Will this classical-quantum correspondence always
need us to think of an environment; if so, how big should this environment be? How do we
think of the interactions, in what framework?

Including this argument in the discussion motivates the use of quantum computers to
simulate such systems and explore the transition from quantum to classical behavior. By
simulating Hyperion’s dynamics on a quantum computer, we can test whether the system
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indeed falls out of chaos on the predicted timescale and gain insights into the mechanisms
by which classical chaos emerges from quantum mechanics.

4. Pair creation

One of the most compelling reasons to study Quantum Field Theory (QFT) is its abil-
ity to explain phenomena that are completely inaccessible to non-relativistic quantum
mechanics (NRQM). A prime example of this is pair creation, the process by which a
particle and its antiparticle are spontaneously produced from the vacuum. This phenomenon
is a direct consequence of the relativistic energy-momentum relation,

E2 = p2c2 +m2c4,

which allows for the conversion of energy into mass. In NRQM, the energy of a system is
always positive, and the concept of negative energy states does not arise. However, in QFT,
the Dirac equation predicts the existence of negative energy solutions, leading to the idea of
a Dirac sea of filled negative energy states. When sufficient energy is provided, an electron
can be excited from this sea, leaving behind a positron (the electron’s antiparticle). This
process is described by the creation and annihilation operators in QFT, which allow for
the dynamic creation and destruction of particles.

The inability of NRQM to explain pair creation is particularly evident in the context of
strong external fields. For example, in the presence of a strong electric field, the vacuum
can become unstable, leading to the production of electron-positron pairs. This phenomenon,
known as the Schwinger effect, is described by the rate of pair production per unit volume
Schwinger, 1951:

Γ ∼ exp

(
−πm

2c3

eℏE

)
,

where E is the electric field strength, m is the electron mass, and e is the electron charge. This
result cannot be derived from NRQM, which lacks the framework to describe particle creation
and annihilation. Furthermore, NRQM cannot account for the relativistic invariance of
physical laws, which is crucial for understanding processes like pair creation that occur at
high energies.

The study of pair creation in QFT not only provides a deeper understanding of fundamental
physical processes but also has practical implications in fields such as particle physics
and cosmology. For instance, pair creation plays a key role in the early universe and in
the vicinity of black holes, where strong gravitational fields can lead to the production of
particle-antiparticle pairs. By studying QFT, we gain the tools to explore these phenomena
and push the boundaries of our understanding of the quantum world.

3 Why the Quantum Field
The discussions on special relativity and pair creation will motivate us toward thinking in the
language of a quantum field. Let us briefly discuss why.

As I mentioned, when we try to think of the Klein-Gordon equation as the appropriate rela-
tivistic wave-equation, it gives negative probability densities. The same problem happens with the
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Dirac equation. In quantum mechanics, we thought of the position x and its conjugate momentum
px as operators satisfying the usual commutation relation. Time here is a parameter ( label).
This is another instance where we treat time on a different footing, unlike what special relativity
teaches us. So there are two avenues forward: 1) demote position to be a parameter 2) Promote
time to be an operator. The former approach is what we do in quantum field theory while the
latter is what we do in the world-line or world-sheet formalism (for instance in string theory). In
the former case, ϕ (what we wanted to think of as the relativistic wave-function) gets promoted
to be an operator. This is sometimes referred to as second-quantization (we will refrain from this
ancient terminology).

The ϕ̂ operator is made of creation and annihilation operators (more on this in the next section).
These creation and annihilation operators enable us to talk about the pair creation example.

It is not that we will now forget about the wave-function! We can recover the single-particle
wave function from the framework of quantum field theory. Depending on the physics we want
to describe, it is preferable to talk in the language of probability amplitudes of various processes
happening. For instance, Compton scattering. Quantum field theory is a framework that enables
us to do this.

In fact, it is worth pointing out that the techniques in QFT are not restricted to the special rel-
ativistic situation alone. For instance, cosmologists are interested in calculating expectation values
of primordial fluctuations. Their signatures are imprinted on the cosmic microwave background
and in temperature correlations that can be measured. One would like to know the microscopic
origins of these observables. Quantum field theory, accounting for the background, provides a
framework for addressing such questions.
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This lecture is based on chapter 2 of MS.

1 Some classical fields that we know
In the last lecture, we briefly saw the Klein-Gordon equation, which is the simplest relativistic wave
equation. Let’s examine that a bit more. In 3+1 dimensional Minkowski space (the generalization
to arbitrary dimensions is obvious), the Minkowski metric reads:

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (1)

Here, we made a choice for the signature of the metric. For obvious reasons, this is called the metric
in the mostly negative signature. This is the usual convention in most particle physics textbooks.
GR textbooks follow the mostly positive signature. The d’Alembertian operator is defined as:

∂2 = ηµν∂µ∂ν , (2)

where ηµν is the inverse metric (here the matrix form is the same as ηµν). We raise and lower
indices using η. The positioning of the indices (up or down) may lead to different signs, so it is
worth being careful about this (and any way, relativists will get annoyed if you are not careful!)
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The Klein-Gordon equation for a massive scalar in the mostly negative signature (which is the
conventions we will adopt) reads:

(∂2 +m2)ϕ = 0 . (3)

We are tacitly assumingm to be a real parameter (else we would get a tachyonic field—a discussion,
we will avoid). ϕ depends on xµ and we will sometimes just drop this dependence for simplicity.

Where do we encounter ϕ in physics? The most famous place is undoubtedly the case of the
Higgs’ boson, which is thought to be a scalar field. We have not yet defined what we mean by
scalar, vector etc when it comes to fields—we will do that in the next lecture.

Another famous field that you have encountered in your coursework is the electromagnetic field.
It is represented by an antisymmetric tensor:

Fµν(x
α) . (4)

There are 6 components that this tensor has, corresponding to the 3 components of the electric
field E⃗ and the 3 components of the magnetic field B⃗. As you may recall, we write the electric
and magnetic fields in terms of the scalar and 3-vector potential:

E⃗ = −∇⃗ϕ− ∂tA⃗ , B⃗ = ∇⃗ × A⃗ . (5)

In terms of a 4-vector potential Aµ = (ϕ,−A⃗), defining

Fµν = ∂µAν − ∂νAµ , (6)

we can compute:

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 . (7)

Maxwell equations read:
∂µF

µν = Jν , ∂[µFνρ] = 0 . (8)

The notation B[abc] means totally antisymmetric in a, b, c. The first equation gives the Maxwell
equations with sources and the second one is an identity called the Bianchi identity. This identity
gives the equations ∇⃗.B⃗ = 0 , ∇⃗ × E⃗ + ∂tB⃗ = 0.

Aµ is called a vector field and the particle associated with it is the photon. It has spin-1 and
2 independent polarizations. It is worth reviewing how this conclusion is reached.

As we will soon see more carefully, particles can be thought of as excitations of fields in empty
spacetime. We start with the equation:

∂µF
µν = 0 , =⇒ ∂µ(∂

µAν − ∂νAµ) = 0 . (9)

Now as you may know Fµν remains invariant under the gauge transformation:

Aµ → Aµ + ∂µχ . (10)

This symmetry enables us to choose a gauge. For instance suppose we start with a solution Aµ

such that ∂µAµ ̸= 0. Then gauge transforming to Âµ enables us to consider:

∂̂µA
µ = ∂µA

µ + ∂2χ . (11)
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Now we can choose χ such that ∂µAµ + ∂2χ = 0. So we can choose what is called the Lorentz
gauge:

∂µA
µ = 0 , (12)

because of this gauge freedom. This leads to a simplified equation from eq.(9):

∂2Aµ = 0 . (13)

(I am using obvious re-labelling of indices). Now note that this equation is similar to the massless
scalar Klein-Gordon equation! At the classical level, this enables us to analyse both equations
using similar (but not identical due to the vector index) tools.

There is another field that you may encountered which is called the spinor. There are various
kinds of spinors (Dirac, Weyl, Majorana). They are denoted by

ψa(x
µ) (14)

where a is called a spinor-index. We will see what this means in the next lecture.

2 Solutions to the classical equation
Now let us consider solutions to the classical equations. Let us start with the massless KG equation.
Explicitly this reads:

(∂2t − ∂2x − ∂2y − ∂2z +m2)ϕ = 0 . (15)

It is easy to show that ϕ(xµ) = exp(iEt− ip⃗.x⃗) solves the above equation provided

E2 = p⃗2 +m2 , (16)

holds. This, of course, means that choosing E = +
√
p⃗2 +m2, we will get 2 solutions exp(iEt−ip⃗.x⃗)

and exp(−iEt+ ip⃗.x⃗). These are written compactly using the 4-vector dot product as exp(±ip.x).
These are called "plane-wave" solutions. We will omit the dot sign for notational simplicity.
Hopefully, this will not cause any confusion. Note that it is also clear that for any p⃗ obeying
eq.(16), we can superpose these plane-wave solutions giving the most general solution to be:

ϕ(x) =

∫
d3p⃗

(2π)3
(a(p) exp(−ipx) + a∗(p) exp(ipx)) . (17)

a, a∗ are complex conjugates of each other if ϕ is real. Since p20 = E2 = p⃗2 +m2, the p dependence
on a, a∗ is on p⃗. In other words, we can use either a(p) or a(p⃗).

What about Aµ? In Lorentz gauge it satisfies ∂2Aµ = 0 and hence we should have a solution
that looks like:

Aµ(x) =

∫
d3p⃗

(2π)3
[
aµ(p) exp(−ipx) + a∗µ(p) exp(ipx)

]
. (18)

Further, since ∂2Aµ = 0, we must have p2 = 0, which is what we expect from a massless particle.
This, however, misses a key fact which we know. There should be a polarization vector associated
with Aµ. Thus, we should write:

aµ(p) → ϵ(s)µ (p)a(s)(p) . (19)
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Why did we introduce this additional complication in (s)? The reason is because there are multiple
independent polarization vectors (for the photon in 3+1 d, it is 2 as we will shortly see). Thus we
should allow for these possibilities and sum over them. Thus, we have:

Aµ(x) =
∑
s

∫
d3p⃗

(2π)3
[
ϵ(s)µ a(s)(p) exp(−ipx) + ϵ∗(s)µ a∗(s)(p) exp(ipx)

]
. (20)

Since Aµ = (a, b, c, d) = a(1, 0, 0, 0)+ b(0, 1, 0, 0)+ c(0, 0, 1, 0)+ d(0, 0, 0, 1), a 4-vector, we may
have expected that we have 4 independent polarization vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).
However, recall the following. To reach this point, we need to ensure that ∂µAµ = 0 holds. Further,
since In momentum space, this condition reads:

p.ϵ = 0 . (21)

Instead of choosing a general pµ, let us choose

p = (E, 0, 0, E)

which obeys p2 = 0. To satisfy p.ϵ = 0 for ϵ = (a, b, c, d), we must have a = d. Hence, it would
seem at this stage that ϵ = a(1, 0, 0, 1)+ b(0, 1, 0, 0)+ c(0, 0, 1, 0) giving 3 independent polarization
vectors. But there is a key point here. We could have also used:

ϵ = (a, b, c, a) + αp = (a, b, c, a) + α(E, 0, 0, E) = (a+ αE, b, c, a+ αE)

for any α and using p2 = 0, we would be able to satisfy p.E = 0. This additional freedom
to shift ϵ → ϵ + αp is called a residual gauge transformation. Using this we can write
ϵ = (0, b, c, 0) = b(0, 1, 0, 0) + c(0, 0, 1, 0) giving the correct count of 2 independent polarizations.
Thus (s) in the sum in Aµ above takes values s = 1, 2.

The form in eq.(20) is same for other tensor fields, with ϵµ replaced by the corresponding
polarization tensor.

3 Heuristic quantization
I will not go into explicit details about canonical quantization, which you can find in standard
QFT textbooks. Here, I will present some heuristic arguments, which are shortcuts to remember
how the field quantization works. Lte us consider the scalar field (the argument for the vector
case or any other case is similar). First, we want to promote ϕ to be an operator. For historical
reasons, this is called "second quantization". We can write:

ϕ̂(x) =

∫
d3p⃗

(2π)3
[
â(p) exp(−ipx) + â†(p) exp(ipx)

]
. (22)

On the rhs, we have promoted a, a∗ to be operators. Let us define them in the following way. First
let us define the free or non-interacting vacuum |0⟩ so that

a(p)|0⟩ = 0 . (23)

a(p) is called an annhilation operator. Further, let us define the action of a†(p) such that

a†(p)|0⟩ = |p⃗⟩ . (24)
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In other words, a†(p) creates from the vacuum a single particle momentum state |p⃗⟩. The conjugate
of this condition is:

⟨0|a(p) = ⟨p⃗| . (25)

Now as in usual quantum mechanics we want

⟨k⃗|p⃗⟩ = (2π)3δ(3)(p⃗− k⃗) . (26)

The lhs can be written as
⟨0|a(k)a†(p)|0⟩.

If we have
[a(k), a†(p)] = (2π)3δ(3)(p⃗− k⃗) , (27)

then the condition in eq.(26) will be satisfied. The last commuation relation should remind you
of the simple harmonic oscillator (you have to choose p = k and imagine δ(3)(0) to be a constant!
This last bizarre fact is in fact something we use in QFT. We can regularize the infinite volume of
spacetime by considering a box of volume V in which case δ(3)(p⃗) =

∫
d3x exp(ip⃗.x⃗) so that putting

p⃗ = 0 we have δ(3)(0) =
∫
d3x = V .)

Now let me heuristically motivate why what we have done is a sensible thing to do. First, let
us ask what do we expect from the operator ϕ̂(x). Let us consider t = 0. We expect that ϕ̂(0, x⃗)|0⟩
should create a particle at position x⃗, in other words,

ϕ̂(0, x⃗)|0⟩ = |x⃗⟩ . (28)

To see that indeed this is the case, we compute

⟨k⃗|ϕ̂(0, x⃗)|0⟩ = ⟨k⃗|x⃗⟩ . (29)

The rhs is the conjugate of ⟨x⃗|⃗k⟩ which is nothing but the position space wave function for |⃗k⟩.
We have

⟨x⃗|⃗k⟩ = eik⃗.x⃗ =⇒ ⟨k⃗|x⃗⟩ = e−ik⃗.x⃗ . (30)

You should be able to readily verify (this was done in the lecture, but I would encourage you to
practice independently) using eqs. (22,23,24,26) that

⟨k⃗|ϕ̂(0, x⃗)|0⟩ = ⟨k⃗|x⃗⟩ = e−ik⃗.x⃗ , (31)

indeed holds.
The key quantization elements we have introduced are the conditions in eqs.(23,24) to define

the vacuum and a single particle state and the commutation relation in eq.(27).
Now unlike the harmonic oscillator case in quantum mechanics, we can create multiparticle

states using:
|p1, p2, p3, · · · , pn⟩ = a†(p1)a

†(p2)a
†(p3) · · · a†(pn)|0⟩ , (32)

which defines an n-particle state. Thus instead of talking about a Hilbert space associated with a
single particle, we talk about a Fock space associated with multiparticles.

In the case of Aµ, the single particle (single photon) state is

a†(s)(p)|0⟩ = |p, s⟩ (33)

where s now is an additional label for the polarization that the creation operator has created.
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One of the main goals in QFT is to calculate the probability that particular scattering has
happened. For instance let us consider |in⟩ = |p1, p2⟩ as the 2 scalar particle states having momenta
p1, p2. Let us define |out⟩ = |p3, p4⟩ as the 2 scalar particle state having momenta p3, p4. Let us
imagine that the |in⟩ state is time-evolved by some Hamiltonian (which includes interactions) to
the |out⟩ state. Then we will be interested in calculating the scattering amplitude:

S = ⟨out|in⟩ . (34)

The whole machinery of Feynman diagrams was invented to calculate these quantities in pertur-
bation theory. We will not consider a perturbative expansion in this course (except for carrying
out some sanity checks, perhaps). A main objective will be to simulate the time-evolution of the
in-state to the out-state on a quantum computer. But before we go there, we still need to build
some more understanding of QFT, both from the point of view of what will come next in the
course as well as for some background knowledge.
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This lecture is based on chapter 2,8,10 of MS.

1 How to think about the Quantum field
In this section, I hope to convey to you how to think about the quantum field in many situations
that physicists are interested in. For this, we will need some basic background material. First, we
need to define what we mean by a particle: A particle is a unitary irreducible representation of
the symmetry group; in flat space the symmetry group is the Poincaré group. To understand all
this a bit more, I will ask you to bear with me as I take you on a brief detour. From MS, we will
need chapters 2,6,7,8,10 and what follows below is a lightning review of these chapters. Note: we
will only try to focus on the logical flow of the arguments, rather than get lost in the
details.

1.1 Wigner’s classification theorem

If you want a proof of Wigner’s classification theorem, then I urge you to read Weinberg’s treatment
in his Quantum Fields book, chapter 2, vol I. Here, we will just quote the theorem and focus on
the representations of the Poincare group.

Remember: Particles come from Wigner’s classification. Fields come from the
irreps of the Poincare group.
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Lagrangian

EOM
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Particle states

Figure 1: Logical flow in the lecture: from geometry to particle content.

What do we mean by this? In quantum mechanics, we would like to label a particle by the
quantum numbers associated with a complete set of commuting observables. We further would
like the state vector in the Hilbert space, to correspond to a unitary representation (to admit the
probability interpretation). So we need some object, that in momentum space looks like:

|p, σ⟩

where p is the 4-momentum satisfying p2 = m2 and σ are the other possible quantum numbers.
Wigner showed 2 important things:

1. There are NO finite dimensional unitary irreducible representations of the Poincare group.

2. Wigner showed that particles in 3+1 dimensions are labeled by their masses m (already
introduced above) and a spin quantum number J which can take values 0, 1/2, 1 · · · . The
label p2 = m2 = E2− p⃗2 assumes E > 0 and because there are infinitely many ways to satisfy
this constraint, it would mean the representations are infinite dimensional.

Our job then is to figure out the (non-unitary) irreducible representations of the Poincare group
and how |p, σ⟩ fits into them.
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To talk about the irreps of the Poincare group, it is useful to introduce the notion of a spacetime
metric. This will enable us to think about quantum field theory more generally. I hope to convey
the flavour of the arguments.

1.2 The background geometry

To set the stage, let us consider the line element on a 2d plane. This just follows from Pythagoras’
theorem and its infinitesimal form is given by

ds2 = dx2 + dy2 .

You can think of dx = x1 − x2 where x1, x2 are two nearby points. A general line element can
be written as

ds2 = gµνdx
µdxν . (1)

gµν is called the spacetime metric tensor (you can think of this as a symmetric matrix. Here
µ, ν run from 0, 1, 2 · · · d, where we are in d space and 1 time dimension (so d + 1 in short). We
have used Einstein summation convention. For the 2d plane example above, we have µ, ν ∈ {1, 2}
(here there is no time direction; we will reserve the label 0 for time and 1, 2, · · · d − 1 for space).
Explicitly, the only non-zero gµν are g11 = 1 = g22.

In principle, gµν can be taken to be whatever you want and it can also depend on all the
spacetime coordinates. However, there is a famous dynamical equation whose solution gives us
gµν—The Einstein-Hilbert equations. They read

Gµν = Tµν .

Here Gµν is the Einstein tensor and Tµν is the stress-energy tensor. I have suppressed a conven-
tional 8πGNetwon factor on the RHS. We don’t need to know what these tensors are except that such
an equation exists! The equation transforms “nicely" under general coordinate transformations.
For instance under infinitesimal (meaning ξ below is “small") transformations like

xµ → xµ + ξµ(x)

leaves the lhs invariant. So we can do general coordinate transformations and present the solution in
different forms. This is similar in spirit to gauge transformations in electromagnetism. Specifically,
the analog is

Aµ → Aµ + ∂µξ :: gµν → gµν + ∂µξν + ∂νξµ .

The Aµ transformation is called a U(1) gauge transformation while the transformation on gµν is
called a diffeomorphism.

When Tµν = 0, one solution is indeed Minkowski spacetime (including the 2d plane example
above). Minkowski spacetime takes the form:

ds2 = −dt2 + dx2 + dy2 + dz2 , (2)

where we have assumed 3 + 1 dimensional spacetime. Sometimes, we also write ds2 = dt2 − dx2 −
dy2−dz2. The former case is called the (−+++) or the mostly positive signature while the latter
is the (+−−−) or the mostly negative signature. The Minkowski metric is conventionally denoted
by ηµν . No one told you that there has to be only 1 time direction. This is an assumption.
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A simple situation is when Tµν = Λgµν . Λ is called the cosmological constant. Depending on
the sign of the constant, we now have (again 3 + 1 dimensions) either the de Sitter (name of a
person) metric (dS in short, relevant for cosmology)—a choice of this metric is:

ds2 = −dt2 + e2Ht(dx2 + dy2 + dz2) , (3)

where the H is called the Hubble constant/Hubble parameter and is taken to be positive. This
form of the metric suggests that the rulers associated with ds2 will have the spatial volume to be
increasing as t increases.

The opposite sign choice of the cosmological constant gives the anti de Sitter space (AdS). This
plays a role in the famous AdS/CFT correspondence. A choice of coordinates is:

ds2 = dr2 + e2r/L(−dt2 + dx2 + dy2) . (4)

where L defines the “AdS radius". For dS and AdS, the H and L are related to Λ. Minkowski, dS
and AdS are called the maximally symmetric spacetimes.

Now, we said that a particle is a unitary irrep of the symmetry group. What is the symmetry
group? First, we define “isometries" as any coordinate transformations (the ξ(x) in xµ → xµ +
ξµ(x)) which leave the metric invariant. For the 2d plane ds2 = dx2 + dy2, we can see an obvious
one: x → x + a, y → y + b where a, b are constants. These will leave dx, dy invariant. These are
nothing but translation of coordinates. Another transformation that we know of is rotation. This
corresponds to

xi → Ωi
jx

j.

We can write explicitly (
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
. (5)

This leaves
x′2 + y′2 = x2 + y2 .

Now the infintesimal form can be found by expanding the rotation matrix to linear order around
θ = 0 giving (

x′

y′

)
=

(
x
y

)
+ θ

(
0 1
−1 0

)(
x
y

)
. (6)

Here θ “parametrizes" the infinitesimal transformation. This leads to

dx′ = dx+ θdy , dy′ = dy − θdx . (7)

You can see that dx′2 + dy′2 = dx2 + dy2 +O(θ2),

As is obvious, setting θ = 0 recovers the original choice of x, y. The matrix Ω =

(
0 1
−1 0

)
is

called the generator of the transformation. Clearly ΩΩT = Id, with Id being the 2 × 2 identity
matrix. In general, the rotation group generators are orthogonal matrices. Now let us consider
the Minkowski metric in 1+1d: ds2 = −dt2 + dx2. The infinitesimal transformations:

dx′ = dx− ζdt , dt′ = dt− ζdx , (8)
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will leave the line element invariant. This infinitesimal transformation arises from:(
cosh ζ − sinh ζ
− sinh ζ cosh ζ

)
where ζ is called the rapidity and is related to β = v/c via ζ = tanh−1 β. This defines the
Lorentz transformations. In 1+1 dimension, we have translations parametrized by 2 parameters
(one for space, one for time) and the Lorentz transformation (parametrized by ζ). The number of
parameters is 3 and is the same as for the 2d plane. Each parameter is associated with a generator
of the transformation so in 1+1 dimensions, we have 3 generators in all. There is a conserved
quantity associated with each of these symmetries. For time translation symmetry, we have energy
conservation; for space translation, we have momentum conservation; (hw: research and find out
what is conserved due to the boost symmetry!).

In 3+1 dimensions, the counting goes as follows. We have 3 parameters associated with the
boosts (we can boost in x, y, z directions), 3 parameters associated with the rotations (3 Euler
angles) and finally 4 parameters associated with the translations of the four spacetime coordinates.
So we have 10 generators in all. Now it turns out that the count is the same for 4d dS as well as
4d AdS spaces. However, the interpretations are different. For instance, in the dS case (look at
the metric presented above), we do not have time translation symmetry! You will frequently see
the terminology R3,1⋊O(3, 1) for Minkowski, SO(4, 1) for dS and SO(3, 2) for AdS. You can read
about these on wikipedia or chatGPT!

For the Minkowski case, if we represent the spacetime metric by η and the Lorentz transfor-
mation as xµ → Λµ

νx
ν , then

Λµ
αΛ

ν
βη

αβ = ηµν .

This just follows from the invariance of xµxµ, which is the definition of Λ.
There are also discrete symmetries (not connected to the identity). Parity (xi → −xi), Time

reversal (t → −t) and also charge conjugation which applies on the electric charge (an additional
quantum label). They are denoted by P.T.C respectively and form an important set of discrete
symmetries.

1.3 Unitary IRREPs

Now that we have some idea about isometries, we can talk about unitary IRREPs. IRREP stands
for irreducible representation. This means the following. In quantum mechanics (and quantum
field theory) we represent a single particle in terms of a state vector in a Hilbert space. The state
vector can be made of many components (eg spin). For instance for the electron in 3+1 dimension,
we can label the state vector by spin. So in this case the state vector looks like |ψ⟩ ∈ {| ↑⟩, | ↓⟩}.
The symmetry transformation acting on the spin part leaves the state in the “same space", meaning
that we do not have to add any other label for the spin. The minimum number of components that
are mixed into each other by the symmetry transformations forms the irreducible representation.

Now for the Poincaré group, here is the catch. There is a well-known theorem called Wigner’s
classification theorem which says that there are no finite-dimensional irreducible representation of
this group, but there are infinite-dimensional ones. Wigner also showed that these representations
are classified by mass m (a non-negative real number) and spin J (non-negative half integer). For
m > 0 a spin-J particle has 2J + 1 independent states in the representation. For m = 0 there are
exactly 2 states. Let us delve a bit deeper into this.

5



In quantum mechanics, the action of symmetry transformations is in terms of unitary trans-
formations. Let us write the Lorentz transformation and translations on the coordinates like:

x′µ = Λµ
νx

ν + aµ .

For this the unitary transformation is represented by

U(Λ, a) = 1 + iωµνM
µν + iaµP

µ

where we have considered infinitesimal transformations parametrized by ωµν , aµ and called the gen-
erators of the transformations Mµν , P µ. The factors of i ensure that M,P are Hermitian operators
with ω, a real to ensure that U is a unitary operator. Using the fact that U(Λ1, a1)U(Λ2, a2) =
U(Λ1Λ2, a1 + a2), U(Λ)MµνU

−1(Λ) = Λα
µΛ

β
νMαβ and U(Λ)PµU

−1(Λ) = Λα
µPα judiciously (see

Weinberg vol 1 for details), we can find the Poincaré algebra:

i[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ησµMρν + ησνMρµ , (9)
i[P µ,Mρσ] = ηµρP σ − ηµσP ρ , (10)
i[P µ, P ν ] = 0 . (11)

We can write the matrix M of generators as:

Mµν =


0 K1 K2 K3

−K1 0 J3 −J2
−K2 −J3 0 J1
−K3 J2 −J1 0

 (12)

and defining

J+
i =

1

2
(Ji + iKi) , J−

i =
1

2
(Ji − iKi)

, we will find 2 copies of the angular momentum algebra:

[J+
i , J

+
j ] = iϵijkJ

+
k , (13)

[J−
i , J

−
j ] = iϵijkJ

−
k , (14)

[J+
i , J

−
j ] = 0 . (15)

In other words, we can think of the representation as arising from a tensor product of the represen-
tations of the 2 angular momentum algebras since they do not talk to each other. Now recall how
we worked out representation of the angular momentum algebra (I am assuming you remember
this, else you will have to revise!). These representations were matrices of different dimensions.
The representations were labelled by ℓ,m where ℓ(ℓ+ 1) was the eigenvalue of J2 = J2

1 + J2
2 + J2

3

and m = −ℓ,−ℓ + 1, · · · 0, · · · ℓ, i.e., 2ℓ + 1 dimensional. In the case at hand, the representations
will be labeled by two ℓ1, ℓ2 and will be (2ℓ1 + 1)(2ℓ2 + 1) dimensional. Concisely we label the
representations by (ℓ1, ℓ2). We note some common representations below:

6



(ℓ1, ℓ2) dim name
(0,0) 1 scalar

(0,1/2) 2 Weyl spinor (r)
(1/2,0) 2 Weyl spinor (l)

(1/2, 0)⊕ (1/2, 0) 4 Dirac spinor
(1/2,1/2) 4 Aµ

(1, 1)⊕ (0, 0) 10 gµν
(1, 1/2)⊕ (1/2, 1) 6 gravitino, ψµ

Table 1: Various representations and their field notations.

This table contains a lot of information. For instance (0, 1/2) also tells us that we are supposed
to find 2× 2 matrices which satisfies the angular momentum algebra for J− while acting trivially
for J+. This is of course provided by the Pauli matrices! We need to specify how these spinors
transform. Recall that the infinitesimal version should look like (omitting the trivial translation
part)

1 + iωµνM
µν

. This can be worked out and calling the (1/2, 0) representation as ψR we find

ψR → (1 +
i

2
θjσj +

1

2
βjσj)ψR (16)

where θi are the 3 angles and βi are the 3 boost parameters (both sets are real). Now this
explicit form makes it clear that these representations are not unitary. Thus, although we found
finite dimensional representations for the Mµν in the form of the Pauli matrices, the resulting
representations are not unitary. To fix this problem, we have to embed these particles into fields
and write down an appropriate Lagrangian. For instance, for the scalar case, we hope to put the
state into a field ϕ(x), where x is a continuous spacetime label. Now let us consider the spin-1
case which will illustrate the point more nicely.

According to Wigner’s theorem, a massive spin-1 particle has 3 independent degrees of freedom.
Let us write a state |ψ⟩ = c0|A0⟩ + c1|A1⟩ + c2|A2⟩ + c3|A3⟩. The naive norm of this state
is |c0|2 + |c1|2 + |c2|2 + |c3|2 but this is not Lorentz invariant. The Lorentz invariant norm is
±(−|c0|2 + |c1|2 + |c2|2 + |c3|2) but this is not positive definite. It could be positive definite if we
could project out the 0-component. The Lagrangian approach enables us to solve precisely this
problem. We write an action for Aµ(x), which turns out to be that of the Proca Lagrangian for the
massive case and the Maxwell Lagrangian for the massless case. Lorentz invariance and unitarity
fix the lowest order forms of these Lagrangians. By lowest order, we mean at the two-derivative
order; involving terms like FµνF

µν and not higher derivative terms like (FµνF
µν)2. What we call

gauge invariance is a consequence of Lorentz invariance and unitarity. If you want to see how this
works, you should read chapter 8 in Matthew Schwartz’s book.

1.4 Scalar example in Minkowski, dS and AdS

How do we go about quantizing? Typically, we always start with a classical Lagrangian which is
motivated by symmetries. There is in fact a nice way to do this in any fixed background. Consider
the case of a free (quadratic/Gaussian) massive scalar. We will be cavalier about the signs for
now. As discussed above, the field for this is just ϕ(x). There are no spacetime indices on this

7



object. We want an action such that the equations of motion are (to get E2 = p⃗.p⃗+m2):

(−∂20 + ∂i∂
i −m2)ϕ = 0.

An action that does this is

S = −1

2

∫
d4x

[
(∂µϕ)(∂

µϕ) +m2ϕ2
]
. (17)

Say, we work in the mostly positive signature (−+++). Now in a general background, this changes
only a bit. The above action was written keeping Minkowski in mind. For a general spacetime, we
write:

S = −1

2

∫
d4x

√
|g|

[
(∂µϕ)(∂νϕ)g

µν +m2ϕ2
]
. (18)

Now here I have explicitly showed how indices are contracted (in the manner I have showed, they
are contracted using the inverse metric gµν . We can work out the equations of motion from here
by using the variational principle. We vary the action by varying the fields. Here we keep the
background metric fixed. So we have

δS = −1

2

∫
d4x

√
|g|

[
(∂µδϕ)(∂νϕ)g

µν + (∂µϕ)(∂νδϕ)g
µν + 2m2ϕδϕ

]
, (19)

= −
∫
d4x

√
|g|

[
(∂µδϕ)(∂νϕ)g

µν +m2ϕδϕ
]
, (20)

= −
∫
d4x

[
∂µ(

√
|g|δϕ(∂νϕ)gµν)− δϕ∂µ(

√
|g|(∂νϕ)gµν) +m2

√
|g|ϕδϕ

]
, (21)

= −
∫
d4x

√
|g|δϕ

[
− 1√

|g|
∂µ(

√
|g|(∂νϕ)gµν) +m2ϕ

]
, (22)

= 0 . (23)

Here, going to the second line, we have used the fact that the metric symmetric. Going from the
third line to the fourth line, we have dropped the surface term. Thus the final form of the equation
of motion for the scalar in a curved background is:

− 1√
|g|
∂µ(

√
|g|(∂νϕ)gµν) +m2ϕ = 0 . (24)

For Minkowski, we get
(−∂µ∂µ −m2)ϕ = 0 , (25)

which is exactly what we wanted.
We note down the equations for dS and AdS (hw)

dS : −e−2Ht(∂i∂i)ϕ+ e−3Ht∂t(e
3Ht∂tϕ) +m2ϕ = 0 , (26)

AdS : −e−2r/L(−∂2t + ∂i∂i)ϕ− e−3r/L∂r(e
3r/L∂rϕ) +m2ϕ = 0 . (27)

There is a bit more to discuss before we are in a position to start quantum computing! So hang
in there.
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1 Noether’s Theorem for the Point Particle

1.1 Setup

Consider a point particle with generalized coordinates qi(t) and Lagrangian

L(q, q̇, t), S[q] =

∫
dt L(q, q̇, t).

Let q̄(t) denote a classical solution (i.e. on-shell). We consider two types of variations:

1. An arbitrary variation δqi.

2. A symmetry variation δqis, defined such that the Lagrangian changes by a total
derivative.

1.2 Arbitrary Variation (On-Shell)

The variation of the action is

δS =

∫
dt

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
.

Integrating by parts,

δS =

∫
dt

[(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi

]
+

∂L

∂q̇i
δqi

∣∣∣∣t2
t1

.

On-shell, q̄(t) satisfies the Euler–Lagrange equations, so the bulk term vanishes. Thus,

δS
∣∣
q̄
= pi δq

i
∣∣t2
t1
, pi ≡

∂L

∂q̇i
.

1.3 Symmetry Variation

Suppose under a symmetry transformation qi → qi + δqis, the Lagrangian changes as

δsL =
dF

dt
.

Then the action changes as
δsS = F |t2t1 .

Evaluating on the solution q̄,
δsS

∣∣
q̄
= F |t2t1 .

1.4 Conserved Quantity

We now compare the two expressions. In the arbitrary variation formula we set δqi = δqis,
while in the symmetry variation we evaluate on q̄. Subtracting, we obtain(

piδq
i
s − F

)∣∣t2
t1
= 0.

Thus the quantity
Q = piδq

i
s − F

is conserved: dQ
dt

= 0.
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1.5 Time Translation

For time translations t → t+ ϵ,

δqis = q̇iϵ, F = Lϵ.

Hence
Q =

∑
i

piq̇
i − L ≡ H,

which is the Hamiltonian. Thus, if the system is time-translation invariant, H is con-
served.

2 Field Theory: Noether’s Theorem and Hamilto-

nian

2.1 Setup

Consider a field ϕ(x) in d+ 1 dimensional Minkowski space with Lagrangian density

L(ϕ, ∂µϕ).

2.2 Arbitrary Variation

The variation of the action is

δS =

∫
dd+1x

(
∂L
∂ϕ

δϕ+
∂L
∂∂µϕ

δ(∂µϕ)

)
.

Integrating by parts,

δS =

∫
dd+1x

[(
∂L
∂ϕ

− ∂µ
∂L
∂∂µϕ

)
δϕ

]
+

∫
dd+1x ∂µ

(
∂L
∂∂µϕ

δϕ

)
.

On-shell,

δS
∣∣
ϕ̄
=

∫
dd+1x ∂µ

(
∂L
∂∂µϕ

δϕ

)
.

2.3 Symmetry Variation

For a symmetry δϕs, suppose the Lagrangian changes as

δsL = ∂µF
µ.

Then

δsS =

∫
dd+1x ∂µF

µ.

2.4 Noether Current

Subtracting as before, and setting δϕ = δϕs, we obtain a conserved current

jµ =
∂L
∂∂µϕ

δϕs − F µ, ∂µj
µ = 0.
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2.5 Spacetime Translations

For translations xν → xν + ϵν , we have δϕs = ϵν∂νϕ. This yields the canonical stress-
energy tensor

T µ
ν =

∂L
∂∂µϕ

∂νϕ− δµνL, ∂µT
µ
ν = 0.

In particular, the Hamiltonian is

H =

∫
ddxT 0

0.

2.6 Conserved Charges from the Divergence Theorem

From Noether’s theorem we obtained the conserved stress-energy tensor

T µ
ν =

∂L
∂∂µϕ

∂νϕ− δµν L, ∂µT
µ
ν = 0.

To extract the conserved quantities, consider the charge associated with translations
in the xν direction:

Qν(η) ≡
∫
Rd

ddxT 0
ν(η, x⃗).

The conservation law ∂µT
µ
ν = 0 implies

∂0T
0
ν + ∂iT

i
ν = 0,

where i = 1, . . . , d.
Now integrate over all space:

d

dη
Qν(η) =

d

dη

∫
ddxT 0

ν = −
∫

ddx ∂iT
i
ν .

Applying the divergence theorem,∫
ddx ∂iT

i
ν =

∮
S∞

dSi T
i
ν .

If the fields fall off sufficiently fast at spatial infinity (so that the surface term van-
ishes), we obtain

d

dη
Qν(η) = 0.

Thus Qν is conserved in time. Explicitly:

• For ν = 0,

Q0 =

∫
ddxT 0

0 ≡ H,

the Hamiltonian (energy).

• For ν = i,

Qi =

∫
ddxT 0

i,

the conserved spatial momentum.

Hence the divergence theorem provides the link between the local conservation equa-
tion ∂µT

µ
ν = 0 and the global conservation of the Hamiltonian and momentum.
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3 Hamiltonians in de Sitter Space

3.1 Metric and Lagrangian

In d+ 1 dimensional de Sitter space in conformal coordinates:

ds2 = a(η)2
(
−dη2 + dx⃗2

)
, a(η) = − 1

Hη
, η < 0.

For a scalar with potential V (ϕ) = 1
2
m2ϕ2 + λ

4!
ϕ4, the action is

S =

∫
dη ddxL,

with

L =
1

2
ad−1

[
(∂ηϕ)

2 − (∇ϕ)2
]
− 1

2
ad+1m2ϕ2 − λ

4!
ad+1ϕ4.

3.2 Field Redefinition

Define the rescaled field
χ(η, x⃗) = a

d−1
2 ϕ(η, x⃗).

Then

∂ηϕ = a−
d−1
2

(
∂ηχ− d− 1

2

a′

a
χ

)
.

3.3 From ϕ to χ = a
d−1
2 ϕ: detailed algebra, IBP, and boundary

terms

Start from the scalar action in conformal coordinates (d spatial dimensions):

S =

∫
dη ddxL, (1)

L =
1

2
ad−1

[
(∂ηϕ)

2 − (∇ϕ)2
]
− 1

2
ad+1m2ϕ2 − λ

4!
ad+1ϕ4, (2)

with a(η) the scale factor, primes denoting ∂η, and ∇ the spatial gradient.
Define the rescaled field

χ(η,x) ≡ a
d−1
2 (η)ϕ(η,x) ⇐⇒ ϕ = a−

d−1
2 χ. (3)

Then

∂ηϕ = a−
d−1
2

(
χ′ − d− 1

2

a′

a
χ

)
, (4)

∇ϕ = a−
d−1
2 ∇χ. (5)

Insert into (2). The kinetic and gradient pieces become

1

2
ad−1(∂ηϕ)

2 =
1

2

(
χ′ − d−1

2
a′

a
χ
)2

=
1

2
(χ′)2 − d− 1

2

a′

a
χχ′ +

(d− 1)2

8

a′2

a2
χ2, (6)

−1

2
ad−1(∇ϕ)2 = −1

2
(∇χ)2. (7)
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The potential terms become

−1

2
ad+1m2ϕ2 = −1

2
m2a2χ2, (8)

− λ

4!
ad+1ϕ4 = − λ

4!
a−(d−3)χ4, (9)

since ϕ2 = a−(d−1)χ2 and ϕ4 = a−2(d−1)χ4.

Integration by parts (IBP). The mixed term can be written as a total η-derivative
plus a bulk piece:

−d− 1

2

a′

a
χχ′ = −d− 1

4

a′

a
∂η(χ

2) = +
d− 1

4
∂η

(a′
a

)
χ2 − d− 1

4
∂η

[a′
a
χ2

]
. (10)

Using ∂η
(
a′

a

)
= a′′

a
− a′2

a2
, the Lagrangian density becomes, up to a total η-derivative,

L ≃ 1

2
(χ′)2 − 1

2
(∇χ)2 − 1

2
m2a2χ2 +

[
d− 1

4

a′′

a
+

(d− 1)(d− 3)

8

a′2

a2

]
χ2 − λ

4!
a−(d−3)χ4,

(11)

where “≃” indicates equality modulo the total derivative −d−1
4

∂η
[
a′

a
χ2

]
.

It is often convenient to collect the time-dependent mass term as

L ≃ 1

2
(χ′)2 − 1

2
(∇χ)2 − 1

2
µ2(η)χ2 − λ

4!
a−(d−3)χ4, (12)

µ2(η) ≡ m2a2 −
[d− 1

2

a′′

a
+

(d− 1)(d− 3)

4

a′2

a2

]
. (13)

Justification for dropping the total derivative. The difference between L and L̃
that omits −d−1

4
∂η[(a

′/a)χ2] is a boundary term in the action:

∆S = −d− 1

4

∫
ddx

[a′
a
χ2

]η2
η1
.

It does not affect the Euler–Lagrange equations. In canonical language, adding a total
time derivative generates a (possibly time-dependent) canonical transformation and leaves
the physics (equal-time commutators, evolution, S-matrix/in-in correlators) unchanged.
Practically, the boundary term vanishes if: (i) fields fall off at the temporal endpoints,
(ii) endpoints are fixed in the variational problem, (iii) one works in a finite box with
appropriate boundary conditions and then takes the large-box limit, or (iv) in the in-in
formalism the endcaps cancel.

De Sitter specialization. For de Sitter with flat slicing, a(η) = −1/(Hη), η < 0, one
has a′′

a
= 2

η2
, a′2

a2
= 1

η2
. Then

µ2(η) = m2a2−d2 − 1

4 η2
, ⇒ L ≃ 1

2
(χ′)2−1

2
(∇χ)2−1

2

[
m2a2−d2 − 1

4 η2

]
χ2− λ

4!
a−(d−3)χ4.

(14)
For d = 3 (i.e. 3 + 1 dimensions), this reduces to the familiar µ2(η) = m2a2 − 2

η2
.
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Hamiltonian density for λϕ4. The canonical momentum for χ is πχ = ∂ηχ, and the
Hamiltonian density reads

H =
1

2
π2
χ+

1

2
(∇χ)2+

1

2
µ2(η)χ2+

λ

4!
a−(d−3)χ4, µ2(η) as in (13) (or (14) in dS). (15)

This makes explicit the time dependence (and hence non-conservation) of H through
a(η), while keeping the quartic interaction as a simple local χ4 with an effective prefactor
a−(d−3).

3.4 Remarks

• In flat space limit (H → 0, a → 1), we recover the usual Hamiltonian for a λϕ4

scalar theory.

• The Hamiltonian depends explicitly on η via a(η), hence it is not conserved.

3.5 Flat-space limit H → 0 in d = 3: recovery of λϕ4

Recall from the χ–rescaled theory (after the IBP) that for general d,

Hχ(η,x) =
1

2
π2
χ +

1

2
(∇χ)2 +

1

2
µ2(η)χ2 +

λ

4!
a−(d−3) χ4, πχ ≡ ∂ηχ, (16)

with

µ2(η) = m2a2 −
[d− 1

2

a′′

a
+

(d− 1)(d− 3)

4

(a′
a

)2]
, χ = a

d−1
2 ϕ. (17)

In d = 3 this simplifies to

Hχ =
1

2
π2
χ +

1

2
(∇χ)2 +

1

2
(m2a2 − a′′

a
)χ2 +

λ

4!
χ4, χ = aϕ (18)

i.e. the quartic interaction carries no scale-factor and all explicit time dependence sits in
the effective mass term.

De Sitter and the H → 0 limit. For exact dS in conformal time, a(η) = −1/(Hη)
so that a′′/a = 2/η2. To take the flat-space limit, it is convenient to keep physical time t
fixed while sending H → 0. Since dη = dt/a, one has η ≃ − 1

H
+ t+O(H), whence

a(η) =
1

−Hη
= 1 +O(H),

a′′

a
=

2

η2
= 2H2 +O(H3t). (19)

Therefore,

m2a2 → m2,
a′′

a
→ 0, χ = aϕ → ϕ, πχ = ∂ηχ → ∂tϕ, (20)

where in the last step we used that η → t as a → 1.

Result. Taking H → 0 in (18) yields

Hflat(x) =
1

2
π2
ϕ +

1

2
(∇ϕ)2 +

1

2
m2ϕ2 +

λ

4!
ϕ4, πϕ = ∂tϕ, (21)

which is precisely the standard flat-space Hamiltonian density for a real scalar with λϕ4

interaction in 3 + 1 dimensions.
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Remark (small-H corrections). Keeping the leading H-dependence,

m2a2 = m2
(
1 + 2Ht+O(H2)

)
,

a′′

a
= 2H2 +O(H3t),

so the effective mass squared in d = 3 is

µ2(η) = m2 + 2m2Ht− 2H2 + · · · ,

i.e. the first deviation from flat space appears as a slowly varying (and weak) time-
dependent mass term. From a Hamiltonian-simulation perspective, this means one can
use a flat-space λϕ4 lattice Hamiltonian with a mild, explicitly known time-dependent
mass schedule.
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1 Pauli matrices (reference)

The single–qubit Pauli operators are

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
.

They are Hermitian and unitary, with X2 = Y 2 = Z2 = I and trX = trY =
trZ = 0. Let σ1 = X,σ2 = Y, σ3 = Z. Their algebra is

σiσj = δijI + i
∑
k

εijkσk, [σi, σj ] = 2i
∑
k

εijkσk, {σi, σj} = 2δijI.
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Eigenstates. Z-basis (computational) eigenstates: |0⟩ , |1⟩ with Z |0⟩ =
+ |0⟩, Z |1⟩ = − |1⟩. X-basis: |±⟩ = (|0⟩ ± |1⟩)/

√
2, so X |±⟩ = ± |±⟩.

Y -basis: |y±⟩ = (|0⟩ ± i |1⟩)/
√
2, so Y |y±⟩ = ± |y±⟩.

Rotations (used throughout). For axis n ∈ {x, y, z},

Rn(θ) = exp

(
− iθ

2
σn

)
,

e.g. Rz(θ) =

[
e−iθ/2 0

0 eiθ/2

]
, Rx(θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
, Ry(θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
.

(Useful identities: HZH = X, HXH = Z, SXS† = Y , with H the
Hadamard and S = diag(1, i).)

Raising/Lowering operators. σ± = 1
2(X ± iY ) satisfy σ+ |0⟩ = |1⟩,

σ− |1⟩ = |0⟩, and Z = σ+σ− − σ−σ+.

2 Quantum circuit warm-up

Computational basis (terminology & conventions)

We use Dirac notation. For one qubit, the computational basis is

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
,

the eigenstates of Z with Z |0⟩ = + |0⟩ and Z |1⟩ = − |1⟩. An n-qubit register
has basis states {

|x1x2 · · ·xn⟩
∣∣ xj ∈ {0, 1}

}
,

where |x1x2 · · ·xn⟩ = |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩. Convention (matches our
circuits): the ket is written top wire to bottom wire, left to right, so the
uppermost wire is x1. For two qubits, the basis is {|00⟩ , |01⟩ , |10⟩ , |11⟩}.
We sometimes label a bitstring x = (x1, . . . , xn) by the integer

bin(x) =

n∑
j=1

xj 2
n−j (MSB on top),

so |10⟩ = |x1x2⟩ corresponds to bin = 2. A general pure state is a superpo-
sition

|ψ⟩ =
∑

x∈{0,1}n
αx |x⟩ ,

∑
x

|αx|2 = 1.
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A projective measurement in the computational (“Z”) basis returns an out-
come x with probability |αx|2 and collapses the post-measurement state to
|x⟩. Remark. Other common bases are obtained by unitary changes of basis,
e.g. the X-basis {|+⟩ , |−⟩} with |±⟩ = (|0⟩ ± |1⟩)/

√
2 = H |0/1⟩.

2.1 Single-qubit Hadamard

Starting from |0⟩, the Hadamard gate prepares an equal superposition

|0⟩ H−−→ |0⟩+ |1⟩√
2

.

|0⟩ H
|0⟩+ |1⟩√

2

Figure 1: Single-qubit Hadamard: |0⟩ 7→ (|0⟩+ |1⟩)/
√
2.

2.2 Two-qubit Bell pair (|Φ+⟩)

Apply H on the first qubit and then a controlled-NOT (CNOT) with the
first as control:

|00⟩ H⊗I−−−→ |00⟩+ |10⟩√
2

CNOT−−−−→ |00⟩+ |11⟩√
2

≡ |Φ+⟩ .

|0⟩ H • |00⟩+ |11⟩√
2

|0⟩

Figure 2: Bell state preparation: H on the first qubit followed by CNOT
yields |Φ+⟩ = (|00⟩+ |11⟩)/

√
2.

About the CNOT gate. The controlled-NOT (CNOT) is a two–qubit
gate that flips (applies X to) the target qubit if and only if the control qubit
is |1⟩. As an operator,

CNOT = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X,
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so its action on the computational basis is

|00⟩ 7→ |00⟩ , |01⟩ 7→ |01⟩ , |10⟩ 7→ |11⟩ , |11⟩ 7→ |10⟩ .

In our circuit of Fig. 2 the upper wire is the control and the lower wire is
the target (Qcircuit notation: \ctrl{1} above \targ{}). Applying H on
the control prepares 1√

2
(|0⟩ + |1⟩) ⊗ |0⟩. The subsequent CNOT correlates

the target with the control,

CNOT
(

1√
2
(|0⟩+ |1⟩)⊗ |0⟩

)
= 1√

2

(
|00⟩+ |11⟩

)
≡ |Φ+⟩ ,

thereby creating entanglement from a product state. (Equivalently: in bit
language, the target becomes t⊕ c where c is the control bit.)

3 Two baby examples of Hamiltonian simulation

3.1 Single-qubit precession: H = ω
2
Z

The time evolution is

U(t) = e−iHt = e−i(ωt/2)Z ≡ Rz(ωt).

A minimal circuit that prepares |+⟩, evolves for time t, and rotates back to
read out in Z is:

|0⟩ H Rz(ωt) H

Figure 3: Exact simulation of H = ω
2Z: the middle gate is U(t) = Rz(ωt).

Measuring Z after H RzH gives Pr[m = 0] = cos2(ωt/2).

This is the simplest Hamiltonian simulation: a single parametrized rotation
exactly implements e−iHt. The second Hadamard is not needed for the time
evolution. It is there to make the phase readout possible (q for students:
why?).

3.2 Worked derivation: single-qubit precession circuit

Consider H = ω
2 Z with Z = diag(1,−1). The time evolution is

U(t) = e−iHt = e−i(ωt/2)Z ≡ Rz(ωt), Rz(θ) =

[
e−iθ/2 0

0 eiθ/2

]
.
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The circuit of Fig. 3 applies H, then Rz(θ) with θ = ωt, then H again,
followed by a Z-basis measurement.

State-vector calculation.

|ψ0⟩ = |0⟩ , |ψ1⟩ = H |0⟩ = 1√
2
(|0⟩+ |1⟩) ≡ |+⟩ .

Apply Rz(θ):

|ψ2⟩ = Rz(θ) |+⟩ = 1√
2

(
e−iθ/2 |0⟩+ eiθ/2 |1⟩

)
.

Apply the final H:

|ψ3⟩ = H |ψ2⟩ =
1

2

[
(e−iθ/2 + eiθ/2) |0⟩+ (e−iθ/2 − eiθ/2) |1⟩

]
= cos

θ

2
|0⟩−i sinθ

2
|1⟩ .

Hence the Z-measurement outcomes satisfy

Pr[m = 0] =
∣∣⟨0⟩ψ3

∣∣2 = cos2
θ

2
, Pr[m = 1] = sin2

θ

2
,

and the expectation ⟨Z⟩ = Pr[0]− Pr[1] = cos θ.

Operator identity (one-line check). Conjugation by H swaps Z↔X:

H Rz(θ)H = H e−iθZ/2H = e−iθ(HZH)/2 = e−iθX/2 ≡ Rx(θ).

Thus the circuit implements a rotation about the x-axis by angle θ on |0⟩,
and a Z-basis measurement yields the same probabilities as above. Geomet-
rically on the Bloch sphere: start at the north pole, rotate about x by θ,
then read out Z.

3.3 Two-qubit Ising coupling: H = J
2
Z ⊗ Z (exact with a

CNOT sandwich)

We want U(t) = e−i(Jt/2)Z⊗Z . Using the identity

CNOT
(
I ⊗Rz(2θ)

)
CNOT = e−iθ Z⊗Z ,

we set θ = Jt
2 to get the desired evolution:
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|ψ⟩ • •

|ϕ⟩ Rz(Jt)

Figure 4: Exact simulation of H = J
2Z ⊗ Z: choose Rz(Jt) on the target

sandwiched by CNOTs. No Trotter error.

3.4 Worked derivation: two-qubit Ising coupling via a CNOT
sandwich

Consider the two-qubit Ising Hamiltonian

H =
J

2
Z ⊗ Z =⇒ U(t) = e−iHt = e−i(Jt/2)Z⊗Z .

In the computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}, Z⊗Z has eigenvalues +1
on even parity (|00⟩ , |11⟩) and −1 on odd parity (|01⟩ , |10⟩), hence

U(t) = diag
(
e−iϕ, e+iϕ, e+iϕ, e−iϕ

)
, ϕ ≡ Jt

2
.

Now we have at our disposal single qubit gates and CNOT gate. Using
these we need to make U(t).

Circuit and basis-state calculation. The circuit is

CNOT1→2

(
I ⊗Rz(Jt)

)
CNOT1→2,

with the first qubit as control and the second as target. Act on a basis state
|ab⟩ with a, b ∈ {0, 1}:

1. First CNOT: |ab⟩ 7→ |a, b⊕ a⟩.
2. Phase on target:

(I ⊗Rz(Jt)) |a, b⊕ a⟩ = e−iJt
2
(−1) b⊕a |a, b⊕ a⟩ .

3. Second CNOT: |a, b⊕ a⟩ 7→ |ab⟩.
Net effect:

|ab⟩ 7−→ e−iJt
2
(−1) b⊕a |ab⟩ =

{
e−iϕ |ab⟩ , a = b (even parity),

e+iϕ |ab⟩ , a ̸= b (odd parity),

which coincides exactly with U(t) = e−i(Jt/2)Z⊗Z .

6



Operator identity (one-line check). Using CNOT conjugation rules,

CNOT (I ⊗ Z) CNOT = Z ⊗ Z,

so

CNOT
(
I⊗Rz(θ)

)
CNOT = CNOT exp

(
−iθ

2
(I⊗Z)

)
CNOT = exp

(
−iθ

2
Z⊗Z

)
.

Setting θ = Jt yields U(t).

Example: evolution of |++⟩. With |+⟩ = (|0⟩+ |1⟩)/
√
2,

U(t) |++⟩ = 1

2

(
e−iϕ(|00⟩+|11⟩)+e+iϕ(|01⟩+|10⟩)

)
= cosϕ |++⟩ − i sinϕ |−−⟩ .

Thus an X-basis measurement on both qubits (apply H on each, then mea-
sure in Z) gives

Pr[++] = cos2 ϕ, Pr[−−] = sin2 ϕ, Pr[+−] = Pr[−+] = 0,

displaying coherent oscillations generated by H = J
2Z ⊗ Z.

Remarks. (i) These two primitives are the core building blocks for many
local lattice models: single-site Z terms and pairwise ZZ couplings. (ii) For
a genuinely noncommuting single-qubit Hamiltonian, e.g. H = aX+bZ, one
may use first/second-order product formulas,

e−it(aX+bZ) ≈
(
Rx(2a t/r)Rz(2b t/r)

)r
or

(
Rx(a t/r)Rz(2b t/r)Rx(a t/r)

)r
,

with error O(t2/r) and O(t3/r2) respectively since [X,Z] = 2iY . We’ll use
these same ideas at scale with locality and Suzuki order 2k later on.

4 A baby example: why higher–order Suzuki–Trotter
helps

We compare first–order (Lie–Trotter) and second–order (Strang) product
formulas on the noncommuting single–qubit Hamiltonian

H = aX + b Z, A := aX, B := bZ,

so [A,B] = 2iab Y ̸= 0. One Trotter step uses time slice λ = t/r.
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One-slice circuits (Qcircuit)

e−iAλ e−iBλ e−iAλ/2 e−iBλ e−iAλ/2

Left: first order e−iAλe−iBλ. Right: second order (Strang) e−iAλ/2e−iBλe−iAλ/2.
(Here each exponential is a single-qubit rotation: e−iaXλ = Rx(2aλ), e

−ibZλ =
Rz(2bλ).)

We reached till here!

Error bounds with explicit constants

Using standard BCH error bounds:

First order (global error).∥∥∥e−it(A+B) −
(
e−iAt/re−iBt/r

)r∥∥∥ ≤ t2

2r
∥[A,B]∥ =

t2

2r
∥2iab Y ∥ =

|ab| t2

r
.

Second order / Strang (global error).∥∥∥e−it(A+B) −
(
S2(t/r)

)r∥∥∥ ≤ t3

r2
Γ3, Γ3 =

1

12
∥ [A, [A,B]] + 2[B, [A,B]] ∥ .

For A = aX, B = bZ,

[A,B] = 2iab Y, [A, [A,B]] = −4a2b Z, [B, [A,B]] = +4ab2X,

so

Γ3 =
1

12

∥∥ 8ab2X − 4a2bZ
∥∥ =

|ab|
3

√
a2 + 4b2 .
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In lecture 8, UB showed how to install qiskit and how the circuits dis-
cussed in lecture 7 could be implemented.

This lecture and the next one are based on [1, 2, 3, 4]. In particular, for a
readable account of the gate optimisation problem, start with [1]. However,
he does not optimise w.r.t. the Trotter order which is done in [2, 3]. The
reinterpretation in terms of an AdS warped volume can be found in [4].

1 Review of lecture 7

One-slice circuits (Qcircuit)

e−iAλ e−iBλ e−iAλ/2 e−iBλ e−iAλ/2

Left: first order e−iAλe−iBλ. Right: second order (Strang) 1 e−iAλ/2e−iBλe−iAλ/2.
(Here each exponential is a single-qubit rotation: e−iaXλ = Rx(2aλ), e

−ibZλ =
Rz(2bλ).)

1.1 Error bounds with explicit constants

Using standard BCH error bounds:

First order (global error).∥∥∥e−it(A+B) −
(
e−iAt/re−iBt/r

)r∥∥∥ ≥ t2

2r
∥[A,B]∥ =

t2

2r
∥2iab Y ∥ =

|ab| t2

r
.

Second order / Strang (global error).∥∥∥e−it(A+B) −
(
S2(t/r)

)r∥∥∥ ≥ t3

r2
Γ3, Γ3 =

1

12
∥ [A, [A,B]] + 2[B, [A,B]] ∥ .

1The symmetric product

S2(∆) := eA∆/2 eB∆ eA∆/2

is widely called Strang splitting after Gilbert Strang, who analyzed such operator–splitting
schemes for PDEs and semigroups (see G. Strang, SIAM J. Numer. Anal. 5 (1968)).
In quantum simulation it is also called the second–order (or time–symmetric) Trotter
step. The first–order (Lie–Trotter) step is eA∆eB∆ (Trotter 1959); higher–order symmetric
compositions were later systematized by Suzuki.
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For A = aX, B = −bZ,

[A,B] = 2iab Y, [A, [A,B]] = −4a2b Z, [B, [A,B]] = +4ab2X,

so

Γ3 =
1

12

∥∥ 8ab2X − 4a2bZ
∥∥ =

|ab|
3

√
a2 + 4b2 .

Segments r and gate counts N for a target tolerance ε

Let L1 = 2 gates per first–order slice, L2 = 3 for Strang. With the bounds
above,

rLT ≥ |ab| t2

ε
, NLT = L1 rLT = 2 rLT

rStrang ≥
√

Γ3 t
3

ε
, NStrang = L2 rStrang = 3 rStrang

where Γ3 =
|ab|
3

√
a2 + 4b2.

Numerical toy (dramatic savings even at modest accuracy)

Take a = b = 1, t = 1, ε = 10−3. Then Γ3 =
1
3

√
5 ≈ 0.745.

rLT ≥ 103, NLT ≈ 2,000 rStrang ≥
√

0.745/10−3 ≈ 27.3 ⇒ NStrang ≈ 82–84.

For a longer evolution t = 10 (same ε): rLT ≥ 105 ⇒ NLT ∼ 2 × 105, while
rStrang≥

√
0.745× 103/10−3 ≈ 864 ⇒ NStrang∼2.6× 103.

Operator norm (spectral norm) used in these notes

For a linear operator (matrix) A acting on a finite-dimensional Hilbert space
with the usual Euclidean (ℓ2) norm, the operator norm (a.k.a. spectral norm)
is the induced norm

∥A∥ := sup
∥v∥=1

∥Av∥.

Equivalently, ∥A∥ is the largest singular value of A:

∥A∥ =
√
λmax(A†A).

If A is normal (AA† = A†A), then ∥A∥ equals the largest absolute value of
its eigenvalues. In particular, for Hermitian A,

∥A∥ = max
λ∈spec(A)

|λ|.
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Basic properties.

• Unitary invariance: ∥UAV ∥ = ∥A∥ for all unitaries U, V .

• Submultiplicativity: ∥AB∥ ≤ ∥A∥ ∥B∥ and ∥A+B∥ ≤ ∥A∥+ ∥B∥.

• Commutator bound: ∥[A,B]∥ ≤ 2 ∥A∥ ∥B∥.

Examples.

• Pauli matrices satisfy ∥X∥ = ∥Y ∥ = ∥Z∥ = 1 (eigenvalues ±1).

• If A = αX + βZ with real α, β, then

A2 = (α2 + β2) I ⇒ ∥A∥ =
√

α2 + β2.

(Used above when evaluating ∥4a2b Z − 8ab2X∥.)

Computing Γ3 for A = aX, B = bZ

Recall the Strang (second–order) global error bound∥∥∥e−it(A+B) −
(
S2(t/r)

)r∥∥∥ ≤ t3

r2
Γ3, Γ3 =

1

12
∥ [A, [A,B]] + 2[B, [A,B]] ∥ .

We use Pauli commutators

[X,Y ] = 2iZ, [Y,Z] = 2iX, [Z,X] = 2iY ⇒ [X,Z] = −2iY, [Z, Y ] = −2iX.

Step 1: the first commutator.

[A,B] = [aX, bZ] = ab [X,Z] = ab (−2iY ) = − 2iab Y.

Step 2: the nested commutators.

[A, [A,B]] = [aX, −2iab Y ] = a(−2iab) [X,Y ] = (−2ia2b) (2iZ) = 4a2b Z,

[B, [A,B]] = [bZ, −2iab Y ] = b(−2iab) [Z, Y ] = (−2iab2) (−2iX) = −4ab2X.

Step 3: assemble and take the operator norm.

[A, [A,B]] + 2[B, [A,B]] = 4a2b Z + 2(−4ab2X) = 4a2b Z − 8ab2X.

For any real α, β, ∥αX + βZ∥ =
√

α2 + β2 since (αX + βZ)2 = (α2+ β2) I.
Hence

∥ [A, [A,B]] + 2[B, [A,B]] ∥ =
√

(4a2b)2 + (−8ab2)2 = 4|ab|
√
a2 + 4b2.
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Step 4: the constant Γ3.

Γ3 =
1

12
∥ [A, [A,B]] + 2[B, [A,B]] ∥ =

|ab|
3

√
a2 + 4b2

Sign note. If you instead take [X,Z] = +2iY (equivalently swap the
order to [Z,X] = 2iY ), intermediate signs flip but the final norm—and thus
Γ3—is unchanged.

2 Gate optimisation–Warm-up

2.1 Models of locality and basic parameters

We decompose a time–independent Hamiltonian as

H =
M∑
j=1

Hj , H†j = Hj .

We will use one of the following locality models (both common in the liter-
ature):

(L1) k-local with bounded interaction degree. Each Hj acts nontriv-
ially on at most k qubits (constant k), and each qubit belongs to at most χ
terms (constant χ). Let

h ≡ max
j

∥Hj∥, β ≡
m∑
j=1

∥Hj∥ ≤ mh.

2.1.1 Implications

For concreteness, let us have in mind the Hamiltonian describing spin-spin
interactions. An example of k-local, with k = 2 is of the kind

H = J1σ1 ⊗ σ2 ⊗ I ⊗ I · · · ⊗ I + J2σ1 ⊗ I ⊗ I ⊗ I ⊗ σ2 ⊗ I · · ·+ · · · (1)
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q1
e−ih12∆

•

q2

q3
q4

q5 U15

Figure 1: k-local with k = 2: two-qubit interactions are allowed between
any pair. Left column shows a nearest-neighbour two-qubit unitary on (1, 2).
Right column shows a long-range two-qubit interaction between (1, 5) drawn
as a controlled-U15 to emphasize “qubit 1 talks to qubit 5”. No geometry
constraint is imposed; only the # of qubits per term (≤ 2) matters.

(L2) Geometric (spatial) locality on a d-dimensional lattice. Each
Hj is supported on a ball of radius R = O(1) (finite range), and the interac-
tion graph has uniformly bounded coordination number Z = O(1). With V
the number of lattice sites (spatial volume), we again have β ≡

∑
j ∥Hj∥ =

O(V h).

In both (L1) and (L2), nested commutators are controlled by the local
degree: there exist constants ck,χ or cR,Z (independent of m,V ) such that
the norm of any (2ℓ+1)-fold nested commutator of the Hj is bounded by∥∥[Hj2ℓ+1

, [Hj2ℓ , . . . , [Hj2 , Hj1 ] . . . ]]
∥∥ ≤ Cℓ ( cloc h )

2ℓ+1,

where cloc = ck,χ in (L1) and cloc = cR,Z in (L2).

2.1.2 Implications

For concreteness, let us have in mind the Hamiltonian describing spin-spin
interactions. An example of g-local, with g = 2 is of the kind

H = J1σ1 ⊗ σ2 ⊗ I ⊗ I · · · ⊗ I + J2I ⊗ σ1 ⊗ σ2 ⊗ I · · · ⊗ I + · · · (2)

There are two reasons why this geometric locality or spatial locality is
important:

1. Some of the most important Hamiltonians in physics have this property
called nearest neighbour interaction. In some sense, this encapsulates
the starting point of most interesting physical scenarios.
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2. In what follows, we will somehow have to sneak in the spatial vol-
ume V . When the Hamiltonian is g-local, the number of terms in
the Hamiltonian (in our notation above it is M) is the proxy for V .
Roughly speaking, since the each term in the Hamiltonian “talks” to
only O(1) terms in the Hamiltonian, and we are discussing a lattice of
spins, we can think of the total number of terms as some kind of esti-
mate of the spatial volume (in the spin-system example, this volume
is 1-dimensional).

q1
e−ih12∆/2 e−ih12∆/2

q2
e−ih23∆

q3

q4
e−ih45∆/2 e−ih45∆/2

q5

Figure 2: Geometric (1D nearest-neighbour) locality: only adjacent pairs
interact. Illustrated in a Strang slice: odd bonds (1, 2) and (4, 5) (left), then
even bond (2, 3) (middle), then odd bonds again (right). Disjoint nearest-
neighbour gates in each column commute and can run in parallel.

3 Warm-up gate counting: from Lie–Trotter to
Strang, then higher order

Setup. Let H =
∑M

a=1Ha be k-local with bounded term norms ∥Ha∥∞ ≤
h (constant h), and in the geometrically local case we have M = O(n) =
O(V ) (spatial volume). We target a simulation accuracy ∥Ũ(t)−U(t)∥∞ < δ
for U(t) = e−iHt.

3.1 Lie–Trotter (LT): e−i(HA+HB)∆ ≈ e−iHA∆e−iHB∆

For one time slice of width ∆, expanding shows

e−iH∆ −
∏
a

e−iHa∆ = 1
2 ∆

2
∑
a<b

[Ha, Hb] + h.o.

7



so in the geometrically local case (each term fails to commute with only a
constant number of others) the single-slice error scales as∥∥e−iH∆ −

∏
a e
−iHa∆

∥∥ = O(M ∆2h2),

i.e. the per-gate error is O(∆2h2). With r = t/∆ slices, total gates L ∼ Mr,
we require (Mt/∆) ·∆2h2 ≈ δ so

∆ = O
( δ

h2Mt

)
, L = O

(h2(Mt)2

δ

)
.

In the geometrically local case (M = O(V ) and constant h),

L = O
(
Ω2 polylog Ω

)
, Ω ≡ V t.

(the polylog comes from Solovay–Kitaev gate synthesis).

3.2 Strang (second order): e−iH∆ ≈
∏→

a e−iHa∆/2
∏←

a e−iHa∆/2

Using the symmetric (ascending then descending) product, the single-slice
error improves to ∥e−iH∆ − symmetric product∥ = O(M ∆3h3) so the per-
gate error is O(∆3h3). Balancing (Mt/∆) ·∆3h3 ≈ δ gives

∆ ≈
( δ

h3Mt

)1/2
, L ≈ Mt

∆
= O

(h3/2(Mt)3/2

δ1/2

)
,

and hence, in the geometrically local case,

L = O
(
Ω3/2 polylog Ω

)
.

This matches Preskill’s Eq. (6.204).

3.3 Higher order (pth order Suzuki)

More generally one may achieve a single-slice error ∥e−iH∆ − approx∥ =
O
(
cpM (h∆)p+1

)
for any p (with cp depending on p), at the cost of a larger

per-slice pattern. Then

Mt

∆
·(h∆)p+1 ∼ δ ⇒ ∆ ∼ δ1/p

h(p+1)/p(Mt)1/p
, L ∼ Mt

∆
∼ h(p+1)/p(Mt)(p+1)/p

δ1/p
.

With M = O(V ) and constant h,

L = O
(
Ω

1+ 1
p polylog Ω

)
, Ω = V t,

and as p → ∞, L approaches linear in Ω (up to constants that grow with
p).
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What locality buys you (at a glance). Geometric locality implies (i)
M = O(V ), and (ii) only O(M) commutators are nonzero in the LT/Strang
error; together these yield the Ω-scalings above

Where next

In the next lecture, we will start with higher order Suzuki-Trotter. We will
see that in section 3.3 above, we have failed to take into account a very
important p dependent factor that will play a crucial role.
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A The Solovay–Kitaev theorem

• Setting. Let G ⊂ SU(2) (or SU(2n)) be a finite, universal gate set
that is (i) closed under inverses and (ii) generates a dense subgroup.
(Canonical example: single–qubit Clifford+T.)

• Statement. For any target unitary U and any accuracy ε ∈ (0, 1),
there exists a circuit Ũ over G such that

∥U − Ũ∥ ≤ ε and L(Ũ) = O
(
log c(1/ε)

)
,

where L(Ũ) is the number of gates from G and the constructive proof
gives c ≈ 3.97 (variants achieve different constants). Thus the gate
overhead is polylogarithmic in 1/ε.
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• Idea (one line). Build a coarse ε0-net (lookup table). To refine
an approximation, express a small correction C as a commutator C ≈
ABA−1B−1 so that errors shrink superlinearly under recursion; repeat
until the target ε is reached.

• Why it matters. It bridges continuous targets (e.g. rotations, Hamil-
tonian evolutions) and discrete universal gate sets with only a polylog(1/ε)
accuracy cost. This is why gate-count formulas often include a trailing
“polylog(1/ε)” factor.

• Caveats / refinements. Generic SK is constructive but can have
large constants. For specific sets/targets (e.g. Clifford+T single–qubit
Z rotations), number–theoretic compilers and meet-in-the-middle search
give tighter constants and/or asymptotics; in practice one often blends
SK-style recursion with such specialized methods.

B Ascending–descending form for Strang

One can derive the many–term symmetric product

S
(M)
2 (∆) =

(M−1∏
a=1

e−Ha ∆/2
)
e−HM ∆

( 1∏
a=M−1

e−Ha ∆/2
)

directly from the two–term Strang formula by a simple recursive/inductive
construction. To certify it is second order, you then use the standard
BCH/time–symmetry argument.

Derivation (induction using the two–term Strang). Let A(k) :=∑k
a=1Ha. For M ≥ 2,

e−(A
(M−1)+HM )∆ ≈ e−A

(M−1)∆/2 e−HM∆ e−A
(M−1)∆/2 (two–term Strang).

Now apply the same recipe to the factors e−A
(M−1)∆/2: by the induction hy-

pothesis, e−A
(M−1)∆/2 ≈ S

(M−1)
2 (∆/2) =

(∏M−1
a=1 e−Ha∆/2

)(∏1
a=M−1 e

−Ha∆/2
)
.

Plugging this on the left and right yields exactly the ascending–descending
product above. This closes the induction.
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The previous lecture and this one are based on [1, 2, 3, 4]. In particular,
for a readable account of the gate optimisation problem, start with [1].
However, he does not optimise w.r.t. the Trotter order which is done in [3].
The reinterpretation in terms of an AdS warped volume can be found in [4].

1 Higher order Suzuki-Trotter

This discussion will closely follow the time-independent discussions in [2]—
we will come back to the time dependent case later. For simplicity (but
w.l.o.g.) we will consider a 2 term Hamiltonian (the generalization to M
term will be obvious and indicated when the time comes). The Strang
formula was:

eλ(A+B) ≈ eλA/2eλBeλA/2 +O(λ3). (1)

Introduce the notation:

S2(λ) ≡ eλA/2eλBeλA/2 . (2)

Now notice that
S2(λ)S2(−λ) = I (3)

Then you can convince yourself (hw) that we can write:

S2(λ) = eλ(A+B)+R3λ3+R5λ5
, (4)

namely that only odd powers of λ will appear in the expression. Here R3,
R5 are remainder terms whose explicit expressions will not concern us. In
keeping with the form of eq.(2), we can ask if defining

T (λ) = S2(sλ)S2((1− 2s)λ)S2(sλ) , (5)

we can find s such that the R3 term in the resulting expression cancels. In
other words, the error can be pushed to one order higher. The splitting of
the λ in the arguments of S2 are such that the arguments add up to 1 while
having the form like eq.(2).

The RHS above (using Lie-Trotter in succession) is

eλ(A+B)+[2s3+(1−2s)3]λ3R3+O(λ5) , (6)

and so for the R3 term to vanish, we must have

2s3 + (1− 2s)3 = 0 , (7)
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whose only real root is
s ≈ 1.35 , (8)

which gives 1 − 2s = −1.7. Let us pause here and see what this means.
Using the form of T (λ) and this value of s, we find that we first evolve
1.35λ (which is bigger than λ, our final goal), then we come back −1.7λ or
in otherwords, we dip below λ = 0 by −0.35λ, and then finally we evolve
further by 1.35λ to reach our goal of λ. Now it is a bit worrying that we
evolved beyond our target and also needed to come back below our starting
point. This seems a bit unnatural (although may be fine mathematically).
So we will not adopt eq.(5). The next possibility is to try:

T4(λ) = S2(sλ)
2S2((1− 4s)λ)S2(sλ)

2 . (9)

Noting that T (λ)T (−λ) = I, and repeating the same steps as above, we
find:

T4(λ) = eλ(A+B)+[4s3+(1−4s)3]λ3R3+O(λ5) , (10)

so that the vanishing of the R3 term needs:

4s3 + (1− 4s)3 = 0 , (11)

whose only real root is
s ≈ 0.41 , (12)

so that 1 − 4s ≈ −.64. Now we see that eq.(9) means that we first evolve
2×0.41λ = 0, 82λ, then evolve back −0.64λ, which leaves us above λ > 0 and
finally we evolve 0.82λ to reach our goal. This time, we respect 0 < λ ≤ 1.
So we will continue with this.

We will now adopt the notation T4 ≡ S4. The next step is now obvious.
We use:

S6(λ) ≡ S4(s̄λ)
2S4((1− 4s̄)λ)S4(s̄λ)

2 . (13)

Here s̄’s equation will be determined by cancelling the R5 term. Repeating
the steps above, we will find

4s̄5 + (1− 4s̄)5 = 0 . (14)

Desipte being a quintic equation, again only 1 real root exists:

s̄ ≈ 0.37 . (15)
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These couple of exercises enables us to guess the recursion relation:

S2k(λ) ≡ S2k−2(s2kλ)
2S2k−2((1− 4s2k)λ)S2k(s2kλ)

2 . (16)

Here
4s2k−1

2k + (1− 4s2k)
2k−1 = 0 . (17)

Then the error here is O(λ2k+1). Example, k = 1 is the usual Strang formula
whose error is O(λ3).

2 AdS analogy

Figure 1: Suzuki–Trotter fractal with k = 1 at center. Blue edges/nodes:
four S2k−2(pkλ) children; red: one S2k−2((1− 4pk)λ).

Important: Now notice that for k = 1, we have 3 exponentials (for
the M component Hamiltonian it would be 2M − 1 ∼ O(M) exponentials).
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Then k = 2 there will be 3× 5, for k = 3, 3× 52 and for general k, we have
3× 5k−1 exponentials. Thus the number of gates grows exponentially with
k. This can be depicted using the following figure. The rationale behind
this figure is as follows. Imagine each gate occupies some finite volume. We
want to place the gates for general k in the manner depicted. Typically, a
real laboratory occupies a finite volume. As such, we need to keep the size
of the circles finite. Had we been allowed to make the circle as large as we
want, then the spacing between the gates on the circle could be whatever
we want. But on a finite circle, typically the spacing betweent the gates will
decrease. As such, the number of gates is a good measure of the size of the
circle.

Now we have an interesting analogy with anti de Sitter or hyperbolic
space. The metric of 3d AdS space is

ds2 = dr2 + e2r/L(−dt2 + dx2) . (18)

On a fixed time slice the metric is

ds2 = dr2 + e2r/L(dx2) . (19)

Here x is periodic (angular coordinate). Thus for r = r∗, the size of the
circle is

e2r∗/L . (20)

This is exactly what the quantum circuit figure is telling us! If k was propor-
tional to r, this would be quite suggestive. Let us make this more precise.

3 Optimizing k and AdS

Divide the simulation time interval into small pieces of size ∆. For each
step, we have now is the following:

||e∆
∑M

i=1 Hi − S2k(∆)|| ∝ h2k+1∆2k+1M 5k−1︸︷︷︸
≡ck

. (21)

The total number of steps is t/∆ so the total error is h2k+1∆2k+1ckMt/∆.
Equating this to a desired tolerance δ, we find:

h∆ =

(
δ

Mckht

) 1
2k

(22)
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Now the total number of exponentials is Mckt/∆. Writing V t ≡ Ω, we have

Nexp = Ωhck

(
Ωhck
δ

) 1
2k

= Ωh exp[
1

2k
ln

Ωh

δ
+ (1 +

1

2k
) ln ck] . (23)

We see that as k increases, the terms proportional to 1/k decrease but
there is also a term proportional to k ln 5 which increases. Thus there is a
competition, which will lead to a minimum/optimum number of gates for a
k = k∗. This is given by [set ∂k of the argument in the exponential to zero
and solve]:

k∗ =
1√
2
log5

Ωh

5δ
, (24)

and
Nopt ∝ Ωexp [2k∗ ln 5] . (25)

Now look at the solution for k∗. Keeping Ω, h fixed and dialing 0 < δ < ∞
enables us to scan ∞ > k∗ > 0. Thus, k∗ can be thought of as a coordinate,
corresponding to a given tolerance. The smaller this tolerance, the larger
the value of this coordinate. We can think of this as the radial coordinate of
AdS. Again notice that since the metric of AdS on a fixed time slice looks
like eq.(19), the volume of this slice is er/LV and time evolving gives the
total volume as er/LV t. This form is similar to what appears in Nopt. Now,
while this is suggestive of an emerging hyperbolic space, do be aware that we
are not claiming a case for AdS/CFT here—we do not know how to argue
for the presence of gravity in the bulk.

In the next lecture note, we will discuss the Quantum Fourier Transform.

A General (2m+1)-block Suzuki recursion (order
raise 2k−2 → 2k).

Let m ∈ N and set s := 2m+1 (number of subblocks per recursion). Given
an order-2k−2 integrator S2k−2(·), define

S2k(λ) =
[
S2k−2(pk λ)

]m
S2k−2

(
(1− 2mpk)λ

) [
S2k−2(pk λ)

]m
,

with the symmetric coefficient

pk =
1

2m− (2m)
1

2k−1

, 1− 2mpk = − (2m)
1

2k−1

2m− (2m)
1

2k−1

.
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Then S2k(λ)
−1 = S2k(−λ) (time symmetry), and the local error is

∥∥eHλ −
S2k(λ)

∥∥ = O(|λ| 2k+1).

Pattern length. Each order raise multiplies the per-slice pattern length
by s = 2m+1. For two-term splitting (base L2 = 3), this gives

L2k = 3 s k−1 = 3 (2m+1)k−1.
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This lecture and the next one are based on Nielsen and Chuang. I will
try to spell out the missing algebraic steps. QFT stands for Quantum Field
Theory in these lectures, so to distinguish this from the Quantum Fourier
Transform, I will put a hat on the latter. Q̂FT is one of the most important
algorithms/circuits. It enables Quantum Phase Estimation (QPE) which
will form an important step in analysing scattering in QFT.

Two key points to take note of:

1. Q̂FT does not speed up the classical task of computing the Fourier
Transform of classical data. You are expected to know/find out the
reasons behind this (they were briefly touched upon during the lec-
ture).

2. As mentioned Q̂FT enables phase estimation. Phase estimation is the
approximation of eigenvalues of a Unitary operator.

3. Let us say we are dealing with N = 2n number of classical data.
Then the Fast Fourier Transform (FFT) needs Θ(n2n) steps. The

Q̂FT needs Θ(n2) steps and hence has an exponential “advantage.”

But advantage over what? We mentioned above that Q̂FT cannot
be used to speed up the classical Fourier Transform. However, when
we try to simulate the QPE on a classical computer, we will need a
huge number of steps compared to the quantum counterpart. In this
sense, there is an advantage. In Shor’s algorithm for instance, QPE
plays an important role and hence a quantum computer will have an
advantage. The downside is that the number of error corrected qubits
and gates create a huge overhead and to get a real advantage, we will
need millions of qubits.

After discussing Q̂FT , we will discuss QPE followed by the Hadamard
test. With these tools, we will be almost ready to tackle some quantum field
theory problems on a quantum computer!

1 Definitions

Consider N classical data x0, x1, · · ·xN−1 ∈ C. Then the Discrete Fourier
Transform (DFT) is defined via:

yk ≡ 1√
N

N−1∑
j=0

xj exp

(
2πi

jk

N

)
. (1)
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The inverse DFT is given by:

xk =
1√
N

N−1∑
j=0

yj exp

(
−2πi

jk

N

)
. (2)

Q̂FT acts on the space of orthonormal states B = {|0⟩, |1⟩, · · · |N − 1⟩}
such that

Q̂FT |j⟩ = 1√
N

N−1∑
k=0

exp

(
2πi

jk

N

)
|k⟩ , (3)

where |j⟩ ∈ B. Equivalently we have

Q̂FT

N−1∑
j=0

xj |j⟩ =
N−1∑
j=0

yk|k⟩ , (4)

in other words, this spits out the DFT numbers yk defined above. The
inverse is given by

ÎQFT
N−1∑
j=0

yj |j⟩ =
N−1∑
j=0

xk|k⟩ , (5)

2 An important trick

Let us choose N = 2n and as computational basis the set |0⟩, · · · |2n − 1⟩.
Let |j⟩ be one of these states. We can write the binary representation of j
as:

j = j12
n−1 + j22

n−2 + · · ·+ jn2
0 . (6)

So we can write
|j⟩ = |j1j2 · · · jn⟩ . (7)

Further let us introduce the notation:

0.jℓjℓ+1 · · · jm ≡ jℓ2
−1 + jℓ+12

−2 + · · ·+ jm2m−ℓ+1 . (8)

Notice that
j

2n
= 0.j1j2 · · · jn . (9)

Using the definition of Q̂FT we have

Q̂FT |j1j2 · · · jn⟩ =
1

2n/2

2n−1∑
k=0

exp

(
2πij

k

2n

)
|k⟩ . (10)
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Now
k

2n
=

n∑
ℓ=1

kℓ2
−ℓ , (11)

where kℓ ∈ {0, 1}. Since the next step can get a bit confusing, let’s consider
an example with n = 2. Then we have:

Q̂FT |j⟩ = Q̂FT |j1j2⟩ =
1

2

3∑
k=0

exp

(
2πij

k

4

)
|k⟩

=
1

2
exp

(
2πij

0

4

)
|0⟩+ 1

2
exp

(
2πij

1

4

)
|1⟩+ 1

2
exp

(
2πij

2

4

)
|2⟩+ 1

2
exp

(
2πij

3

4

)
|3⟩ .

=
1

2
exp(2πij 0.00)|00⟩+ 1

2
exp(2πij 0.01)|01⟩

+
1

2
exp(2πij 0.10)|10⟩+ 1

2
exp(2πij 0.11)|11⟩

=
1

2

1∑
k1=0

1∑
k2=0

exp(2πij0.k1k2)|k1k2⟩ ,

=
1

2

1∑
k1=0

1∑
k2=0

exp

(
2πij

2∑
ℓ=1

kℓ2
−ℓ

)
|k1k2⟩ ,

=
1

2

1∑
k1=0

1∑
k2=0

⊗ exp
(
2πijkℓ2

−ℓ
)
|kℓ⟩ ,

=
1

2
⊗2

ℓ=1

[
|0⟩+ exp

(
2πij

1

2ℓ

)
|1⟩
]

(12)

It is now clear that the generalization to any n of the last step is:

Q̂FT |j1 · · · jn⟩ =
1

2n/2
⊗n

ℓ=1

[
|0⟩+ exp

(
2πij

1

2ℓ

)
|1⟩
]
. (13)

Expanding on this product, we have

1

2n/2
[|0⟩+exp

(
2πi

j

2

)
|1⟩]⊗ [|0⟩+exp

(
2πi

j

4

)
|1⟩] · · ·⊗ [|0⟩+exp

(
2πi

j

2n

)
|1⟩]

(14)
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Now notice

exp

(
2πi

j

2n

)
= exp(2πi0.j1 . . . jn) ,

exp

(
2πi

j

2n−1

)
= exp(2πi[j1 + j2/2 + j3/4 + · · · ]) = exp(2πi0.j2 . . . jn) ,

... (15)

exp

(
2πi

j

2

)
= exp(2πi0.jn) , (16)

giving the final form:

Q̂FT |j⟩ = 1

2n/2
[|0⟩+exp(2πi0.jn)|1⟩][|0⟩+exp(2πi0.jn−1jn)|1⟩] · · · [|0⟩+exp(2πi0.j1 . . . jn)|1⟩] .

(17)
Introducing the gate Rk

Rk ≡
(
1 0
0 exp

{
2πi
2k

}) , (18)

We find that Q̂FT can be represented by the circuit in the figure:

|j1⟩ H R2 R3 R4 ×

|j2⟩ • H R2 R3 ×

|j3⟩ • • H R2 ×

|j4⟩ • • • H ×

The X’s indicate SWAP. As the word suggests, this operation swaps the
indicated qubits. Let us see why this is needed.

Recall that the Hadamard does the following:

H|0⟩ = 1√
2
(|0⟩+ |1⟩) , H|1⟩ = 1√

2
(|0⟩ − |1⟩) . (19)

Since |j1⟩ is either |0⟩ or |1⟩, we can write:

H|j1⟩ =
1√
2
(|0⟩+ exp(2πi0.j1)|1⟩) , (20)
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This is because when j1 = 1 we have 0.j1 = 1/2 and the conclusion is obvi-
ous. Then according to the circuit we act with a controlled-R2 with the con-
trol being |j2⟩. If j2 = 0, we do nothing, while if j2 = 1 , exp(2πi0.j1)|1⟩ →
exp(2πi/4) exp(2πi0.j1)|1⟩. This action can be written as:

R2
1√
2
(|0⟩+ exp(2πi0.j1)|1⟩) =

1√
2
(|0⟩+ exp(2πi0.j1j2)|1⟩) . (21)

Next applying controlled-R3 . . . Rn finally yields

1√
2
(|0⟩+ exp(2πi0.j1 . . . jn)|1⟩) . (22)

Similarly running through |j2⟩ we find 1√
2
(|0⟩+ exp(2πi0.j2 . . . jn)|1⟩). Ul-

timately we have eq.(17) but with the ordering reversed. This is the reason
we need the final SWAP operations. Incidentally, the SWAP operation is
given by the following simple circuit:

q1 • •
q2 •

=
q1 ×
q2 ×

How many do we need to do the SWAPs correctly? [figure this out].
Finally, the inverse QFT is given by the circuit in reverse with the angles in
Rk changing sign.

3 Quantum phase estimation–QPE

Consider a state ψ which is an eigenstate of a unitary U such that

U |ψ⟩ = e2πiϕ|ψ⟩ . (23)

ϕ lies between 0 and 1. The binary representation of ϕ with accuracy up to
t-bits is

ϕ =
ϕ1
2

+
ϕ2
4

+ · · · ϕt
2t
. (24)

So that

exp
(
2πi2t−1ϕ

)
= exp(2πi0.ϕt) , (25)

etc.
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a2 : |0⟩ H •

QFT†a1 : |0⟩ H •

a0 : |0⟩ H •

|ψ⟩ / U U2 U4

That / symbol indicates that that “wire” bundles several qubits. The
symbol denotes a measurement in the computational (Z) basis; the

probabilities of finding |0⟩ or |1⟩ are estimated from repeated shots.

This algorithm was introduced by Kitaev. It enables us to extract the
phase (up to a certain precision) of a unitary operator. We assume that
we can implement the unitary operator [and we don’t have to worry about
what or how it is made]. There are two sets of qubits in the figure: ai and
sys. They are called registers.

The steps now should be pretty obvious. In the t = 3 example in the
circuit showed, just before the inverse Fourier Transform QFT † is

(|0⟩+ e2πi0.ϕ3 |1⟩)(|0⟩+ e2πi0.ϕ2ϕ3 |1⟩)(|0⟩+ e2πi0.ϕ1ϕ2ϕ3 |1⟩) . (26)

This is nothing but
Q̂FT |ϕ1ϕ2ϕ3⟩ . (27)

Thus the last step of the inverse Q̂FT just gives |ϕ1ϕ2ϕ3⟩ as the output
state. Thereafter, measuring in the computational basis will enable us to
read off ϕ1, ϕ2, ϕ3.

4 The Hadamard Test

Given a unitary U and a state |ψ⟩, the Hadamard test estimates

⟨ψ|U |ψ⟩ ∈ C.

Prepare an ancilla |0⟩ and the system in |ψ⟩. For the real part, apply H to
the ancilla, a controlled-U on the system (controlled by the ancilla), then H
again on the ancilla and measure Z:

P (0) = 1
2(1 + Re⟨ψ|U |ψ⟩) , Re⟨ψ|U |ψ⟩ = 2P (0)− 1.
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For the imaginary part, insert an S† (= Z−1/2 ) before the controlled-U (or
equivalently before the final H):

P (0) = 1
2(1 + Im⟨ψ|U |ψ⟩) , Im⟨ψ|U |ψ⟩ = 2P (0)− 1.

Explicitly

S =

(
1 0

0 i

)
, S† =

(
1 0

0 −i

)
.

Circuits (using qcircuit).

|0⟩ H • H

|ψ⟩ / U

|0⟩ H S† • H

|ψ⟩ / U

The left circuit yields Re⟨ψ|U |ψ⟩, the right yields Im⟨ψ|U |ψ⟩.
Let us work through the left circuit from left to right.

|0⟩|ψ⟩ → 1√
2
(|0⟩+ |1⟩)|ψ⟩

→ 1√
2
(|0⟩+ |1⟩)U |ψ⟩

→ 1

2
(|0⟩|ψ⟩+ |1⟩U |ψ⟩) . (28)

Now measuring the first qubit gives the probabilities of

P (0) =
1

4
⟨ψ|(1 + U †)(1 + U)|ψ⟩ = 1

2
(1 + 2Re⟨ψ|U⟩) , (29)

from which we can read off Re⟨ψ|U⟩. I leave it as an exercise for you to
verify for the Im case.

4.1 General Hadamard Test for ⟨ϕ|U |ψ⟩

Let B be a unitary operator such that

|ϕ⟩ = B|ψ⟩.

Then ⟨ψ|Ũ |ψ⟩ = ⟨ϕ|B†Ũ |ψ⟩. Then if we are interested in getting real or
imaginary part of ⟨ϕ|U |ψ⟩, we simply use

Ũ = BU

8



and run the Hadamard test.
In the next lecture we will touch upon an important simulation algorithm

called Linear Combination of Unitaries (LCU). The reason why we will need
this is because in quantum field theory, the field is not a unitary (and in
many cases not even Hermitian) operator.
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A QPE: some more details

Let U be a unitary with eigenstate |ψ⟩ and eigenphase ϕ ∈ [0, 1):

U |ψ⟩ = e2πiϕ |ψ⟩ . (30)

We run textbook QPE with m = 4 ancilla qubits (Fourier register size

M = 2m = 16), applying controlled powers U2k on the system, controlled
by ancilla k (with k = 0 the least significant bit).

Goal. Measure an integer r ∈ {0, . . . , 15} whose ratio r/16 approximates
ϕ. In Hamiltonian estimation, with U = e−iHt, we then estimate the energy

E ≈ 2π

t

r

16
. (31)

State preparation and phase kickback

Initialize the system in |ψ⟩ and the ancillas in the uniform superposition:

|+⟩⊗4 =
1

4

15∑
y=0

|y⟩ . (32)

Apply the controlled powers c-U2k so that each basis state |y⟩ in the Fourier
register kicks back the phase e2πiϕy onto the system eigenstate. The joint
state (ignoring the unchanged system factor |ψ⟩) becomes

|Φ⟩ = 1

4

15∑
y=0

e2πiϕy |y⟩ . (33)

Inverse QFT and amplitudes

Apply the inverse quantum Fourier transform QFT†
16 to the ancilla register.

The amplitude for outcome |r⟩ is

⟨r|QFT†
16|Φ⟩ =

1

4
· 1
4

15∑
y=0

e2πiϕy e−2πiry/16 (34)

=
1

16

15∑
y=0

e2πiy(ϕ−r/16). (35)
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This is a finite geometric sum with closed form

A(r) ≡ 1

16

15∑
y=0

e2πiy(ϕ−r/16) =
1

16
· 1− e2πi16(ϕ−r/16)

1− e2πi(ϕ−r/16)
. (36)

Therefore the measurement probability is

P (r) = |A(r)|2 = 1

162

∣∣∣∣∣1− e2πi16(ϕ−r/16)

1− e2πi(ϕ−r/16)

∣∣∣∣∣
2

=
1

162

(
sin
(
π · 16 (ϕ− r/16)

)
sin
(
π (ϕ− r/16)

) )2

.

(37)
Eq. (37) is the (squared) Dirichlet kernel, sharply peaked at r ≈ 16ϕ.

Exact representable phases. If ϕ = s/16 for some integer s, then
P (r) = δr,s (perfectly sharp outcome).

General phases. If ϕ is not exactly representable with m bits, the dis-
tribution peaks at the nearest integer r⋆ = round(16ϕ), with the standard
success bound

Pr
(
|r − 16ϕ| ≤ 1

)
≥ 4

π2
≈ 0.405. (38)

Bit interpretation and IQFT unrolling

Equivalently, one may view QPE as producing the binary fraction

ϕ̃ =
r

16
= 0. b1b2b3b4 (bj ∈ {0, 1}), (39)

via the inverse-QFT ladder identities. In the exact case, each controlled-
U2m−j

followed by the IQFT phase-correction yields bit bj with unit proba-
bility.

Worked example (four ancillas)

Take ϕ = 5
8 = 0.625. With m = 4, 16ϕ = 10 exactly, so the outcome is

r = 10 with probability 1. The measured bitstring is

r = 10 ⇒ binary 1010 ⇒ ϕ̃ = 10/16 = 0.625 = ϕ. (40)

In Hamiltonian spectroscopy with U = e−iHt, this would correspond to

E =
2π

t
ϕ̃ =

2π

t
· 10
16
. (41)
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Energy resolution and choosing t

For QPE targeting U = e−iHt, ancilla size m and base evolution time t set
the energy resolution

∆E ∼ 2π

t 2m
=

2π

t 16
(m = 4). (42)

Larger m and/or t yield finer resolution (within Trotter/noise limits).

Superposed inputs

If the system is prepared in a superposition |ψ⟩ =
∑

j αj |Ej⟩ over eigenstates
of U , then the ancilla distribution is a convex mixture

P (r) =
∑
j

|αj |2 P (j)
ϕ (r), ϕj =

Ejt

2π
, (43)

i.e. each eigenphase contributes its own Dirichlet kernel (37), weighted by
|αj |2. Each single-shot measurement returns one eigenvalue with probability
|αj |2.

Summary

With m = 4 ancillas, textbook QPE prepares a length-16 Fourier superpo-
sition, imprints eigenphase via controlled powers U2k , applies QFT†

16, and
measures an integer r whose ratio r/16 estimates ϕ. Exact 4-bit phases are
retrieved perfectly; general phases are concentrated near r ≈ 16ϕ with a
Dirichlet-kernel profile and standard success guarantees. For spectroscopy
with U = e−iHt, the energy estimator is E ≈ 2π

t
r
16 .

Appendix: The Hadamard Test in Quantum Field
Theory Simulations

One of the key primitives for extracting physically meaningful quantities
from a quantum computer is the Hadamard test. While its basic form is often
introduced in quantum computing textbooks (e.g. Nielsen and Chuang),
its importance in quantum field theory (QFT) simulations deserves special
emphasis. Here we collect the relevant definitions, use-cases, and literature.
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Applications in quantum field theory

In quantum field theory on a quantum computer, the Hadamard test plays
a central role because many physically measurable quantities are complex
overlaps:

• Correlation functions. For example, a two-point function in lattice
QFT,

C(t) = ⟨0|ϕ(t)ϕ(0)|0⟩,

can be expressed in terms of overlaps involving time-evolution uni-
taries,

C(t) = ⟨0|U †(t)ϕU(t)ϕ|0⟩, U(t) = e−iHt.

Such quantities are directly accessible via Hadamard tests with U =
e−iHt and ϕ represented as a sum of Pauli strings.

• S-matrix elements. Scattering amplitudes are encoded in

Sfi = ⟨f |T exp

(
−i
∫
Hint(t) dt

)
|i⟩,

which is of the form ⟨f |U |i⟩ for appropriate in/out states. The Hadamard
test provides a way to obtain both the modulus and the phase of Sfi,
essential for extracting phase shifts and cross-sections.

• Hamiltonian matrix elements. In variational and effective-Hamiltonian
approaches, one often needs matrix elements ⟨ϕ|H|ψ⟩. When H is de-
composed into a linear combination of unitaries (LCU), each term can
be accessed by a Hadamard test.

Practical considerations

• Controlled time-evolution. The Hadamard test requires a controlled-
U . In QFT applications, U = e−iHt where H is a field theory Hamil-
tonian. Thus, any Hamiltonian simulation algorithm (Trotter-Suzuki,
qubitization, QSVT, etc.) must be implemented in controlled form.
This typically doubles the circuit cost.

• Noise and sampling. The signal in a Hadamard test is a small
difference of probabilities, so many shots are needed to reduce variance.
On NISQ devices this can be prohibitive, although error mitigation can
help.
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• State preparation. The in- and out-states |i⟩ and |f⟩ (multi-particle
wavepackets) must be prepared with high fidelity. This is itself a major
subproblem in quantum simulation of QFT.

Bibliographic references

For further reading, see:

• S. Jordan, K. Lee, and J. Preskill, Quantum algorithms for quantum
field theories, Science 336, 1130 (2012).

• N. Klco and M. J. Savage, Digitization of scalar fields for quantum
computing, Phys. Rev. A 99, 052335 (2019).

• C. Bauer, Z. Davoudi, N. Klco, M. J. Savage, and A. Shindler, Quan-
tum simulation of gauge theories and fields, Quantum Sci. Technol. 8,
043001 (2023).

• M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information (Cambridge Univ. Press, 2010).

In summary, the Hadamard test is not merely a textbook curiosity but
a fundamental measurement primitive for quantum field theory on quan-
tum computers. It provides the essential bridge between quantum state
preparation/evolution and extraction of complex correlators and scattering
amplitudes.
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1 Linear Combination of Unitaries (LCU)

We will introduce the Linear Combination of Unitaries (LCU) framework.
The key motivation is that quantum computers naturally implement uni-
tary operations, but in quantum field theory (QFT) one is often interested
in operators that are not unitary: field operators ϕ, π, number operators,
Hamiltonians, or correlators involving insertions of such operators. The
LCU method provides a systematic way to embed non-unitary operations
into quantum algorithms using ancillary qubits and controlled unitaries.

1.1 Motivation: why LCU in QFT?

In lattice field theory one frequently encounters operators of the form

H =
∑
j

cjPj , (1)
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where the Pj are Pauli strings (unitary) and cj are real coefficients. This
Hamiltonian is not itself unitary, yet we need to implement e−iHt, or evaluate
matrix elements like ⟨ϕ|H|ψ⟩. Similarly, truncated field operators ϕ = a+a†

and π = i(a† − a) are non-unitary. In order to use these inside Hadamard
tests or block-encodings, we must represent them as linear combinations of
unitaries.

Thus the LCUmethod is indispensable for simulating QFT on a quantum
computer:

• it allows Hamiltonians (sums of many Pauli terms) to be implemented
in Hamiltonian simulation algorithms;

• it allows operator insertions (like ϕ) to be implemented in Hadamard
tests for correlators;

• it provides a standard language (SELECT and PREP oracles) which
is now adopted in frameworks such as Qiskit and PennyLane.

1.2 The LCU algorithm

Let us give the algebraic steps. Suppose we want to implement

A =
m−1∑
j=0

αjUj , (2)

with coefficients αj ≥ 0 and each Uj a unitary operator. Why is this always
possible? First you can work out a matrix representation of A (say by know-
ing how it operates on n-qubits). Such a representation can be decomposed
in terms of {I, σx, σy, σz}⊗n. The coefficents can in general be complex cj ’s.
But by writing cj = αje

iϕj , with αj > 0, we can absorb the phase into the
unitaries.

Step 1: Ancilla preparation (PREP). Prepare an ancilla register in
the state

PREP|0⟩ = 1√
Λ

m−1∑
j=0

√
αj |j⟩, Λ =

∑
j

αj . (3)

Here |0⟩ is the shorthand for |0 · · · 0⟩—which is m dimensional.

2



Step 2: SELECT operation. Apply the block-diagonal unitary

SELECT(U) =
m−1∑
j=0

|j⟩⟨j| ⊗ Uj . (4)

This applies the correct unitary Uj to the system conditional on the ancilla
label.

Step 3: Uncompute. Apply PREP† to the ancilla. The resulting joint
state is

(PREP†⊗I) SELECT(U) (PREP⊗I) |0⟩|ψ⟩ = 1

Λ
|0⟩⊗A|ψ⟩+|garbage⟩, (5)

where the garbage terms live in the subspace with ancilla orthogonal to |0⟩.

Step 4: Postselection or amplitude amplification. If the ancilla is
measured in state |0⟩, the system is left in A|ψ⟩/Λ. The success probability
is

psucc =
∥A|ψ⟩∥2

Λ2
. (6)

Amplitude amplification can be used to boost this probability.

The terminology PREP and SELECT is now standard in the literature,
and adopted in Qiskit, PennyLane, and other quantum software frameworks.

1.3 Explicit example: two-term LCU

Let A = α0U0 + α1U1 with α0 = 1, α1 = 2, U0 = I, U1 = X on a single
qubit. The ancilla is one qubit.

anc PREP • • PREP†

sys U0 U1

Ancilla preparation.

|anc⟩ = 1√
3
(|0⟩+

√
2|1⟩). (7)

SELECT(U).

SELECT(U) = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X. (8)
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Action on input. For input |ψ⟩ = |0⟩,

|Ψ1⟩ =
1√
3

(
|0⟩ ⊗ |0⟩+

√
2|1⟩ ⊗ |1⟩

)
. (9)

After uncomputing with PREP†, the component with ancilla |0⟩ is

1

3
(I + 2X)|0⟩ = 1

3

[
1
2

]
. (10)

The orthogonal component maps to ancilla |1⟩ (the “garbage” branch). The
fidelity of the good branch with the ideal target (A/Λ)|ψ⟩ is 1.

Exercise (done in class): Construct explicitly the PREP operator and
verify the claims above. Show that PREP = Ry(2θ) with θ ≈ 109.5◦

1.4 Explicit example: the field operator ϕ = a+ a†

Consider the truncated Fock space Hd = span{|n⟩ : n = 0, 1, . . . , d−1}. In
this basis the annihilation operator is

ad =

d−1∑
n=1

√
n |n−1⟩⟨n| =


0 1 0 · · · 0

0 0
√
2 · · · 0

...
. . .

. . .
...

0 · · · 0 0
√
d−1

0 · · · · · · 0 0

 . (11)

First let’s introduce unary coding.

Unary encoding and hop operators. In unary encoding we represent
|n⟩ by a string of d qubits with a single ‘1’ at site j = n + 1. For example
with d = 4,

|0⟩ 7→ |1000⟩, |1⟩ 7→ |0100⟩, |2⟩ 7→ |0010⟩, |3⟩ 7→ |0001⟩.

In this picture the operator |n−1⟩⟨n| should move the lone ‘1’ one step
to the left:

|0100 · · · 0⟩ 7→ |1000 · · · 0⟩, |0010 · · · 0⟩ 7→ |0100 · · · 0⟩, etc.

More generally, the hop takes the local two–qubit pattern

|01⟩j,j+1 7→ |10⟩j,j+1,
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and annihilates all other patterns.
This is exactly the action of

σ
(j)
+ σ

(j+1)
− ,

where σ+ = (X− iY )/2 and σ− = (X+ iY )/2. Here σ
(j)
+ raises qubit j from

|0⟩ to |1⟩, while σ(j+1)
− lowers qubit j + 1 from |1⟩ to |0⟩. Acting together

they implement the hop |01⟩j,j+1 7→ |10⟩j,j+1.
Expanding this product gives the Pauli–string decomposition

σ
(j)
+ σ

(j+1)
− = 1

4(XjXj+1 + YjYj+1 + iXjYj+1 − iYjXj+1) ,

so each hop operator is a linear combination of four Pauli–string unitaries.
Multiplying by

√
n and summing over n = 1, . . . , d−1 reconstructs the full

annihilation operator ad in unary encoding.

d = 3 case. For three levels (two hops) the annihilation operator is

a3 =

√
1

4

(
X1X2+Y1Y2+iX1Y2−iY1X2

)
⊗I3+

√
2

4
I1⊗

(
X2X3+Y2Y3+iX2Y3−iY2X3

)
.

Each bracketed term is a sum of four Pauli–string unitaries; the coefficients
are

√
1/4 and

√
2/4 respectively. This is an exact LCU decomposition of a3

into (phased) Pauli strings.

LCU for a3 with phased unitaries. Let Xk and Yk denote Pauli X and
Y acting on qubit k (identity elsewhere), and let Ik be the identity on qubit
k. Absorbing the complex phases ±i into the Pauli strings, we write

a3 =
8∑

j=1

αj Uj , (αj > 0),

with coefficients and unitaries

α1 = α2 = α3 = α4 =
1
4 , U1 = X1X2 ⊗ I3, U2 = Y1Y2 ⊗ I3,

U3 = ( iX1Y2)⊗ I3, U4 = (− i Y1X2)⊗ I3,

α5 = α6 = α7 = α8 =
√
2
4 , U5 = I1 ⊗X2X3, U6 = I1 ⊗ Y2Y3,

U7 = I1 ⊗ ( iX2Y3), U8 = I1 ⊗ (− i Y2X3).

Each Uj is unitary (a Pauli string times a global phase), and all amplitudes
αj are real and nonnegative. This is an exact LCU for a3 in unary encoding;

the Hermitian field operator is then ϕ3 = a3 + a†3.
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The Hermitian combination

ϕ3 = a3 + a†3

then reduces to a real linear combination of Pauli strings, which can be
sampled using standard LCU or Hamiltonian simulation methods.

d = 4 case. Similarly, for four levels one obtains

a4 =

√
1

4

(
· · ·

)
⊗ I ⊗ I +

√
2

4
I ⊗

(
· · ·

)
⊗ I +

√
3

4
I ⊗ I ⊗

(
· · ·

)
,

with each “(· · · )” denoting the four–term Pauli combination above.

Summary. In a finite bosonic truncation, the position operator ϕd = ad+a
†
d

is exactly a linear combination of embedded Pauli σx unitaries with positive
weights

√
n. This gives a clean, hands-on LCU that avoids any subtleties

about nonunitary shifts in the infinite Fock space and is immediately imple-
mentable on qubits.

This allows ϕ insertions in correlators (e.g. two-point functions) to be
implemented using Hadamard tests with LCU.

1.5 Remarks and references

The LCU framework was developed in the 2000s–2010s as part of Hamilto-
nian simulation algorithms and is not covered in standard textbooks such
as Nielsen and Chuang (2000). Good references include:

• A. Childs and N. Wiebe, “Hamiltonian simulation using linear combi-
nations of unitary operations,” Quantum Information & Computation
12 (2012).

• D. Berry, A. Childs, R. Cleve, R. Kothari, and R. Somma, “Simulating
Hamiltonian dynamics with a truncated Taylor series,” Phys. Rev.
Lett. 114, 090502 (2015).

• Textbook background: M. A. Nielsen and I. L. Chuang, Quantum
Computation and Quantum Information (Cambridge Univ. Press, 2010)
— predates LCU, does not cover this framework.

In summary, the LCU framework is essential for QFT simulation on
quantum computers: it allows non-unitary operators (fields, Hamiltonians)
to be encoded as sums of unitaries, so that they can be used inside the
Hadamard test and block-encoding algorithms for correlators and scattering
amplitudes.
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Remark on QSVT/QSP. The current state of the art in Hamiltonian
simulation and related linear algebra tasks is based on quantum singular
value transformation (QSVT) and its underlying idea of quantum signal
processing (QSP) [14, 15]. These frameworks provide a powerful and uni-
fying approach: given a block encoding of an operator, one can implement
polynomial transformations of its singular values with near-optimal asymp-
totic complexity. In particular, QSVT improves upon Trotter methods and
even the LCU approach by achieving exponential precision scaling in the
polynomial degree and by offering a very general toolkit for Hamiltonian
simulation, solving linear systems, Gibbs sampling, and more. However,
the machinery required—block encodings, polynomial approximation the-
ory, and signal processing gadgets—is technically demanding and can ob-
scure the physics. For this reason we will hold off on a detailed treatment of
QSVT/QSP until we encounter concrete situations where their advantages
become essential. At present, the simpler tools already introduced (QPE,
Hadamard test, LCU, and Trotterization) are sufficient for our first physics
applications such as the anharmonic oscillator.

We have learnt Q̂FT ,QPE, Hadamard test and LCU. With these tools,
we will now move to simulation of quantum mechanics and then quantum
field theory.

2 The anharmonic oscillator: benchmarks for quan-
tum simulation

We use units ℏ = 1, m = 1, ω = 1 unless otherwise stated.

2.1 Positive quartic potential

The Hamiltonian

H(g) =
p2

2
+
x2

2
+ g x4, g > 0, (12)

is the paradigmatic model of an interacting quantum system in one dimen-
sion.

Perturbative expansion. Rayleigh–Schrödinger perturbation theory yields

E0(g) =
1
2 + 3

4g −
21
8 g

2 +O(g3), (13)

E1(g) =
3
2 + 15

4 g −
405
8 g

2 +O(g3). (14)
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The coefficients grow factorially at high order [1, 2]. Numerically, what we
can do is work out the matrix representation of H(g) in the free Harmonic
oscillator basis. Then truncate this matrix and find the exact eigenvalues.
This can be easily implemented in Mathematica. For g = 0.1, we find

E0 ≈ 0.559 , E1 ≈ 1.769.

Plugging g = 0.1 in the perturbative expressions, we get 0.549 and 1.369
respectively. While E0 agrees, E1 is off. This is suggestive that λ = 0.1 is
not small enough!

Exact reference values. For g = 1, numerical diagonalization gives

E0 = 0.80377 . . . , (15)

E1 = 2.73789 . . . , (16)

useful “gold standards” for quantum phase estimation outputs.

Expectation values and identities. From Hellmann–Feynman,

∂En

∂g
= ⟨x4⟩n, (17)

and the virial theorem gives

⟨p2⟩n = ⟨x2⟩n + 4g⟨x4⟩n. (18)

These provide nontrivial internal consistency checks accessible in simulation.

Strong coupling scaling. For g ≫ 1,

En(g) ∼ g1/3 εn, ε0 = 0.66798626 . . . (19)

[4, 5]. Plotting E0/g
1/3 versus g gives a clean test of scaling.

2.2 Negative quartic and the double-well potential

There are two distinct situations that are often conflated:
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(i) Unstable quartic:

V (x) = 1
2x

2 − |g|x4, |g| > 0. (20)

Here V (x) → −∞ as |x| → ∞. Critical points are at x = 0 and x = ± 1

2
√

|g|
.

- At x = 0: V ′′(0) = 1 > 0, so the origin is a local minimum. - At
x = ±1/(2

√
|g|): V ′′ < 0, so these are local maxima. Thus the poten-

tial has a single central well, bounded by two maxima, and then falls off to
−∞. Quantum mechanically this leads not to a true bound-state spectrum,
but to resonances with finite lifetime (Gamow states). Such resonant struc-
tures could, in principle, be probed by quantum simulation using analytic
continuation or complex scaling methods.

(ii) True double well:

V (x) = −1
2µ

2x2 + λx4, µ2, λ > 0. (21)

This is the standard quartic double-well potential. - At x = 0: V ′′(0) =
−µ2 < 0, so the origin is a local maximum. - Minima occur at

x⋆ = ± µ√
2λ
, (22)

with V (x⋆) = −µ4/(4λ). In the classical limit, the system has two degener-
ate vacua.

Appendix: Gibbs Sampling and Gibbs States

Classical Gibbs sampling. In classical statistical physics and machine
learning one often needs to sample from a probability distribution of Boltzmann–
Gibbs form

p(x) ∝ e−βH(x),

where H(x) is an energy function and β = 1/T is the inverse temperature.
A standard Markov chain Monte Carlo technique is Gibbs sampling : one
decomposes x into components (x1, x2, . . . ) and updates each component in
turn by drawing it from the conditional distribution p(xi |x ̸=i). Iterating
these local updates yields samples from the full distribution p(x).
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Quantum Gibbs states. In quantum physics the natural analogue is the
Gibbs (thermal) state of a Hamiltonian H:

ρβ =
e−βH

Tr(e−βH)
.

Preparing such states efficiently on a quantum computer would allow direct
simulation of finite-temperature equilibrium properties, estimation of par-
tition functions, and applications in optimization. This task is sometimes
referred to as quantum Gibbs sampling.

Algorithmic advances. Recent work using quantum signal processing
and quantum singular value transformation [14, 15] shows how one can im-
plement polynomial approximations to e−βH given a block encoding of H,
and thereby prepare Gibbs states with provably better asymptotic scaling
than known classical methods. Although we will not cover these techniques
in detail here, they represent a key application area where QSVT promises
exponential improvements.

Example: single qubit Gibbs state. Consider a single qubit with

Hamiltonian H = Z =

(
1 0
0 −1

)
. The Gibbs state at inverse temperature

β is

ρβ =
e−βZ

Tr(e−βZ)
=

1

2 coshβ

(
e−β 0
0 eβ

)
.

For β → 0 (high temperature) this approaches the maximally mixed state
1
2I, while for β → ∞ (zero temperature) it becomes the pure ground state
|1⟩⟨1|. This illustrates how Gibbs states interpolate between classical ther-
mal mixtures and quantum ground states as the temperature varies.
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Nonperturbative anharmonic oscillator

LECTURE NOTES

1 λ > 0
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Consider

H =
p2

2
+

x2

2
+ λx4 .

To find the eigen-spectrum numerically, we can find a matrix representation
of H in the SHO basis and perform exact diagonalization. Then we check for
convergence of the eigenvalues as we keep increasing the size of the matrix. The
4-decimal place converged results read:

The level spacings are plotted below.
The increase in level-spacing is significant. One cannot hope to have a qubit

if the level spacings are constant. If the level spacings become bigger then the
low lying modes will separate out. This is important to have qubits in realistic
physical systems.

As a comparison, let us review perturbative results.
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Table 1: Eigenvalues and level spacings for H = p2

2 + x2

2 + λx4 with ℏ = ω =
m = 1.

λ = 0.1 ∆E λ = 1 ∆E

E0 0.5591 1.2104 0.8038 1.9341
E1 1.7695 1.3691 2.7379 2.4414
E2 3.1386 1.4903 5.1793 2.7631
E3 4.6289 1.5914 7.9424 3.0212
E4 6.2203 1.6795 10.9636 3.2395
E5 7.8998 1.7580 14.2031 3.4309
E6 9.6578 1.8295 17.6340 3.6024
E7 11.4873 1.8952 21.2364 3.7585
E8 13.3825 1.9561 24.9949 3.9024
E9 15.3386 – 28.8973 –

Figure 1: Level spacings ∆En for H = p2

2 + x2

2 + λx4.

Perturbative expansion. Rayleigh–Schrödinger perturbation theory yields

E0(g) =
1
2 + 3

4g −
21
8 g2 +O(g3), (1)

E1(g) =
3
2 + 15

4 g − 405
8 g2 +O(g3). (2)

The coefficients grow factorially at high order. Numerically, what we can do
is work out the matrix representation of H(g) in the free Harmonic oscillator
basis. Then truncate this matrix and find the exact eigenvalues. This can be
easily implemented in Mathematica. For g = 0.1, we find

E0 ≈ 0.559 , E1 ≈ 1.769.

Plugging g = 0.1 in the perturbative expressions, we get 0.549 and 1.369 respec-
tively. While E0 agrees, E1 is off. This is suggestive that λ = 0.1 is not small
enough!
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Exact reference values. For g = 1, numerical diagonalization gives

E0 = 0.80377 . . . , (3)

E1 = 2.73789 . . . , (4)

useful “gold standards” for quantum phase estimation outputs.
By the way, this increasing level spacing is found in a lot of places. Here is

a brief summary:

• Cold atoms in optical traps / optical lattices. Near the minimum,
the trapping potential is approximately harmonic; away from the cen-
ter, Gaussian-beam intensity profiles generate quartic corrections. Result:
spacings grow with n.

• Trapped ions in anharmonic Paul/Penning traps. Imperfections
in the RF/DC fields introduce quartic terms beyond the ideal quadrupole
confinement, yielding hardening anharmonicity and increasing vibrational
level spacings.

• Phonons at high excitation (lattice anharmonicity). Expanding
interatomic potentials about equilibrium includes x4 terms; at large am-
plitudes the mode frequency hardens, so quantized level spacings increase
with vibrational quantum number.

• Quantum dots / mesoscopic electron traps. Electrostatic confine-
ment is often modeled as harmonic plus quartic corrections from gate ge-
ometry; excitation spectra show upward-curving spacings consistent with
λ > 0 behavior.

• Nonlinear mechanical/optical oscillators (Duffing hardening regime).
Micro/nanomechanical resonators and optical modes with a positive quar-
tic restoring term exhibit amplitude-dependent frequency increase; in the
quantum picture this maps to rising ∆En.

• Superconducting circuits in engineered hardening regimes. While
transmons are weakly softening, other circuit designs (e.g. fluxonium un-
der appropriate bias, Josephson arrays with tailored inductive/capacitive
networks) can realize effective positive-quartic potentials with increasing
level spacings.

0 2 4 6
0

1

2

3

x

y

Morse
On the other hand, in certain diatomic

molecules, the level spacings in fact de-
creases with increasing level. Modeling this
is harder but can be done using the so-called
Morse potential. This is given by

VMorse = De(1− exp(−x+ x0))
2 .

]
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2 Double well
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Now we turn to the symmetric double-well potential. First let’s write it as

H =
p2

2
− x2

2
+ λx4 .

For this the eigenspectrum can be computed similarly. We have the benchmark-
ing table:

Table 2: Eigenvalues and level spacings for H = p2

2 − x2

2 + λx4 with ℏ = ω =
m = 1.

λ = 0.1 ∆E λ = 1 ∆E

E0 -0.1541 0.2969 0.5148 1.5058
E1 0.1428 0.8674 2.0206 2.1705
E2 1.0102 0.9389 4.1911 2.5144
E3 1.9491 1.1095 6.7055 2.7961
E4 3.0586 1.2301 9.5016 3.0305
E5 4.2887 1.3352 12.5321 3.2342
E6 5.6239 1.4278 15.7663 3.4156
E7 7.0517 1.5108 19.1819 3.5798
E8 8.5625 1.5865 22.7617 3.7305
E9 10.1490 – 26.4922 –

and the level spacing plot below.
Notice that unlike the previous case, E0, E1 are similar in magnitude for

λ = 0.1. There is rich physics behind this, which we will explain next.
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Figure 2: Level spacings ∆En for H = p2

2 − x2

2 + λx4.

The symmetric quartic double-well potential

V (x) = λ (x2 − a2)2 (5)

is the canonical example of a quantum-mechanical system where semiclassical,
nonperturbative effects are essential. The two classical minima at x = ±a each
support an approximately harmonic ground state. However, quantum tunneling
through the central barrier mixes the states localized in the left and right wells,
producing symmetric and antisymmetric combinations as the true energy eigen-
states. This mixing generates an exponentially small level splitting between the
ground doublet.

Perturbation theory around either minimum captures the harmonic oscil-
lator corrections but entirely misses the splitting: no finite-order perturbative
expansion can couple the two wells. The appropriate tool is the semiclassical
instanton method, which evaluates the Euclidean path integral by including
classical Euclidean solutions connecting the two minima. In what follows we
develop this picture in detail.

3 Localized states and exact propagators

Let us denote by |L⟩ and |R⟩ wavefunctions localized near −a and +a, respec-
tively. These are not exact eigenstates of the Hamiltonian but provide a useful
approximate basis. The true eigenstates of definite parity are

|+⟩ = |L⟩+ |R⟩√
2(1 + S)

, |−⟩ = |L⟩ − |R⟩√
2(1− S)

, (6)

where S = ⟨L|R⟩ is the small overlap.
The Euclidean propagators

KLL(T ) = ⟨L|e−HT |L⟩, KLR(T ) = ⟨L|e−HT |R⟩ (7)
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can be expressed in terms of the low-lying eigenstates. Neglecting higher exci-
tations,

KLL(T ) =
1 + S

2
e−E+T +

1− S

2
e−E−T , (8)

KLR(T ) =
1 + S

2
e−E+T − 1− S

2
e−E−T . (9)

Adding and subtracting gives

KLL(T )±KLR(T ) = (1± S) e−E±T . (10)

Thus by computing the Euclidean propagators between localized states, one can
directly read off the symmetric and antisymmetric energies E±.

4 Euclidean path integral and instantons

The Euclidean path integral representation is

KLR(T ) =

∫ x(T )=+a

x(0)=−a

Dx(τ) e−SE [x]/ℏ, SE [x] =

∫ T

0

dτ
[
1
2 ẋ

2 + V (x)
]
. (11)

Saddle points of SE dominate in the semiclassical limit. The Euler–Lagrange
equation is

ẍ = V ′(x). (12)

Besides the trivial vacua at ±a, there exist finite-action solutions interpolating
between them. These are the instantons.

The strategy to derive them is as follows. Notice that

1

2
ẋ2 + λ(x2 − a2)2 =

1

2
(ẋ+

√
2λ(x2 − a2))2 −

√
2λẋ(x2 − a2) . (13)

Therefore, for the action to be minimum [saddle) we must have

ẋ+
√
2λ(x2 − a2) = 0 . (14)

This also reads:
dx

dτ
=

√
2V (x) . (15)

[Since −a < x < a, we choose this branch.] This equation eq.(14) is easy to
solve. Explicitly, one finds

xinst(τ) = a tanh
(ω
2
(τ − τ0)

)
, ω =

√
V ′′(a) = 2

√
2λ a, (16)

with center τ0 (integration constant).
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The action of a single instanton is

S0 =

∫ T

0

dτ2V (x) =

∫ a

−a

√
2V (x) dx =

4

3

√
2λ a3. (17)

There is another solution (argue how, HW):

xinst(τ) = −a tanh
(ω
2
(τ − τ0)

)
, ω =

√
V ′′(a) = 2

√
2λ a, (18)

which corresponds to KRL which is called the anti-instanton. The instanton
has a characteristic width ∆τ ∼ 1/ω in Euclidean time. The parameter τ0 is a
collective coordinate: translating the instanton does not change its action, and
the path integral includes an integration

∫
dτ0 over its position.

x

V (x)

−a +a

V (0) = λa4

Figure 3: The symmetric quartic double well. The instanton connects −a to +a
in Euclidean time.
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5 The dilute instanton gas approximation

A path contributing to KLL(T ) or KLR(T ) may contain multiple instantons
and anti-instantons. For instance the amplitude for L → R tunneling should
also include the possiblities that L → R followed by R → L and again L → R
events (i.e., an odd number of tunnelling events). Each tunneling event carries
the system across the barrier in a Euclidean interval of width ∼ 1/ω. If these
events are widely separated, their actions add approximately: S ≈ nS0. This is
the dilute instanton gas approximation (DIGA).

For a configuration with n tunneling events, each contributes a factorKe−S0 ,
where K is the one-loop determinant prefactor. Each event has a free center

τi, and integrating over its position in [0, T ] gives
∫ T

0
dτi. For n events this

yields
∫ T

0
dτ1 · · · dτn. To avoid overcounting permutations of indistinguishable

instantons, one divides by n!. Thus the contribution is

1

n!

(
KTe−S0

)n
. (19)

Summing over all even n (returning to the initial well) produces

KLL(T ) ∝ e−EpertT cosh
(
KTe−S0

)
, (20)

while summing over all odd n (ending in the opposite well) gives

KLR(T ) ∝ e−EpertT sinh
(
KTe−S0

)
. (21)

Here Epert denotes the perturbative vacuum energy around a single minimum.
In the dilute instanton gas approximation the tunneling amplitude always comes
multiplied by a factor of the form e−EpertT . This contribution originates from
the fact that, away from the localized instanton core of width O(ω−1), the
system spends essentially the entire Euclidean time interval T sitting in one
of the perturbative vacua. The corresponding path integral over fluctuations
around a well gives precisely the perturbative ground state energy Epert: the
classical potential at the minimum, the Gaussian zero–point energy coming
from the fluctuation determinant, and higher–order loop corrections. Since this
background contribution scales linearly with T , it factors out as e−EpertT in all
instanton sectors, while the instanton itself only supplies a finite action S0 and
a prefactor independent of T .

Adding and subtracting again, one finds

KLL(T )±KLR(T ) ∝ e−EpertT exp
(
±KTe−S0

)
, (22)

so that the energies of the symmetric and antisymmetric states are

E± = Epert ∓Ke−S0 + · · · , (23)

and the ground-state splitting is

∆ = E− − E+ = 2Ke−S0
[
1 +O(ℏ) +O(e−S0)

]
. (24)
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Explicitly for H = p2/2− x2/2 + λx4 and the lowest states 1, we have

∆ ≈ 1.34√
λ

exp(−0.236

λ
) . (25)

For λ = 0.1 this predicts ∆ ≈ 0.4 while the numerical answer is 0.3. For λ = 0.7
this predicts ∆ ≈ 1.14 while numerics gives 1.28. The agreement is expected to
improve on including multi-instanton contributions. What we have added are
just the one instanton case weighted by e−S0 and have ignored terms like e−2S0

and higher.
The sharp benchmark targets for quantum computers are to produce:

∆ = 0.3 λ = 0.1 (26)

∆ = 1.28 λ = 0.7 (27)

∼ 1
ω

instanton center τ0 = 2.0

∼ 1
ω

anti-instanton center τ0 = 6.0

τ

x(τ)

Figure 4: A dilute instanton–anti-instanton pair. Each kink (and anti-kink)
switches between vacua over an Euclidean-time window of width ∼ 1/ω, shown
by dashed lines at τ0 ± 1/ω and a double arrow. Widely separated means the

two cores do not overlap: |τ (I)0 − τ
(AI)
0 | ≫ 1/ω.

In the dilute instanton gas approximation, configurations with n tunnelling
events (instantons or anti–instantons) are described by paths that remain in
a perturbative vacuum for almost all of the Euclidean interval [0, T ], with n
well–separated localized transitions of width O(ω−1). Each instanton possesses
a collective coordinate τi corresponding to the freedom of translating its cen-
ter in Euclidean time. The path integral over such n–instanton configurations
therefore contains an integration over all possible choices of these centers:∫ T

0

dτ1

∫ T

0

dτ2 · · ·
∫ T

0

dτn .

1E2n+1 − E2n ∝ e−S0 , with the n-dependence in the prefactor.
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However, because the instantons are indistinguishable objects, different order-
ings of the same set of centers {τ1, . . . , τn} represent the same physical config-
uration. To avoid overcounting, one restricts to an ordered domain τ1 < τ2 <
· · · < τn, which gives ∫

0<τ1<τ2<···<τn<T

dτ1 · · · dτn =
Tn

n!
.

Thus the contribution of the n–instanton sector is proportional to (KTe−S0)n/n!,
where K is the one–instanton fluctuation prefactor. In this way DIGA does not
assume the events are simultaneous 2; rather, it sums over all possible positions
of the instantons, with the 1/n! factor arising from the indistinguishability of
their centers in the path integral.

Figure 5: Exact ground-doublet splitting (points) versus the dilute-instanton-
gas prediction ∆ ≈ 2Ke−S0 (line) for V (x) = λ(x2 − a2)2 with a = 2.0. The
prefactor K is determined by a single least-squares fit across all couplings. The
action S0 = 4

3

√
2λ a3 controls the leading exponential behavior.

6 Beyond the dilute gas

If an instanton and anti-instanton occur close together, their cores overlap and
the action is less than 2S0. These configurations are important for understand-
ing the analytic structure of perturbation theory: they generate ambiguities
in the Borel resummation of divergent series, which are cancelled by the per-
turbative sector in the framework of resurgence. However, in the dilute limit
KTe−S0 ≪ 1, the measure for such close pairs is suppressed, and they do not
affect the leading real tunneling splitting. The dilute instanton gas approxima-
tion therefore provides the leading-order semiclassical prediction for the level

2During the lecture, I messed up this explanation!
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splitting, with corrections systematically organized as loop effects around the
instanton and multi-instanton interactions.
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The following is the content of lecture 15 and part of lecture 16. I decided to keep it in one
places due to logical continuity. Lectures 15 and 16 and their associated demonstrations will be
especially important for the final term paper point of view, so pay careful attention!

FFT logic for ⟨ψ|Uk|ψ⟩: a minimal Mathematica guide
Consider the case

H = p2/2 + x2/2 + λx4.

We want to extract the spectrum on a quantum simulator. The strategy is the following:
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1. We will first get a matrix representation of H using the oscillator basis. For simplicity, we
will restrict to 4× 4.

2. Then we use qiskit to find a Pauli decomposition of this matrix.

3. We time evolve a suitable state |ψ⟩ over an interval T = Ndt. Then we use Hadamard test
to extract

Ck = ⟨ψ|Uk|ψ⟩.

Here U = exp(−iHdt) and k runs from 1 to N .

4. We can always expand |ψ⟩ in terms of the true energy eigenstates:

|ψ⟩ =
∑
j

cj |Ej⟩.

This gives
Ck =

∑
j

|cj |2 exp(−iEjk dt) . (1)

5. Then we define

F (ω) =
N−1∑
k=0

Ck exp(−iωk dt) =
∑
k,j

|cj |2 exp(−ik dt(Ej + ω)) . (2)

Summing over k leads to

F (ω) =
∑
j

|cj |2 exp(idt(Ej + ω)/2)
sinNdt(Ej + ω)

sin dt(Ej + ω)
. (3)

This form implies that |F (ω)| will have peaks at ω = −Ej .

6. So the logic is that we use the quantum computer and Hadamard test to construct Ck’s
and then postprocess on a classical computer to construct |F (ω)| to extract the spectrum.

To see this in action, let us write a short mathematica code first and do some sanity checks.
This is a good opportunity for you to pick up this fascinating package, which forms a bedrock

for most theoretical research.

1 Oscillator basis

1 \[Lambda] = 0.10;
2 dt = 0.12;
3

4 (* operators *)
5 x = 1/Sqrt[2] {{0, 1, 0, 0}, {1, 0, Sqrt[2], 0},
6 {0, Sqrt[2], 0, Sqrt[3]}, {0, 0, Sqrt[3], 0}};
7

8 H0 = DiagonalMatrix[{0, 1, 2, 3}] + 1/2 IdentityMatrix[4];
9 H = N[ H0 + \[Lambda] x.x.x.x ];

10

11 (* state: |\[Psi]> = (|0>+|1>)/Sqrt[2] (|00>+|01>)/Sqrt[2] *)
12 psi = {1/Sqrt[2], 1/Sqrt[2], 0, 0};
13

14 (* one-step propagator and correlator *)
15 U1 := MatrixExp[-I H dt];
16 Ck[k_Integer?NonNegative] := N[ Conjugate[psi].MatrixPower[U1, k].psi ];

2



This implements steps 1-3. We have chosen the state |ψ⟩ = 1√
2
(|0⟩ + |1⟩), which is the

superposition of the λ = 0 ground and 1st excited state. This state can be decomposed into a
superposition of the true λ ̸= 0 eigenstates.

Naive continuous scan (peaks at negative energies)

We define F (ω) =
∑

k Ck e
−iωkdt. Because Ck already carries e−iEjkdt, peaks of |F | appear at

ω ≈ −Ej . To stay ASCII in code, we call the scan variable wm.

1 Nt = 350;
2

3 F[wm_] := Sum[ Ck[k] Exp[-I wm k dt], {k, 0, Nt - 1} ];
4

5 Plot[ Abs[F[wm]], {wm, -2.5, 0},
6 AxesLabel -> {"wm","|F|"}, PlotRange -> All,
7 PlotLabel -> "Naive scan: peaks near -E_j" ]

This implements steps 4-5. This leads to the following plot:

Figure 1: |F (ω)| vs ω.

Scales to remember: Nyquist band |ω| < π/dt; resolution ∆E ≈ 2π/(Ntdt).
As you can see from the plot, there are 2 prominent big peaks. We can eyeball that these

peaks have height greater than 60. Using the convenient mathematica command FindPeaks, we
can extract their locations using the following commands:

1 datatab = Table[Abs[F[w]], {w, -2.5, 0, .01}];
2

3 FindPeaks[datatab, 60]

Using this we find the peaks corresponding to E0 = 0.55 and E0 = 1.8. The expected answers to
3 decimal places are 0.557 and 1.809. So we have done well! However, we can do a little better
by using a trick called Hanning window.

Two-line fix: de-mean + Hann window

Finite records use a rectangular window whose Fourier transform (Dirichlet kernel) has large
sidelobes. De-mean removes DC; Hann crushes sidelobes ( –31 dB).

1 CC = Table[ Ck[k], {k, 0, Nt - 1} ];
2 meanCC = Mean[CC];
3 w[k_] := HannWindow[ k/(Nt - 1.) ];
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4

5 FHann[wm_] := Sum[ (Ck[k] - meanCC) * w[k] * Exp[-I wm k dt], {k, 0, Nt - 1} ];
6

7 Plot[ {Abs[F[wm]], Abs[FHann[wm]]}, {wm, -2.5, 0},
8 PlotLegends -> {"naive","Hann + de-mean"},
9 AxesLabel -> {"wm","|F|"}, PlotRange -> All ]

What changes? True peaks stay; low-|ω| junk collapses. Main lobe widens slightly (resolution
trade).

We find:

Figure 2: |F (ω)| vs ω after Hann is given by the orange line. This gives a clean set of 2 peaks.

Changing dt: keep it consistent

If you change dt, regenerate both U1 and Ck. Otherwise the axis scales and peaks drift by a
factor.

1 dt = 0.10;
2 U1 = MatrixExp[-I H dt];
3 CC = Table[ Ck[k], {k, 0, Nt - 1} ];
4 meanCC = Mean[CC];
5 FHann[wm_] := Sum[ (Ck[k]-meanCC) w[k] Exp[-I wm k dt], {k,0,Nt-1}];

Two-line summary

• F (ω) =
∑

k(Ck − C)wk e
−iωkdt; peaks at ω ≈ −Ej .

• Use HannWindow and subtract the mean; fix dt and increase Nt to sharpen peaks.

2 Position-basis (JLP) encoding for one-site ϕ4

Goal. Digitize a single anharmonic oscillator site in the position basis as in Jordan–Lee–Preskill
(JLP): we represent the field value ϕ on a uniform grid of N = 2n points (so n qubits), build
H = 1

2 π
2+ 1

2 ω
2ϕ2+λϕ4, then compute the correlator Ck =⟨ψ| e−iH k dt |ψ⟩ and recover energies

from its spectrum. The reason to consider this alternate encoding is that for the λϕ4 field
theory that we will consider soon, the ϕ pieces of the Hamiltonian are simply diagonal while the
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momentum pieces can be made diagonal by doing a (quantum) Fourier Transform, which we
know how to do. The steps are as follows:

1. We discretize the field (x in our case) to lie between [−ϕmax, ϕmax) defining an interval
Lϕ = 2ϕmax. In our case, since we are interested in the first 2 eigenvalues for smallish λ,
it is sufficient to consider ϕmax such that the position space SHO wave-functions decay
beyond this value. It turns out ϕmax ∼ 3.0 will do the job.

2. We sample ϕ on a uniform grid. That is, we choose ∆ϕ = 2ϕmax/N and

ϕj = −ϕmax + j∆ϕ , j = 0, · · · , N − 1 . (4)

This can also be rewritten as:
ϕm = m∆ϕ

where m = −N/2,−N/2 + 1 · · · , N/2− 1.

3. We define the computational basis as

ϕ̂|ϕj⟩ = ϕj |ϕj⟩ . (5)

4. Define the momentum grid

pm = m
2π

Lϕ
, m = −N/2,−N/2 + 1 · · · , N/2− 1. (6)

using which we have the DFT

Fmj =
1√
N
eipmϕj . (7)

Both m, j run from −N/2 to N/2− 1. This gives us for the conjugate momentum

Π̂2 = F †diag(p2m)F. (8)

Minimal Mathematica cell (JLP grid → correlator → peaks)

The code mirrors our oscillator-basis workflow but works directly in the position grid.

1 (* === Parameters === *)
2 lam = 0.10; omega = 1.0;
3 Ngrid = 4; (* 2^n points; for 2 qubits use 4 *)
4 phimax = 3.0; (* half-interval length; tune below *)
5

6 (* === Centered grids and operators (JLP) === *)
7 idx = Range[-Ngrid/2, Ngrid/2 - 1];
8 dphi = 2 phimax/Ngrid; L = 2 phimax;
9

10 phi = dphi idx; (* positions phi_j *)
11 p = (2 Pi/L) idx; (* momenta p_m *)
12

13 Phi = DiagonalMatrix[phi]; (* position operator *)
14 Fmat = Table[Exp[2 Pi I m j/Ngrid]/Sqrt[Ngrid], {m, idx}, {j, idx}];
15 Pi2 = ConjugateTranspose[Fmat].DiagonalMatrix[p^2].Fmat; (* spectral kinetic *)
16

17 (* Harmonic (lam=0) and full (lam>0) Hamiltonians *)
18 H0pos = 1/2 Pi2 + 1/2 omega^2 (Phi.Phi) // N; (* quadratic part *)
19 Hpos = H0pos + lam (Phi.Phi.Phi.Phi) // N; (* add phi^4 *)
20

21 (* Initial state: like oscillator case use lowest two eigenstates of H0 (not Hpos) *)
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22 vals0Vecs = Eigensystem[H0pos];
23 vals0 = vals0Vecs[[1]]; vecs0 = vals0Vecs[[2]];
24 ord0 = Ordering[vals0];
25 psi = Normalize[ vecs0[[ord0[[1]]]] + vecs0[[ord0[[2]]]] ];
26

27 (* === Correlator and Hann-windowed scan === *)
28 dt = 0.12; Nt = 256; (* fix dt; increase Nt to sharpen peaks *)
29 U1 = MatrixExp[-I Hpos dt];
30

31 Ck[k_Integer?NonNegative] := N[ Conjugate[psi].MatrixPower[U1, k].psi ];
32 CC = Table[Ck[k], {k, 0, Nt - 1}];
33 meanCC = Mean[CC];
34 w[k_] := HannWindow[ k/(Nt - 1.) ];
35

36 FHann[wm_] := Sum[ (CC[[k+1]] - meanCC) * w[k] * Exp[-I wm k dt], {k, 0, Nt - 1}];
37

38 (* Visual: peaks appear at negative wm (because of the -i sign in the kernel) *)
39 Plot[ Abs[FHann[wm]], {wm, -3, 0}, PlotRange->All,
40 AxesLabel->{"wm","|F|"}, PlotLabel->"JLP position grid: peaks near -E0,-E1" ]
41

42 (* Minimal peak pick, exactly like earlier *)
43 grid = Range[-3, 0, 0.01];
44 valsF = Abs @ (FHann /@ grid);
45 peakHeights = FindPeaks[valsF];
46 peakIdx = Flatten @ Position[valsF, Alternatives @@ peakHeights];
47 wmPeaks = grid[[peakIdx]]; (* e.g., -3 + idx*0.01 *)
48 Eest = -wmPeaks; (* report +E by flipping the sign *)

Two scales to watch. Nyquist band |ω| < π/dt (avoid aliasing). Resolution ∆E ≈ 2π
Nt dt

. Fix
dt, then raise Nt to sharpen peaks.

We find:

Figure 3: |FHann(ω)| vs ω using JLP encoding. N = 4, ϕmax = 3.

Note that while the first peak near 0.5 is reasonably good, the second one is beyond the
expected 1.8. The reasons are discussed below.
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Shortcomings of the tiny (N = 4) JLP grid (why accuracy lags the oscillator
basis)

With N = 4 points and a box [−ϕmax, ϕmax) the grid spacing and momentum spacing are coarse:

• Position under-sampling. Ground-state width of a harmonic well with ω=1 is σϕ ≈
1/
√
2≈0.707. With N=4 and ϕmax=3, the spacing is ∆ϕ = 2ϕmax/N = 1.5 (>2× σϕ), so

the wavefunction is poorly represented.

• Coarse kinetic resolution. Momentum spacing is ∆p = 2π/L = π/ϕmax; with ϕmax=3,
∆p ≈ 1.047 while the momentum width is σp ≈

√
2 ≈ 1.414. The kinetic energy is quantized

very coarsely, shifting eigenvalues.

• Periodic wrap-around. The spectral (Fourier) kinetic enforces periodicity; with a tiny
grid the effective ring couples the edges unless the wavefunction is both small at the
boundaries and well sampled in the interior.

By contrast, the oscillator (Fock) basis uses eigenfunctions of the quadratic part; low-lying
anharmonic states are small deformations of those, so even a 4-state truncation captures the first
levels better.

How to improve JLP accuracy (still minimal).

1. Tune ϕmax for fixed N (trade box error vs sampling). A practical range is ϕmax ∼ 2.2–3.0
for ω=1.

2. Increase N (more qubits): N=8, 16 quickly brings ∆ϕ below σϕ.

3. (Optional) Use a non-periodic kinetic (e.g., sine-transform/Dirichlet) to remove wrap-around
for single-site pedagogy.

Why JLP use the position encoding (despite these small-N issues)

The original JLP program targets quantum field theory on a spatial lattice:

• Locality and scalability. A field value ϕ(x) stored in computational basis gives local
interactions (ϕ4, gauge couplings) that act diagonally on each site; the kinetic and gradient
terms couple only nearby sites. This maps to sparse, geometrically local circuits under
Trotterization.

• Generalizable to many sites and fields. The same encoding works for multiple lattice
sites (tensor product of sites), higher dimensions, and gauge fields; a site-wise Fock basis
becomes unwieldy and highly nonlocal across the lattice.

• Uniform recipe. The discrete Fourier (QFT) machinery gives a systematic way to
implement kinetic terms and to switch between “position” and “momentum” representations
on a register.

For a single oscillator at tiny N , the Fock basis wins on accuracy-per-qubit; for field theories
with many sites and interactions, the position-basis digitization is the natural, local, and scalable
route—hence JLP’s choice.

Takeaway. Use the JLP position grid when you care about locality and scalability across
lattice sites; expect to pay a small accuracy tax at very small N , which vanishes rapidly as you
increase N or tune ϕmax.
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Aliasing (one-line intuition). Sampling at a fixed step ∆t can only distinguish angular
frequencies ω within the Nyquist band |ω| < π/∆t. Any component at frequency ω is indistin-
guishable from ω′ = ω − 2πn/∆t for any integer n, because e−iωk∆t = e−i(ω−2πn/∆t)k∆t at all
integer samples k. Thus a tone above Nyquist “folds” back into the band (it aliases). In the
figure, sampling x(t) = sin(2π · 7 t) at fs = 10 Hz (∆t = 0.1 s) yields sample values identical to
a 3 Hz tone since 7 = 10− 3; i.e. falias = fs − f . To avoid aliasing one must ensure the signal
has no energy above fs/2 (e.g. by low-pass filtering) or increase fs.

Figure 4: Aliasing: sampling at fs = 10 Hz makes a 7 Hz sine (solid) produce the same samples
(dots) as a 3 Hz sine (dashed).

3 Noise Sources on a Quantum Computer

Any practical quantum computer suffers from errors that degrade the fidelity of quantum
computations. For superconducting devices such as those provided by IBM Quantum, three main
classes of errors dominate:

3.1 Measurement (Readout) Errors

Readout error, or SPAM (State Preparation and Measurement) error, is the probability of
mis-assigning the measured classical bit. For example, when a physical qubit is in state |0⟩, the
measurement device may report “1” with probability p01, and when the qubit is in state |1⟩ it
may report “0” with probability p10.

• Physical meaning: Imperfections in the qubit–resonator coupling and classical electronics
lead to bit-flip errors in measurement.

• Effect: This produces biased expectation values. In correlation functions, the oscillatory
structure remains but amplitudes are suppressed and offset.

• Simulation in Qiskit: A readout error is specified by a confusion matrix via the
ReadoutError class and attached to a noise model:

from qiskit_aer.noise import NoiseModel, ReadoutError
rd = ReadoutError([[1-p01, p01],

[p10, 1-p10]])
nm = NoiseModel()
nm.add_readout_error(rd, [q]) # attach to measured qubit q
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3.2 Gate Errors

Every single- and two-qubit gate implemented in hardware is imperfect. On superconducting
devices, gate infidelities are often dominated by over-rotation and control noise.

• Physical meaning: A gate intended to perform U = exp(−iθσ) instead implements a
noisy channel close to U . Two-qubit gates (e.g. CNOT) are especially error-prone.

• Effect: Gate errors depolarize or rotate the state incorrectly, reducing coherence in time-
correlation functions. Peaks in Fourier spectra remain at approximately the same frequency
but are broadened.

• Simulation in Qiskit: Gate errors are modeled via QuantumError channels. A common
choice is depolarizing noise:

from qiskit_aer.noise import depolarizing_error
# 1-qubit depolarizing error
err1 = depolarizing_error(p1q, 1)
nm.add_quantum_error(err1, ['x','sx','rz'], [q])
# 2-qubit depolarizing error
err2 = depolarizing_error(p2q, 2)
nm.add_quantum_error(err2, ['cx'], [q0,q1])

3.3 Decoherence: T1 and T2 Processes

Even with perfect control, qubits are not isolated: they suffer from energy relaxation (T1) and
dephasing (T2).

• Physical meaning:

– T1: amplitude damping from |1⟩→|0⟩ due to photon loss.

– T2: phase damping which destroys superpositions without energy loss.

• Effect: These cause exponential decay of coherence in time correlation functions. In Fourier
space this corresponds to Lorentzian broadening of peaks. High-frequency components are
washed out most quickly.

• Simulation in Qiskit: Thermal relaxation channels model T1 and T2 processes over the
duration of a gate:

from qiskit_aer.noise import thermal_relaxation_error
# single-qubit relaxation
th1 = thermal_relaxation_error(T1, T2, gate_time)
nm.add_quantum_error(th1, ['x','sx','rz'], [q])
# two-qubit relaxation: tensor product channel
th2 = thermal_relaxation_error(T1, T2, cx_time).tensor(

thermal_relaxation_error(T1, T2, cx_time))
nm.add_quantum_error(th2, ['cx'], [q0,q1])

3.4 Combined Noise Models

In practice, one combines all three sources into a single NoiseModel. For example:

9



nm = NoiseModel()
# add readout error
nm.add_readout_error(rd, [q])
# add depolarizing gate errors
nm.add_quantum_error(err1, ['sx','rz'], [q])
nm.add_quantum_error(err2, ['cx'], [q0,q1])
# add thermal relaxation
nm.add_quantum_error(th1, ['sx','rz'], [q])
nm.add_quantum_error(th2, ['cx'], [q0,q1])

This reflects the experimental situation on IBM devices most closely.

3.5 Remarks

• Readout error can often be mitigated efficiently via calibration and post-processing.

• Gate and decoherence errors are more serious: without error correction, one typically
applies techniques such as zero-noise extrapolation (ZNE), randomized compiling (RC),
and dynamical decoupling (DD).

• In all cases, Qiskit’s AerSimulator accepts a noise_model argument so that simulation
results can include these errors, allowing one to benchmark algorithms against realistic
device behaviour.

3.6 Error Mitigation Techniques

Although full fault-tolerant error correction is not yet feasible on near-term devices, several
mitigation techniques can reduce the impact of noise. These methods aim to recover more
accurate expectation values without adding too much overhead.

3.6.1 Readout Error Mitigation

Since readout errors are typically the largest SPAM errors, one can calibrate the confusion matrix
for each measured qubit and apply its inverse to correct observed counts.

• Method: Prepare |0⟩ and |1⟩ states, measure many times, and record the empirical
transition probabilities. This defines a calibration matrix M . Mitigated probabilities are
obtained by applying M−1 to the raw frequency vector.

• In Qiskit:

from qiskit.ignis.mitigation.measurement import complete_meas_cal
from qiskit.ignis.mitigation.measurement import CompleteMeasFitter

# generate calibration circuits
cal_circuits, state_labels = complete_meas_cal(qubit_list=[0,1])
# run and fit
cal_results = backend.run(cal_circuits).result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels)
# get mitigator
meas_filter = meas_fitter.filter
# apply to raw counts
mitigated_counts = meas_filter.apply(raw_counts)
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3.6.2 Zero-Noise Extrapolation (ZNE)

The idea is to deliberately amplify gate noise (e.g. by inserting idle gates or by stretching pulse
durations), measure the noisy expectation values, and then extrapolate back to “zero noise”.

• Effect: Extrapolated values can be closer to the true noiseless expectation.

• In Qiskit: Implemented in the qiskit-ignis and mthree packages, and in the qiskit_runtime
“resilience_level” parameter.

3.6.3 Randomized Compiling (RC)

RC randomizes coherent errors (e.g. systematic over-rotations) into stochastic noise, which
averages out more predictably and is easier to mitigate.

• In Qiskit: Enabled through circuit transpilation passes, and also exposed via resilience_level
in Qiskit Runtime.

3.6.4 Dynamical Decoupling (DD)

DD inserts sequences of idle gates (e.g. X–I–X–I) to cancel slow dephasing noise.

• Effect: Extends coherence time T2 at the cost of increased circuit depth.

• In Qiskit:

from qiskit.transpiler.passes import DynamicalDecoupling
dd_pass = DynamicalDecoupling(coupling_map, dd_sequence)

3.6.5 Runtime Resilience Levels

IBM’s Runtime offers a user-friendly knob for mitigation. Setting resilience_level automati-
cally enables combinations of the above techniques.

from qiskit_ibm_runtime import QiskitRuntimeService, Estimator

estimator = Estimator(session=..., options={"resilience_level": 2})

Here level 0 means no mitigation, while levels 1–3 add increasingly powerful methods (readout
mitigation, RC, ZNE, etc.).

3.6.6 Remarks

• Mitigation does not eliminate noise completely, but can significantly improve estimates of
expectation values such as correlation functions.

• Techniques like ZNE require repeating experiments with different noise scaling, so they
increase runtime and shot count.

• For spectrum extraction problems, readout mitigation and ZNE are particularly effective:
the peak locations remain robust, while mitigation restores peak heights.

11



Figure 5:

4 Results

Here are the figures generated using qiskits for 2 noise models compared with the noiseless case.
The things to note are:

1. The run times are quite long as it is trying to mimic how we would do it on an actual
machine using multiple shots.

2. Measurement errors don’t have significant effects but measurement plus gate errors seem
to kill the signal to noise ratio.

3. The zoomed plot for the measurement plus gate errors shows that the signal amplitude has
diminised by an order of magnitude but there are residuals of the peaks not too far from
their expected locations.

Figure 6:

5 When does a quantum computer help? A scaling view

For the small truncation d = 4 used in our anharmonic-oscillator demo, a quantum computer
(QC) is pedagogical rather than advantageous: classical diagonalization or short-time propagation

12
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Figure 7: Scaling of simulation cost with Hilbert-space size d. Curves show classical dense
(∼ d3), classical iterative (∼ d2), and quantum per-step cost (∼ log d), all in arbitrary units
and normalized for visibility. Shaded band indicates a plausible crossover window d ∼ 105–106

where classical methods begin to strain while a QC still stores the full state in n = ⌈log2 d⌉
qubits. Exact crossover depends on hardware noise, required precision, sparsity, and algorithmic
constants.

is both faster and more accurate. The question is: at what Hilbert-space size d does a QC begin
to offer an advantage?

Classical scaling. For dense linear algebra, exact diagonalization scales as O(d3) time and
O(d2) memory. Krylov/Lanczos time-propagation reduces per step to O(d2) (matrix–vector),
but still requires O(d)–O(d2) memory depending on sparsity and preconditioners.

Quantum scaling. Representing a d-dimensional state needs n = ⌈log2 d⌉ qubits. Gate counts
per simulation step scale as poly(n) for Trotter or block-encoding/QSVT methods. Thus the
QC step cost is essentially Õ(log d) (up to precision overhead), with linear hardware in n rather
than exponential memory in d.

Illustrative crossover. Fig. 7 compares (relative) time-per-step models: dense classical ∼ d3,
iterative classical ∼ d2, and quantum ∼ log d. The shaded band marks a heuristic “break-
even” region d ∼ 105–106 (roughly 17–20 qubits): here dense classical becomes impractical in
time/memory, while a QC can still represent the full state in a few dozen qubits. The practical
crossover depends on noise and precision: present-day NISQ devices limit usable circuit depth,
so true advantage typically requires lower error rates or fault tolerance.

Takeaway. Small truncations (e.g., d ≤ 104) are best left to classical solvers. Quantum
advantage becomes credible as d approaches 106 and beyond, or in problems where entanglemen-
t/structure defeats tensor-network methods. Our QC pipeline is therefore validated on small d,
but motivated by its asymptotic scaling to large d.
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5.1 Gate counts and the quantitative “importance” of CNOTs vs. λ

For the 4-level truncation encoded in two system qubits, the Pauli decomposition of the system
Hamiltonian H =

∑
j hjPj naturally partitions into (i) single-qubit strings (N1 of them) and (ii)

genuine two-qubit strings (N2 of them). With a second-order Strang step of size ∆ = dt/r, one
Strang sub-step applies each non-identity term twice (forward+reverse). Using the standard ZZ-
skeleton for two-qubit exponentials, the following back-of-the-envelope counts hold per sub-step
(system only):

CNOTs (uncontrolled) = 4N2, (9)
parametric RZ = 2 (N1 +N2), (10)

1q Cliffords ≲ 8 (N1 +N2). (11)

A full dt step has r sub-steps (multiply by r), and a Hadamard test with a controlled step inflates
two-qubit costs. A conservative and compiler-agnostic estimate for the controlled Strang sub-step
is

CNOTs (controlled) ≈ 10N2 + 2N1, (12)

so a full dt step uses (10N2 + 2N1) r CNOTs when controlled by the ancilla.

Concrete numbers for the 4×4 truncation. For the harmonic case (λ = 0) we have
H0 = diag{0.5, 1.5, 2.5, 3.5}, whose Pauli expansion is H0 = cIIII+cZIZI+cIZIZ with cZZ = 0.
Thus N1 = 2 and N2 = 0. For the anharmonic case (λ = 0.1), the x4 contribution populates
several two-qubit strings; a representative thresholded decomposition yields N1 ≈ 6, N2 ≈ 7.

Case N1 N2 CNOTs per dt (uncontrolled) CNOTs per dt (controlled)
λ = 0 (harmonic) 2 0 0 2N1 r ≈ 16 for r=8
λ = 0.1 (anharm.) 6 7 4N2 r ≈ 224 (10N2+2N1)r ≈ 656

Table 1: Indicative gate counts per dt for the 4 × 4 truncation (two system qubits), using
second-order Strang with r = 8 sub-steps. The harmonic case has no system–system entanglers;
the only CNOTs come from ancilla control (CRZ decompositions). Numbers are compiler- and
basis-independent order-of-magnitude estimates; exact counts vary by synthesis.

6 Entanglement as a Diagnostic of Simulation Complexity

A particularly transparent way to quantify the “quantum workload” of a Hamiltonian simulation
is to examine how much entanglement the dynamics create among the qubits representing the
system. Even for a single oscillator truncated to a four-dimensional Hilbert space (two qubits),
the amount of intra-register entanglement required to represent its evolution can vary strongly
with the coupling strength λ.

6.1 Setup

We consider again the quartic oscillator

H = H0 + λx4, H0 =
1
2(p

2 + x2), (13)

in a four-level truncation encoded as two qubits, |00⟩, |01⟩, |10⟩, |11⟩, corresponding to oscillator
levels n = 0, 1, 2, 3. The initial state is taken to be

|ψ(0)⟩ = |00⟩+ |01⟩√
2

=
(
|0⟩+|1⟩√

2

)
q0
⊗ |0⟩q1 , (14)

14



a simple product state in the computational basis.
After time evolution under U(t) = e−iHt, the joint state of the two system qubits becomes

|ψ(t)⟩ = U(t)|ψ(0)⟩. Tracing out one of the qubits yields the reduced density matrix ρq0(t) =
Trq1 |ψ(t)⟩⟨ψ(t)|, whose von Neumann entropy,

S(ρq0) = −Tr ρq0 log2 ρq0 , (15)

serves as a measure of the bipartite entanglement between the two encoding qubits.

6.2 Interpretation

At first glance it may seem peculiar that a single-mode oscillator develops “entanglement.” The key
point is that the mapping of a d–dimensional Hilbert space to log2 d qubits introduces an artificial
tensor-product structure. When the Hamiltonian contains couplings such as x4 that mix basis
states separated by ∆n = ±2,±4, those appear as two-qubit Pauli strings (e.g. XX, Y Y, ZZ) in
the encoded representation. The resulting evolution therefore entangles the qubits even though
the physical oscillator remains a single degree of freedom. The entanglement entropy S(ρq0)
thus quantifies the computational entanglement cost needed to reproduce the correct physical
dynamics in a local qubit basis.

For λ = 0 (harmonic limit) the Hamiltonian is diagonal in the computational basis, and the
evolution is separable: S = 0. As λ increases, off-diagonal couplings become significant, driving
the state to explore higher levels and generate qubit–qubit entanglement. Since the system
contains only two qubits, S ≤ 1 bit is the maximal possible value, and the entropy saturates
once the state effectively spans the full 4-dimensional subspace.

6.3 Numerical results

Figure 8 shows the entanglement entropy obtained by exact time evolution (with dt = 0.12
and total time t = 6) as a function of the coupling λ. The entropy rises monotonically with λ,
mirroring the increase of two-qubit Pauli components and CNOT load in the corresponding
Trotterized circuit. This provides a direct diagnostic of how “quantum” the simulation must
become: larger λ demands stronger and more coherent entangling gates among the encoding
qubits.

6.4 Summary

The entanglement entropy of the encoded qubits is therefore a sensitive diagnostic of simulation
complexity :

• it remains small for nearly separable dynamics (weak coupling);

• it grows with the strength of local interactions (more cross-Pauli terms and CNOTs per
step);

• and it saturates once the truncated subspace is fully mixed.

Such entropy-based measures provide an intuitive bridge between the physics of interactions and
the hardware resources required to simulate them.

Scaling remark. In the present two-qubit encoding the entanglement entropy is bounded by
S ≤ 1 bit, but as one increases the truncation size d and hence the number of qubits n = ⌈log2 d⌉,
the same procedure yields a rising entanglement capacity Smax = n. In the full oscillator,
where the quartic term induces correlations across many levels, the computational entanglement
required to reproduce e−iHt grows roughly with the effective participation number of levels
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Figure 8: Entanglement entropy of one system qubit as a function of the quartic coupling λ for
the 4-level truncated oscillator (time t = 6). The monotonic rise of S(λ) directly measures the
amount of intra-register entanglement that the quantum computer must generate to reproduce
the interaction-induced mixing of oscillator levels.

coupled by x4. Monitoring S(λ) thus provides a natural diagnostic of when classical simulation
becomes inefficient: the crossover to quantum advantage corresponds to the regime in which S(λ)
scales extensively with n, and no classical tensor-network representation can capture the state
without exponential cost.
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Resonances and Scattering

LECTURE NOTES

1 Conventional scattering: a recap

We consider one–dimensional stationary scattering in the potential shown in Fig. 1, consisting
of two identical rectangular barriers of height Vb and width b, separated by a central well of
width w.

x

V (x)

−w/2− b −w/2

0

w/2 w/2 + b

Vb Vb

b w b

Figure 1: Square double–barrier potential with barrier height Vb, barrier width b, and well
width w.

Step 0: Schrödinger equation and units

We work with the time–independent Schrödinger equation in natural units ℏ = 1, 2m = 1:

−ψ′′(x) + V (x)ψ(x) = E ψ(x), (1)

so that for free propagation E = k2.

Step 1: Solutions in each region

In each region of constant potential, the solutions are superpositions of right– and left–
moving plane waves:

ψ(x) = A+eikx + A−e−ikx, if V (x) = 0, k =
√
E, (2)

ψ(x) = B+eiqx +B−e−iqx, if V (x) = Vb, q =
√
E − Vb. (3)

For E < Vb, q = iκ with κ =
√
Vb − E, so the barrier solutions are real exponentials.
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Step 2: Interface conditions

At an abrupt interface between two regions with wave numbers ka (left) and kb (right),
continuity of ψ and ψ′ gives(

B+

B−

)
=

1

2

(
1 + kb

ka
1− kb

ka

1− kb
ka

1 + kb
ka

)(
A+

A−

)
. (4)

This 2× 2 interface matrix Sa→b encodes matching conditions.

Step 3: Propagation through a slab

Propagation through a uniform region of width d and wave number k multiplies the ampli-
tudes by a diagonal phase matrix

P (k, d) =

(
eikd 0
0 e−ikd

)
. (5)

Step 4: Total transfer matrix

Concatenating the interfaces and propagations, the total transfer matrix across the double–
barrier structure is

M(E) = Sk→q P (q, b)Sq→k P (k, w)Sk→q P (q, b)Sq→k. (6)

This relates the incoming/outgoing amplitudes in the left lead (A+
L , A

−
L) to those in the right

lead (A+
R, A

−
R): (

A+
R

A−
R

)
=M(E)

(
A+
L

A−
L

)
. (7)

Step 5: Scattering amplitudes

For left incidence, we choose(
A+
L

A−
L

)
=

(
1

r

)
,

(
A+
R

A−
R

)
=

(
t

0

)
, (8)

so that there is a unit incoming wave from the left, reflection amplitude r, and transmission
amplitude t to the right. Inserting into the transfer relation, using detM = 1, gives

r(E) = −M21(E)

M22(E)
, t(E) =

1

M22(E)
. (9)

The reflection and transmission probabilities are R(E) = |r(E)|2, T (E) = |t(E)|2, with
R + T = 1.
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Step 6: Resonances and Wigner time delay

6.1 Narrowband packet and group delay. Let the incident state be a narrowband
packet centered at E0:

Ψin(x, t) =

∫
dE a(E) ei(kx−Et), a(E) peaked at E0.

The transmitted packet is

Ψtr(x, t) =

∫
dE a(E) t(E) ei(kx−Et), t(E) = |t(E)|eiϕ(E).

Expand the phase ϕ(E) ≈ ϕ(E0) + ϕ′(E0)(E −E0) and take |t(E)| slowly varying across the
packet. A stationary-phase (or envelope) analysis shows the peak of the transmitted packet
is shifted in time by

∆t =
dϕ(E)

dE

∣∣∣
E0

≡ τ(E0) , (10)

the Wigner (group) time delay for the transmission channel. Intuitively, near a quasi–bound
level the wave dwells inside the structure, generating a rapidly varying scattering phase ϕ(E);
the slope dϕ

dE
measures that extra dwell time relative to free motion.

6.2 Single isolated resonance. Near an isolated resonance at Er with total width Γ =
ΓL + ΓR, the transmission amplitude takes the Breit–Wigner form (up to a slowly varying
background phase θ):

t(E) ≈ eiθ(E)

√
ΓLΓR

E − Er + iΓ/2
. (11)

Then

τ(E) =
d

dE
arg t(E) ≈ Γ/2

(E − Er)2 + (Γ/2)2
, τ(Er) =

2

Γ
, (12)

a Lorentzian peak of height 2/Γ centered at Er. On the real axis one also observes a ∼ π
phase jump in ϕ(E) across the resonance and a near–unity peak in T (E) (for symmetric
barriers).

6.3 Formal definition via the S–matrix. Formally, resonances are the poles of the
scattering matrix (or t) in the lower half complex–energy plane:

E⋆ = Er − iΓ/2,

and the Wigner–Smith delay operator is Q(E) = −i S† dS
dE

; in our single incoming channel,
τ(E) = d

dE
arg t(E).

Step 7: Resonance condition in the transfer–matrix language

Since t(E) = 1/M22(E) for identical leads and real V (x), the complex resonance energies are
the zeros of M22:

M22(E⋆) = 0, E⋆ = Er − iΓ/2. (13)
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2 The inverted double well as a resonance laboratory

There is another case of the anharmonic oscillator which is of great interest. Consider

H =
p2

2
+
x2

2
− λx4 . (14)

This gives rise to a double-hump or inverted double-well potential. This is instructive for
two reasons:

• A transmon qubit is a Josephson junction in parallel with a capacitor. In the transmon
qubit models, the Hamiltonian is

H = −EJ cosϕ+
Q2

2C
. (15)

Here EJ , C are constants and ϕ,Q are conjugate variables. Expanding the cosϕ term
we get a Hamiltonian that looks like the anharmonic oscillator with λ < 0. Thus, the
anharmonic oscillator with λ < 0 is an approximation to this case. Here the energy
level spacings in fact decrease with level number (we will need the cosϕ potential to
show this).

• Our focus will be resonances. As we will examine below, a simple and instructive
“scattering–without–asymptotics” example is the anharmonic oscillator with λ < 0.

For convenience, we will consider a slight rewriting of the Hamiltonian for the inverted
double–well

H =
p2

2m
− λ (x2 − a2)2, (m = ℏ = 1 in what follows). (16)

The “barrier tops” sit at E = 0, while the pocket at the origin has depth V (0) = −λa4.
Near x = 0 the pocket is approximately harmonic with ω0 =

√
V ′′(0) = 2a

√
λ.

Why conventional scattering is ill-posed here. As |x| →∞, V (x) ∼ −λx4 → −∞.
There are no asymptotically free regions supporting plane waves, so the usual S-matrix with
in/out states at t→ ±∞ is not defined. This does not kill all physics: localized wave packets
ψ(x, 0) near the pocket do escape and evolve in time in a highly structured way. The correct
language is resonances and transients, not asymptotic phase shifts.

Physics picture: why resonances aren’t ordinary eigenvalues. For a closed, Hermi-
tian Hamiltonian H, the stationary Schrödinger equation Hψ = Eψ has only real E. Time
evolution is unitary: e−iHt just rotates phases; no state of the full system can decay in norm.

So where does a resonance come from? From a metastable trap that leaks probability
to infinity. Prepare a wave packet ψ(0) localized near a pocket/barrier. The packet lingers,
then leaks out as an outgoing wave. If leakage is slow and featureless, the pocket amplitude
shows a long exponential window,

A(t) = ⟨ψ(0)|e−iHt|ψ(0)⟩ ≈ Z e−iERt e−Γt/2 (intermediate times).
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Figure 2: Inverted double well with a = 2, λ = 0.006. The pocket bottom is at V (0) = −λa4,
the barrier tops at E = 0.

Here ER is the “resonance energy” and Γ is the leakage rate (lifetime τ = 1/Γ). This
exponential behavior is the physics definition of a resonance.

Where it lives mathematically. The Laplace/Fourier transform of A(t) is (up to i) a
matrix element of the resolvent,

Ã(z) =

∫ ∞

0

dt eiztA(t) ∝ ⟨ψ|(z −H)−1|ψ⟩ =: Fψ(z).

An exponential e−iERte−Γt/2 transforms into a simple pole at z⋆ = ER − i
2
Γ. But for a

self-adjoint H, Fψ(z) is a Herglotz/Nevanlinna function, hence analytic off the real axis on
the physical sheet ; it cannot have poles with Im z ̸= 0 there. The way out is standard in
scattering: analytically continue Fψ(z) across the continuum cut to the second sheet. On
that sheet the same complex point z⋆ is allowed to be a pole. That pole is the resonance.

Why “second sheet” in physics words. At real energies E > 0 one must choose
outgoing vs incoming boundary conditions. The retarded (outgoing) choice is the boundary
value G+(E) = (E + i0−H)−1. To follow the same outgoing branch just below the real axis
(where decays live), you continue z across the cut with the argument lifted by 2π; that is
precisely the second sheet. In short:

decay ⇐⇒ outgoing below the real axis ⇐⇒ pole on sheet II at z⋆ = ER − iΓ/2.

Working definition you can compute

Both pictures give the same practical observable for a chosen probe |ψ⟩:

ρ(E;ψ) = − 1

π
Im ⟨ψ|(E −H + i0)−1|ψ⟩ (projected resolvent / LDOS ), (17)

ρ̃T (E;ψ) ≈
1

2π

∫ T

0

dtw(t) eiEtA(t) (windowed Fourier of the survival amplitude). (18)
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A resonance appears as a Lorentzian centered at ER with width Γ. Finite time T and the
window w(t) add an “instrumental” broadening; empirically, FWHM(T ) ≈ Γ+c/T . A short
multi-T run and a linear fit of FWHM vs 1/T isolates Γ.

Why this is the right language for the inverted double well. Because V (x) → −∞
at large |x|, there is no free-wave region, hence no global phase shift and no 2→2 S-matrix.
Nevertheless, the pocket near x = 0 traps probability temporarily behind the barriers at
|x| ≈ a. That trapping produces a second-sheet pole ER− iΓ/2 (a shape resonance), whose
fingerprints are:

1. a nearly Lorentzian peak in the projected LDOS ρ(E;ψ),

2. an exponentially damped contribution e−iERte−Γt/2 to A(t),

3. a nearly exponential decay of the pocket probability Psurv(t) =
∫ R
−R |ψ(x, t)|2dx on

intermediate times.

This is precisely what we measure in the JLP (real-space) simulations.

A Mathematica nb will be given to you to play around soon.

One important question that we need to anticipate now itself is how do we prepare the
initial states for scattering. The problem is that the initial state needs to be specified in
terms of the λ ̸= 0 physics. Say we try to start with the ground state. For the free theory,
this is easy to specify. But for λ ̸= 0, what do we do? One way is to use the Adiabatic
theorem, which is what we will discuss next.

3 The Adiabatic Theorem (Sakurai-style proof)

Setup and statement. Let H(t) be a Hamiltonian that varies smoothly on t ∈ [0, T ].
Assume (i) a discrete, nondegenerate spectrum with instantaneous eigenpairs

H(t) |n(t)⟩ = En(t) |n(t)⟩ , ⟨m(t)|n(t)⟩ = δmn,

(ii) a finite minimum gap g(t) = minm ̸=n |Em(t) − En(t)| > 0, and (iii) sufficiently slow
variation of H(t) (quantified below). If

|ψ(0)⟩ =
∑
n

cn(0) |n(0)⟩ ,

then for all t ∈ [0, T ] the solution of the Schrödinger equation

iℏ ∂t |ψ(t)⟩ = H(t) |ψ(t)⟩

remains in the corresponding instantaneous eigenspace:

|ψ(t)⟩ ≃
∑
n

cn(0)e
iθn(t) eiγn(t) |n(t)⟩ ,
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where the dynamical phase and geometric (Berry) phase are

θn(t) = −1

ℏ

∫ t

0

En(t
′) dt′, γn(t) = i

∫ t

0

⟨n(t′)|ṅ(t′)⟩ dt′.

The approximation error is O(ε) with ε set by the adiabatic small parameter below.

Sakurai-style derivation. Expand the state in the instantaneous eigenbasis:

|ψ(t)⟩ =
∑
k

ck(t) |k(t)⟩ .

Insert into the Schrödinger equation and project with ⟨m(t)|:

iℏ ċm(t) + iℏ
∑
n

cn(t) ⟨m(t)|ṅ(t)⟩ = Em(t) cm(t). (19)

Differentiate H(t) |n(t)⟩ = En(t) |n(t)⟩ and project onto ⟨m(t)| to eliminate the nonadiabatic
couplings ⟨m|ṅ⟩ for m ̸= n:

⟨m(t)|ṅ(t)⟩ = −⟨m(t)| Ḣ(t) |n(t)⟩
Em(t)− En(t)

(m ̸= n). (20)

Equation (19) becomes

ċm(t) +
(
i
ℏEm(t) + ⟨m|ṁ⟩

)
cm(t) =

∑
n̸=m

⟨m| Ḣ |n⟩
Em − En

cn(t). (21)

If the right-hand side can be neglected (slow drive and finite gaps), then

ċm(t) =
(
− i

ℏEm(t)− ⟨m|ṁ⟩
)
cm(t),

which integrates to

cm(t) = cm(0) exp
[
iθm(t)

]
exp
[
iγm(t)

]
.

Thus |cm(t)|2 = |cm(0)|2 and an initial eigenstate stays in the corresponding instantaneous
eigenstate up to the phases above.

Adiabatic condition (nondegenerate case). A standard sufficient condition controlling
the neglected terms in (21) is

max
t∈[0,T ]

max
m ̸=n

∣∣ ⟨m(t)| Ḣ(t) |n(t)⟩
∣∣

ℏ |Em(t)− En(t)|2
≡ ε ≪ 1. (22)

Equivalently, when one introduces a scaled time s = t/T with H(t) = H(s), nonadiabatic
transition amplitudes decay like O(1/T ) provided the gap stays finite.

Remarks.

• |n(t)⟩ is normalized. The Berry phase γn is real since d
dt
⟨n|n⟩ = 0 ⇒ 2Re ⟨n|ṅ⟩ = 0.

• More refined theorems relax gap assumptions and give explicit error bounds; here we
keep the classical form used in physics applications.
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Application: Adiabatic passage through an avoided crossing (Lan-
dau–Zener)

Consider a two-level Hamiltonian with an avoided crossing, where the diabatic energy differ-
ence is swept approximately linearly in time, ∆E(t) ≈ αt, and the off-diagonal coupling is a
(half the minimum adiabatic gap). If the sweep is perfectly adiabatic (|α| → 0), the system
initialized in the lower adiabatic eigenstate stays there. At finite speed, the probability of a
diabatic transition (ending in the opposite adiabatic branch) is given by the Landau–Zener
formula

PD = exp

(
−2πa2

ℏ|α|

)
.

Thus the adiabatic theorem’s qualitative prediction (no transitions for infinitely slow drive)
is made quantitative: to suppress excitations, choose a slow sweep |α| and/or a large minimal
gap 2a.

Application: Berry phase as a topological mass probe in the Ising
chain

Via Jordan–Wigner, the TFIM maps to quadratic fermions with Bogoliubov–de Gennes form

H =
∑
k>0

Ψ†
k

[
dk(ϕ) · σ

]
Ψk, dk(ϕ) =

(
∆k cosϕ, ∆k sinϕ, mk

)
,

with ∆k = 2J sin k and mk = 2J cos k− 2h. Adiabatically cycling the pairing phase ϕ : 0 →
2π traces a closed loop of d̂k = dk/|dk| on the Bloch sphere. The ground state accrues a
Berry phase equal to half the solid angle,

γk =
1

2
Ωk = π

(
1− mk√

m2
k +∆2

k

)
.

If the loop encloses the north pole (the band-touching point), γk ≃ π (mod 2π); otherwise
γk ≃ 0. Summing the Berry curvature over k yields a winding number ν ∈ {0, 1} that jumps
at the quantum critical point h/J = 1, thereby diagnosing the sign of the effective Dirac mass
in the 1+1D scaling theory. On a quantum processor, γk can be measured interferometrically:
use an ancilla-controlled adiabatic loop and a symmetric (echoed) trajectory to cancel the
dynamical phase, then read out cos γk and sin γk from X/Y measurements of the ancilla.

Bibliographic notes. The proof above follows the textbook derivation popularized by
Sakurai (Modern Quantum Mechanics, 2nd/3rd ed.). A pedagogical presentation with the
same steps, including Eqs. (20)–(22) and the Berry phase factors, appears on the Wikipedia
entry “Adiabatic theorem.” The Landau–Zener application and formula are summarized on
its dedicated Wikipedia page.
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A WKB estimate of the resonance energy and width

Consider
V (x) = −λ(x2 − a2)2, (m = ℏ = 1).

For a resonance with energy E ∈
(
V (0), 0

)
(i.e. −λa4 < E < 0), there are four turning

points ±x1(E) (inner) and ±x2(E) (outer), defined by E = V (x):

|x| = x1,2(E) =

√
a2 ∓

√
−E
λ

, ε ≡ −E > 0.

The motion is classically allowed in |x| < x1 (pocket) and in |x| > x2 (escape region),
separated by a forbidden “barrier” x1 < |x| < x2.

Step 1: quantize the real part ER (inner Bohr–Sommerfeld). Ignoring the leakage,
the pocket supports quasi-bound levels given at leading WKB by∮ x1

−x1
p(x;E) dx = 2π

(
n+ 1

2

)
, p(x;E) =

√
2 [E − V (x)].

For a quick estimate near the pocket bottom one may use the local harmonic approximation
V (x) ≈ V (0) + 1

2
ω2
0x

2 with ω0 =
√
V ′′(0) = 2a

√
λ, but for shape resonances close to the

barrier top the integral is best evaluated numerically at the E you will eventually identify
as ER.

Step 2: tunneling through the barrier (WKB action). Define the barrier action

Sb(E) =

∫ x2

x1

κ(x;E) dx, κ(x;E) =
√
2 [V (x)− E] (x1 < x < x2).

For our quartic one can write Sb in a single integral with elementary limits. Set y = x2,
dy = 2x dx, and ε = −E > 0; then

Sb(E) =
ε√
2λ

∫ 1

−1

√
1− s2√
a2 + αs

ds, α =

√
ε

λ
.

This integral is elementary to evaluate numerically. Close to the barrier top (ε ≪ λa4) a
simple expansion gives the handy estimate

Sb(E) =
π ε

2 a
√
2λ

[
1 +

3

32

ε

λa4
+O(ε2)

]
.

Step 3: “attempt rate” (classical oscillation in the pocket). The classical oscillation
period in the pocket at energy E is

Tin(E) =
√
2

∫ x1

−x1

dx√
E − V (x)

, ωin(E) =
2π

Tin(E)
.

(Equivalently Tin(E) = ∂Sin/∂E with Sin(E) =
∮
p dx.) Physically, the packet hits a barrier

once every half period, so the total number of “escape attempts” per unit time at the two
sides is ωin(E)/π.
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Step 4: Gamow formula for the width. Each attempt transmits with probability
T (E) ≈ e−2Sb(E) (WKB). Hence the decay probability per unit time is

W (E) ≈ ωin(E)

π
e−2Sb(E) ,

and the resonance width is (with ℏ = 1)

Γ(E) ≈ ωin(E)

π
e−2Sb(E) .

Evaluated at the (real) quantized energy ER from Step 1 this gives the leading Gamow
width Γ ≡ Γ(ER). In practice one computes ER and Γ self-consistently: ER from the pocket
quantization and Γ from the barrier action and pocket frequency at that ER.

Numerical WKB estimate for the inverted double well (method 1)

We take
V (x) = −λ(x2 − a2)2, (m = ℏ = 1), a = 2, λ = 0.006.

Then
V (0) = −λa4 = −0.096, ω0 =

√
V ′′(0) = 2a

√
λ ≈ 0.30984.

Step 1: fix the resonance energy ER (inner pocket level). For the lowest even
quasi–bound state we place the center in the pocket band V (0) < ER < 0. A crude inner
quantization (harmonic pocket corrected by the shallow well) puts

E
(top)
R ≈ −0.037 (i.e. ER measured from the barrier top E = 0).

This is consistent with the time–domain peak we observe in numerics.

Step 2: turning points and barrier action. Turning points solve V (x) = ER. With
ε = −ER > 0 and s =

√
ε/λ,

x1,2(ER) =
√
a2 ∓ s , x1 ≃ 1.23, x2 ≃ 2.55.

The WKB barrier action is

Sb(ER) =

∫ x2

x1

√
2 [V (x)− ER ] dx ≈ 0.277.

(Any standard quadrature gives this number to three significant digits.)

Step 3: “attempt rate” in the pocket. The classical oscillation period in the pocket
at energy ER is

Tin(ER) =
√
2

∫ x1

−x1

dx√
ER − V (x)

≈ 12.02,

so one encounter with a given barrier occurs roughly once per period. Hence the per–barrier
attempt rate is 1/Tin ≈ 0.0832. (Equivalently, the angular frequency 2π/Tin ≈ 0.523; some
texts count both sides and use 2/Tin. We quote the single–barrier convention to match our
numerics below.)
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Step 4: Gamow width. With WKB transmission probability T (ER) ≈ e−2Sb ,

ΓWKB ≈ 1

Tin(ER)
e−2Sb(ER).

Numerically,

e−2Sb ≈ e−0.554 ≈ 0.574, ΓWKB ≈ 0.0832× 0.574 ≈ 0.048.

E
(top)
R ≈ −0.037, ΓWKB ≈ 4.8× 10−2

11



State preparation
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Big picture

We use a minimal 4-level truncation of the harmonic oscillator (two qubits) and add an anharmonic
potential:

H0 =
1
2 p

2 + 1
2 ω

2x2 ⇒ Hλ = H0 + λx4, (1)

with ω = 1. Our goal is to prepare the true interacting eigenstates |E0(λ)⟩ and |E1(λ)⟩ by an
adiabatic ramp starting from the free eigenstates |0⟩ and |1⟩. We mirror the Jordan–Lee–Preskill
(JLP) logic in a baby setting and then outline how the same steps translate to a hardware-friendly
algorithm in Qiskit (no code in this note). Idea is to learn how to prepare initial states (later we
will need to prepare scattering states)— for now we will see how the adiabatic method leads to the
true eigenstates. Before we do that, we will discuss another way to prepare the groundstate–the
Variational Quantum Eigensolver (VQE), which forms a mainstay in Quantum Machine Learning.

1 Variational Quantum Eigensolver (VQE)

Problem statement

Given a Hamiltonian H, the variational quantum eigensolver (VQE) searches for low-energy eigen-
states—usually the ground state—by minimizing the expectation value

E(θ) = ⟨ψ(θ)|H |ψ(θ)⟩
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over a family of trial states |ψ(θ)⟩. In practice, |ψ(θ)⟩ is prepared by a short, tunable quantum
circuit, and the parameters θ are adjusted to push the energy down.

Core strategy

Ansatz choice. We decide how to build the trial state from a simple reference, for example

|ψ(θ)⟩ = U(θ) |ref⟩.

The unitary U(θ) can be “hardware-efficient” (layers of single-qubit rotations and entangling gates
that run well on the device) or “physics-informed” (gates generated by operators that resemble the
problem terms and that preserve symmetries such as particle number, parity, or momentum). For
oscillators and fermions, natural building blocks include squeezing/Kerr or Bogoliubov-type layers.

Hamiltonian into Pauli strings. We rewrite the Hamiltonian as a sum of simple measurement
terms,

H =
∑
j

cjPj ,

where each Pj is a tensor product of I,X, Y, Z on different qubits (a Pauli string). This lets us
estimate ⟨H⟩ by measuring ⟨Pj⟩ on the quantum device and summing with the known coefficients
cj .

Hybrid loop. On the quantum computer we prepare |ψ(θ)⟩ and measure groups of commuting
Pj many times (shots) to estimate their expectation values. On the classical computer we combine
these data to form

E(θ) =
∑
j

cj⟨Pj⟩,

and update θ using a standard optimizer (for example, SPSA, Adam, COBYLA, or L-BFGS). We
repeat until the energy stops improving; the lowest value found is the VQE estimate of the ground
energy.

Diagnostics. A practical check is the energy variance

Var(H) = ⟨H2⟩ − ⟨H⟩2,

which tends to zero as the state approaches a true eigenstate. Enforcing known symmetries in the
ansatz or penalizing symmetry violations also helps keep the search within the desired sector.

Where/why a quantum computer helps (and where classical helps)

Quantum lift. The device can compactly prepare highly entangled trial states that are hard to
represent exactly on a classical computer (exact simulation cost grows like 2n for n qubits). It also
provides the needed expectation values ⟨Pj⟩ by sampling the physical circuit, which remains feasible
even when the ansatz is beyond classical simulability.

Classical lift. The classical side steers the optimization (step sizes, stopping criteria), decides
how to group commuting terms and allocate shots (more where the variance is large), and applies
lightweight error mitigation to the measured data. The result is a tight quantum–classical part-
nership: the quantum hardware supplies samples from complex states, while the classical computer
performs optimization and bookkeeping.
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How VQE complements Adiabatic State Preparation (ASP)

Adiabatic state preparation reaches a target eigenstate by slowly changing a Hamiltonian H(s) from
something simple to the problem of interest. The required runtime is set by the smallest spectral
gap along the path. This mirrors field-theory workflows (free → interacting) and is well suited to
preparing vacua and seeds for scattering.

VQE, in contrast, aims for low-depth approximations to the same eigenstates, which is attractive
on noisy devices. The two approaches fit together: a good VQE state has decent overlap with the
target and can “warm-start” a shorter adiabatic ramp or a more efficient phase-estimation refinement.
For ϕ4 in 1+1 dimensions, a sensible workflow is: VQE to find a variational vacuum, optional short
adiabatic refinement along λ, then quantum phase estimation to pin down energies precisely.

VQE ↔ Quantum Machine Learning (QML): the same hybrid pattern

Many near-term QML methods have the same structure as VQE: a parameterized quantum circuit
trained by a classical optimizer. The objective changes from an energy to a task loss computed from
measurement outcomes on input data. If xi are data and yi are labels, a typical setup minimizes

L(θ) = 1

N

N∑
i=1

ℓ(yi, measure[U(θ)Ufeat(xi) |0⟩ ]) ,

with ℓ a standard loss (e.g. cross-entropy or mean-squared error). The same design choices and
caveats recur: ansatz expressivity versus trainability, measurement cost and shot allocation, gradient
estimation (parameter shift or SPSA), and pitfalls such as barren plateaus. QML adds explicit data-
embedding circuits Ufeat(x), kernel approaches where the device evaluates inner products without
training, and more linear-algebraic algorithms that become particularly powerful in the fault-tolerant
regime.

1.1 Quantum Chemistry on Real Hardware: VQE as the Workhorse

Timeline (6 bullets)

• 2014 — First VQE experiment (photonic): proof-of-principle hybrid VQE estimating a
simple molecular energy (He–H+).

• 2016 — Superconducting H2 curve: head-to-head VQE (UCC) vs Phase Estimation on
a multi-qubit chip; full potential energy curve.

• 2017 — Hardware-efficient VQE (IBM): shallow, device-native ansatz computes molecules
up to BeH2 (6 qubits, 100+ Pauli terms).

• 2019 — ADAPT-VQE: adaptive, problem-tailored ansatz that grows operator-by-operator
from a pool (chemistry-inspired excitations).

• 2020 — Trapped-ion H2O: water ground energy on an ion-trap QPU, approaching chemical
accuracy with careful co-design/mitigation.

• 2023–2024 — Scaling & mitigation focus: improved adaptive ansätze, error-mitigation
pipelines, and realistic error targets for advantage.

3



Why VQE is the “bedrock” for chemistry

• Chemistry Hamiltonians map to sums of Pauli strings; VQE trades long coherent evolution
for short circuits + many measurements.

• The hybrid loop (quantum state prep & expectation estimation + classical optimization/shot
allocation/mitigation) matches NISQ realities.

• As hardware improves, VQE scales via better ansätze (UCC variants, ADAPT), embedding/active-
space tricks, and mitigation to reach target accuracies.

Reading list

• Foundational demos

– Peruzzo et al. (2014): Variational eigenvalue solver on a photonic processor (first VQE
chemistry demo; He–H+).

– O’Malley et al. (2016): H2 potential curve with VQE (UCC) and Phase Estimation on
superconducting qubits.

– Kandala et al. (2017): Hardware-efficient VQE on IBM; molecules up to BeH2 with
shallow circuits.

– Nam et al. (2020): Trapped-ion VQE for H2O; co-design and mitigation toward chemical
accuracy.

• Methods & advances

– Grimsley et al. (2019): ADAPT-VQE — adaptive, problem-tailored ansatz construction.
– Follow-ups (2023+): ADAPT-VQE under realistic noise; operator pools, ordering, and

convergence behavior.

• Noise, mitigation, outlook

– Recent reviews on error mitigation for chemistry VQE: readout mitigation, randomized
compiling, zero-noise extrapolation, symmetry checks.

– Assessments of gate-error targets and resource estimates for quantum advantage in chem-
istry workflows.

2 The remainder term in the Adiabatic theorem

In the previous lecture, we saw

ċm(t) +

(
i

ℏ
Em(t) + ⟨m(t)|ṁ(t)⟩

)
cm(t) =

∑
n̸=m

⟨m(t)|Ḣ|n(t)⟩
∆mn

cn(t) , (2)

where ∆mn = Em − En. Write
cm(t) = dm(t)eiθm(t)eiγm(t) , (3)

where θm, γm were introduced in the previous lecture. Then eq.(2) becomes

ḋm(t) =
∑
n̸=m

⟨m(t)|Ḣ|n(t)⟩
∆mn

dn(t)e
i(θn(t)−θm(t))ei(γn(t)−γm(t)) . (4)
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Integrating both sides between 0, T we have

dm(T )− dm(0) =
∑
n̸=m

∫ T

0
dt

⟨m(t)|Ḣ|n(t)⟩
∆mn

dn(t)e
i(θn(t)−θm(t))ei(γn(t)−γm(t)) (5)

Now let s = t/T and write H(t) = H̃(s); then Ḣ = (1/T ) ∂sH̃ and

dm(T )− dm(0) =

∫ 1

0
ds

∑
n ̸=m

⟨m(s)|∂sH̃(s)|n(s)⟩
∆mn(s)

dn(s)e
iT (θn(s)−θm(s))eiT (γn(s)−γm(s)).

One can invoke the Riemann-Lebesgue lemma to say that the rhs goes to 0. But without invoking
that, let us see how far we can proceed.

Applying the triangle inequality we get

|dm(T )− dm(0)| ≤
∫ 1

0
ds

∑
n̸=m

| ⟨m(s)|∂sH̃(s)|n(s)⟩
∆mn(s)

dn(s)| . (6)

Now the maximum value of |dn| is 1. So replacing on the rhs we have

|dm(T )− dm(0)| ≤
∫ 1

0
ds

∑
n̸=m

| ⟨m(s)|∂sH̃(s)|n(s)⟩
∆mn(s)

| . (7)

This is the best we can do with these rudimentary tools. The bare minimum requirement from
here that must be obeyed is that each term in the summand must be small and that the sum
over n converges. Only then, we can claim that |dm(T ) − dm(0)| → 0 as needed by the adiabatic
approximation to hold.

Conditions which may work for a negligible remainder.

1. Gap condition: ∆min > 0 on [0, 1] (no crossings with the target level).

2. Smooth slow drive: H(t) = H̃(t/T ) with bounded ∂sH̃ are finite.

3. Small matrix elements: | ⟨m(s)|∂sH̃(s)|n(s)⟩
∆mn(s)

| ≪ 1 when s ∈ [0, 1] for all m ̸= n.

3 Time-ordered evolution in ASP

In an adiabatic ramp we let the Hamiltonian vary smoothly along the parameter s = t/T ∈ [0, 1].
The Schrödinger equation reads

i ∂s |ψ(s)⟩ = T H(s) |ψ(s)⟩, (8)

whose exact solution is the time-ordered (parameter-ordered) exponential

|ψ(s)⟩ = T exp
(
− i T

∫ s

0
du H(u)

)
|ψ(0)⟩. (9)

Only when [H(u), H(v)] = 0 for all u, v can the ordering symbol be dropped and (9) collapse to a
single exponential. Thus writing e−iH[s] s is not correct in general; at best it is a mnemonic for the
piecewise-constant approximation described next.
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Product formula (what we actually implement). Discretize the ramp into M slices of width
∆s = 1/M (so ∆t = T/M), pick sk = (k − 1

2)∆s, and freeze the Hamiltonian on each slice:

Uk ≡ exp
(
− i∆tH(sk)

)
, U(1) ≈ UMUM−1 · · ·U1. (10)

As ∆t → 0 this ordered product converges to (9). The leading corrections are governed by
commutators [H(s), H(s′)]; in the Magnus/Dyson expansion the first nontrivial term is Ω2 =

−T 2

2

∫ s
0

∫ u
0 du dv [H(u), H(v)].

Within each slice: Strang splitting. Writing H(s) = Hon(s) +Hbond(s) we approximate Uk by
the symmetric (second-order) Trotter step

Uk = e− i∆t
2
Hon(sk) e− i∆tHbond(sk) e− i∆t

2
Hon(sk) + O(∆t3), (11)

which yields a global error O(∆t2) over the full ramp when H(s) is smooth and commutators are
bounded. This is precisely the “half onsite / full bond” update used in the notebook.

4 Adiabatic state preparation (ASP) and the counterterm idea

Adiabatic path. Pick a smooth schedule s∈ [0, 1] and evolve with

H(s) = H0 + λ(s)x4 + 1
2 δm

2(s)x2. (12)

During the turn-on of λ, the quartic term induces an effective quadratic shift. A simple way to hold
the gap roughly fixed while dressing is to add a quadratic counterterm δm2(s) ≈ −12λ(s) ⟨x2⟩0; for
ω=1, ⟨x2⟩0 = 1

2 , so δm2(s) ≈ −6λ(s).

Two-stage schedule (bare target). If your target Hamiltonian is the bare Hλ = H0 + λx4, do
this:

1. Stage 1 (s ∈ [0, 1]): turn on λ and the counterterm together (keeps the gap flat).

2. Stage 2 (s ∈ [1, 2]): hold λ fixed and ramp the counterterm back to zero, so the final Hamil-
tonian is exactly Hλ.

This is what our Mathematica cell below implements.

Midpoint/Strang slicing. Discretize total time T into N slices of length ∆t and approximate
the time-ordered exponential by a product of short propagators e−iH(sj)∆t evaluated at midpoints
sj . This gives second-order accuracy in ∆t.

4.1 Mathematica cell (drop-in) and explanations

The cell builds x, H0, x4, the two-stage schedules, and the time-ordered unitary. Variables avoid
underscores; underscores only appear in function patterns (Mathematica syntax).
ClearAll["Global`*"];

(* --- Model: 4-level HO + anharmonic x^4 --- *)
\[Lambda] = 0.10;

x = 1/Sqrt[2] {{0, 1, 0, 0},
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{1, 0, Sqrt[2], 0},
{0, Sqrt[2], 0, Sqrt[3]},
{0, 0, Sqrt[3], 0}};

H0 = DiagonalMatrix[{0,1,2,3}] + 1/2 IdentityMatrix[4];
V4 = x.x.x.x;

(* Final interacting Hamiltonian and exact eigenpairs for checking *)
Hlam = N[ H0 + \[Lambda] V4 ];
{evalF, evecF} = Eigensystem[Hlam];
ordF = Ordering[evalF];
E0f = evalF[[ordF[[1]]]]; v0f = evecF[[ordF[[1]]]];
E1f = evalF[[ordF[[2]]]]; v1f = evecF[[ordF[[2]]]];

(* --- Two-stage schedules: on; then counterterm off --- *)
r[s_] := 3 s^2 - 2 s^3; (* smooth 01 with zero slopes *)
lamOf[u_] := Piecewise[{

{\[Lambda] r[u], 0 <= u <= 1},
{\[Lambda], 1 < u <= 2}

}];
dm2Of[u_] := Piecewise[{

{-6 \[Lambda] r[u], 0 <= u <= 1}, (* turn CT on *)
{-6 \[Lambda] (1 - r[u - 1]), 1 < u <= 2} (* ramp CT to 0 *)

}];

(* Build the slice Hamiltonian at parameter u (u in [0,2]) *)
Hslice[u_, useCT_:True] := N[ H0 + lamOf[u] V4 +

If[useCT, 1/2 dm2Of[u] (x.x), ConstantArray[0.,{4,4}]] ];

(* Time-ordered unitary via midpoint rule over both stages *)
tPrep = 25.0; nSteps = 250; (* total time; steps per stage *)
UAdiabaticBare[useCT_:True] := Module[{U = IdentityMatrix[4], dt, u},

dt = tPrep/(2 nSteps);
Do[

u = (j - 0.5)/nSteps; (* u runs through (0,2) midpoints *)
U = MatrixExp[-I Hslice[u, useCT] dt] . U

, {j, 1, 2 nSteps}];
U

];

(* Prepare |E0> and |E1> by evolving |0> and |1> *)
{eval0, evec0} = Eigensystem[N[H0]]; ord0 = Ordering[eval0];
g0 = evec0[[ord0[[1]]]]; g1 = evec0[[ord0[[2]]]]; (* free |0>, |1> *)

Uct = UAdiabaticBare[True];
Unct = UAdiabaticBare[False];

psi0 = Normalize[Uct . g0]; psi1 = Normalize[Uct . g1];

F0 = Abs[Conjugate[v0f].psi0]^2; F1 = Abs[Conjugate[v1f].psi1]^2;
Grid[{{"fidelity |<E0|>|^2", NumberForm[F0,{4,3}]},

{"fidelity |<E1|>|^2", NumberForm[F1,{4,3}]}} , Frame->All]

Line-by-line logic.

• r[s_] is a smooth ramp 0→1 with zero slope at endpoints.

• lamOf[u_] turns λ on in u ∈ [0, 1] and holds it fixed for u ∈ [1, 2].
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• dm2Of[u_] turns the counterterm on during [0, 1] and ramps it back to zero during [1, 2]. Thus
the final Hamiltonian is exactly Hλ.

• Hslice[u_,useCT_:True] builds the numeric 4×4 matrix for a slice. No underscores are used
in variable names (only in patterns).

• The midpoint product MatrixExp[-I Hslice dt] produces a second-order accurate time-
ordered unitary; within each slice the exponential is exact (no Trotter error).

4.2 What the adiabatic theorem buys you

Start in an eigenstate of H0 (even/odd parity). If the gap to the nearest unwanted level stays open
and the ramp is slow enough, the evolved state tracks the instantaneous eigenstate and ends at
|En(λ)⟩ up to a global phase. The counterterm keeps the gap and dispersion flatter during the
turn-on, reducing diabatic error at fixed runtime.

5 How to implement ASP on Qiskit (algorithm sketch, no code)

We describe how to turn the Mathematica ASP into a hardware-friendly 2-qubit routine.

1) Map the model to qubits. Use the 4-level HO truncation with computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}
identified with levels 0, 1, 2, 3. The operator x is the standard truncated ladder combination; build
H0 and V4 = x4 as 4× 4 matrices.

2) Choose a two-stage schedule. As above: turn on λ and the counterterm together, then
ramp the counterterm to zero while holding λ fixed, so the final Hamiltonian is Hλ. Discretize total
time T into 2N slices.

3) Per-slice compilation (two options).

1. Exact per-slice exponential (opaque unitary). For education/simulation, exponentiate each
numeric 4 × 4 slice H(uj) via eigendecomposition and append the resulting unitary on two
qubits. (Great for sanity checks; not hardware-native.)

2. Pauli decomposition + product formula. ExpandH(uj) =
∑

α cα(uj)Pα with Pα ∈ {I,X, Y, Z}⊗2,
then implement a first/second-order Trotter step e−iH∆t ≈

∏
α e

−icα∆t Pα with standard two-
qubit patterns for e−iθ σa⊗σb . This is hardware-native and what scales to larger registers.

4) Prepare the starting state. For |E0⟩, start in |00⟩. For |E1⟩, apply X on the least significant
qubit to prepare |01⟩.

5) Apply the adiabatic unitary. Loop over slices j = 1, . . . , 2N and apply the short-time
unitary for each H(uj) using your chosen compilation. Time ordering is achieved by left-multiplying
the most recent slice.

6) Verify preparation. On a simulator: compute the overlap with exact eigenvectors of Hλ.
On hardware: measure a simple eigen-residual ∥Hλ |ψ⟩ − E |ψ⟩∥ via linear-combination-of-unitaries
(LCU) tricks or compare short-time phases under e−iHλdt. In practice, preparing |E0⟩ is easier (large
gap, parity).
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Notes on depth and noise. Second-order product formulas keep depth modest. If you want to
reduce depth further, you can replace each slice by a shallow brickwall variational unitary trained
to match e−iH∆t only on the states of interest ; this trades exactness for robustness—useful on NISQ
devices.

6 Nine mini-labs you can run next

Once |E0⟩ and |E1⟩ are available, here are nine JLP-flavored exercises:

1. Iterative phase estimation (IPEA) on |E0⟩ , |E1⟩.

2. Form factor ⟨E0|x|E1⟩ via a Hadamard test.

3. Spectral function Ax(ω) from Cxx(t) (Hann window + FFT).

4. Loschmidt echo L(t) = | ⟨ψ|U †
exactUapprox |ψ⟩ |2.

5. Berry phase by cycling parameters (e.g. a loop in (λ, ω)).

6. Fidelity susceptibility χF from overlaps at λ and λ+ ϵ.

7. Collapse and revival under Kerr nonlinearity (monitor ⟨x(t)⟩).

8. OTOC C(t) = ⟨[x(t), p(0)]†[x(t), p(0)]⟩.

9. Compile-vs-variational showdown: Strang vs exact vs learned shallow step.

7 Adiabatic eigenstate preparation on a JLP position grid (uniform
schedule)

Goal. Prepare the lowest eigenstates of

H(λ) = 1
2 Π

2 + 1
2 Φ

2 + λΦ4

directly in the JLP position encoding, using a uniform time schedule. This is the exact machinery
we will reuse in 1+1D ϕ4.

Discrete setup and the only symmetry you must check

Choose N = 2nq grid points with half-width ϕmax. We recommend the midpoint grid

ϕj = −ϕmax +
(
j + 1

2

)
∆ϕ, ∆ϕ =

2ϕmax

N
, j = 0, . . . , N − 1,

so the computational basis |j⟩ coincides with |ϕj⟩. Define

Φ = diag(ϕ0, . . . , ϕN−1), Π2 = F †diag(p20, . . . , p
2
N−1)F,

where F is the local nq-qubit QFT and pm = 2π
2ϕmax

m in the usual symmetric ordering. Then
H0 =

1
2Π

2 + 1
2Φ

2 and H(λ) = H0 + λΦ4.
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Parity (do this once). On the midpoint grid, discrete parity is

Pmid |j⟩ = |N−1−j⟩.

With the spectral kinetic defined above, [H(s), Pmid] = 0 (to machine precision) for all paths we
use; parity is exactly conserved.1

Path and uniform time schedule

We prepare SHO first (S0a), then (optionally) turn on the quartic (S1/S2). The schedule is uniform;
no gap sampling.

1. S0a (SHO builder) Turn on kinetic only:

HS0a(s) =
1
2 Φ

2 + r(s) 1
2 Π

2, r(s) = 3s2 − 2s3, s ∈ [0, 1].

2. S1 (λ on; optional CT)

HS1(s) = H0 + λ r(s) Φ4 + 1
2 δm

2(s) Φ2,

with a simple counterterm δm2(s) ≈ αλ r(s) (tadpole-motivated, α ∼ −6 for ω=1) to keep
the gap stable if you want to be aggressive with runtime.

3. S2 (set the target)
HS2(s) = H0 + λΦ4 + 1

2 δm
2(1−r(s)) Φ2.

For the bare target end with δm2 → 0; for the normal-ordered target, keep it.

Uniform schedule (what we actually implement). Pick total time T and slice count n. Use
a midpoint product with uniform nodes

sj =
j − 1

2

n
, ∆t =

T

n
, U(T ) ≈

n∏
j=1

exp
[
− iH(sj)∆t

]
.

For S0a, this uniform scheme already gives F ≈ 1 on small grids (e.g. N = 4−8) with moderate T ;
no “adaptive” bells and whistles are required.

One Strang slice (what the circuit actually does)

For any slice parameter u and step ∆t:

e−iH(u)∆t ≈ e−iV (Φ;u)∆t
2 F †e−i 1

2
P 2∆tF︸ ︷︷ ︸

local QFT block

e−iV (Φ;u)∆t
2 , V (Φ;u) ∈ {1

2Φ
2, λΦ4, 1

2δm
2(u)Φ2}.

Only primitives you’ll reuse in ϕ4: position-diagonal phase banks, local QFTs, and diagonal mo-
mentum phases.

1If you instead use the edge-inclusive grid ϕj = −ϕmax + j∆ϕ, either swap Π2 for the periodic finite-difference
Laplacian (circulant second derivative), or change P to the wrap map j 7→ (−j) mod N . The point is: pick a kinetic
and parity that commute on your discrete space.
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Starters (even/odd) and what to expect

Because parity is conserved, choose

even:
|j⋆⟩+ |N−1−j⋆⟩√

2
, odd:

|j⋆⟩ − |N−1−j⋆⟩√
2

,

where j⋆ is the bin nearest ϕ = 0. Under S0a with a uniform schedule, these flow into |E0⟩ and |E1⟩
of H0 with high fidelity for modest T (we verified this numerically in Mathematica).

Errors (short)

Adiabatic error scales like εad ∼ maxs ∥∂sH∥/(T ∆(s)2); Strang error is O(∆t2). On our small
grids and gentle S-curve, a uniform schedule with a few hundred slices is enough to reach F ≈ 1.
Adaptive pacing is an optional optimization for larger N , tighter T , or strong λ.

Mathematica code for both methods of state preparation (oscillator basis and field
basis) will be shared. QISKIT demo will be given on Friday.

We will start discussing ϕ4 theory as well (lecture 19 in the list of lectures).
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ϕ4 theory in 1+1 Dimensions

LECTURE NOTES

1 From many anharmonic oscillators to scalar ϕ4

Motivation. We just mastered the single-site anharmonic oscillator (AHO). The natural next step
is a lattice of AHOs. If we simply stackN copies, nothing talks to anything: H =

∑
j HAHO(ϕj , πj).

To make physics, we couple neighbors. The simplest choice is a bilinear spring:

H =

N∑
j=1

[
1
2π

2
j + V (ϕj)

]
+

κ

2

N∑
j=1

(ϕj+1 − ϕj)2, V (ϕ) = 1
2µ

2
0ϕ

2 + g0 ϕ
4.

Cartoon: a chain of AHOs (sites) joined by springs (the gradient term).

1.1 Continuum limit: why this is scalar ϕ4

In order to get the continuum limit we write xj = ja and map

ϕj →
√
aϕ(xj) , πj →

√
aπ(xj) ,

∑
j

→ 1

a

∫
dx, (1)

which ensure that
[ϕj , πk] = δjk −→ [ϕ(xj), π(xk)] = iδ(xj − xk) . (2)

This leads to
N∑
j=1

[
1
2π

2
j + V (ϕj)

]
−→

∫
dx

[
1

2
π2 +

1

2
µ2
0ϕ

2 + g0aϕ
4

]
. (3)

Finally, ϕj+1 − ϕj = a ∂x
√
aϕ+ a2

2 ∂
2
x

√
aϕ+ · · · . Then∑

j

(ϕj+1 − ϕj)2 → a2
∫
dx (∂xϕ)

2 + O(a3).

After parameter redefinitions g0a 7→ g, κa2 → v2, the leading continuum Hamiltonian density is

H = 1
2π

2 + v2

2 (∂xϕ)
2 + 1

2µ
2
0ϕ

2 + g ϕ4 + c4(∂
2
xϕ)

2 + · · ·︸ ︷︷ ︸
irrelevant in 1+1D

.

A quick clarification on nomenclature. The Hamiltonian density has units of ML−1. In natural
units where c = 1, ℏ = 1, this is just M2. ∂x has dimensions of M . Thus, ϕ is dimensionless if κ
is dimensionless and µ0 has dimensions of mass. This means g has dimensions of M2 while c4
has dimensions of M−2. Operators in the Hamiltonian which have negative mass dimensions are
called “irrelevant” as their importance diminishes at low energies. Conversely, operators with
positive mass dimensions are called “relevant” and zero mass dimensions are called “marginal.”

Message: a chain of AHOs with the simplest spring becomes ϕ4 plus higher-derivative
corrections; the latter are irrelevant at long distances, so the infrared theory is the familiar scalar
ϕ4.
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Figure 1: From a lattice of AHOs with nearest–neighbor coupling κϕjϕj+1 and spacing a to the

continuum field ϕ(x) with gradient energy v2

2 (∂xϕ)
2 and onsite potential V (ϕ) = 1

2µ
2ϕ2 + gϕ4.

AHO → field. One AHO ⇒ one normal mode. Many AHOs + springs ⇒ a band
of modes that in the long-wavelength limit look like a continuum field with gradient
energy. The onsite quartic becomes the field interaction gϕ4.

2 Adiabatic preparation on the AHO lattice: correlations
and entanglement

Aim. Before discussing renormalization and counterterms, it is useful to see a concrete application
in which nontrivial field-theoretic structure emerges from the AHO lattice in a controlled way.
The adiabatic state preparation (ASP) protocol does exactly this: starting from the strictly
solvable product ground state at zero coupling, it turns on the nearest–neighbor interaction slowly
and lets correlations and entanglement build up.

Model and conventions. We keep the lattice Hamiltonian introduced above, now viewed as a
one–parameter family:

H(κ) =

N∑
j=1

[
1
2 π

2
j + V (ϕj)

]
+

κ

2

N−1∑
j=1

(
ϕj+1 − ϕj

)2
, V (ϕ) = 1

2 µ
2
0 ϕ

2 + g0 ϕ
4. (4)

At κ = 0 the ground state is the direct product of single–site AHO ground states, exactly known
and easy to prepare. Throughout, µ 2

0 denotes the coefficient of the quadratic term (so the code
variable mu0 corresponds to µ 2

0 ), and g0 is the onsite quartic strength. No continuum limit or
field redefinitions are invoked in this section.

Adiabatic path and schedule. ASP varies the coupling as κ : 0 → κf over a total time T ,
for example by setting H(t) = H(κ(s)) with s = t/T ∈ [0, 1]. A smooth schedule with endpoint
flattening,

κ̇(0) = κ̇(1) = 0,

suppresses boundary terms in the adiabatic remainder (see the “adiabatic remainder” subsection
for the 1/T vs. 1/T 2 scaling). For any finite chain the many–body gap never strictly closes;
nonetheless, near critical regimes larger T is needed to keep diabatic errors small.
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What to measure along the ramp. The cleanest, renormalization–free witness here is the
half–chain entanglement entropy,

S1/2(κ) = −Tr ρ[1..N/2](κ) ln ρ[1..N/2](κ), (5)

which is exactly zero at κ = 0 (product state), then rises as correlations spread, and saturates
once the correlation length is shorter than the system size (area law away from criticality).
In the accompanying notebook, S1/2(κ) is computed with a minimal matrix–product–state
(MPS) implementation; a brief MPS primer and the exact algorithmic steps are summarized in
Appendix A to maintain continuity here.

Figure 2: Half-chain EE vs κ.

What to expect (AHO continuity). For small κ, the first nontrivial physics is inherited from
a single AHO matrix element: the dipole f1 = ⟨1|ϕ|0⟩AHO. The one–particle hopping scale is
proportional to κ |f1|2, so softening the onsite problem (smaller µ 2

0 or, at fixed µ 2
0 , smaller effective

AHO gap) enhances the growth of S1/2, while increasing g0 at fixed κ typically suppresses it by
enlarging single–site gaps and shrinking f1. Thus the κ–ramp provides a direct, nonperturbative
bridge from “many decoupled AHOs” to an interacting many–body ground state with extended
correlations, without invoking any continuum language. The figure below validates this intuition.
For smallish κ, larger λ’s give smaller entanglement since the entanglement does not spread as
much across the chain.

Now at this point, one could dive into the continuum limit and start discussing renormalization.
However, we will stick to the lattice for now.
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3 Physical parameters

How do we define the physical mass of a particle by considering the lattice perspective? In the
relativistic limit we have the relation

E2 = p2 +m2 . (6)

This is what we will leverage. First we need to introduce momentum on the lattice. This is easily
done by doing a discrete Fourier transform:

ϕj =
1√
N

∑
q

eiqja φq , q = 2π
Nan, n = 0, . . . , N−1 . (7)

Using
N∑
j=1

ei(q+q′)a = Nδq+q′,0 , (8)

and introducing the notation |bq|2 = bqb−q, we find that the quadratic part of the Hamiltonian
can be written as:

H2 =
1

2

∑
q

(
|πq|2 + ω2

q |φq|2
)
, ω2

q = µ2
0 + 2κ

(
1− cos qa

)
.

Notice from here that in the a→ 0 limit,

ω2
q → µ2

0 + (κa2)︸ ︷︷ ︸
v2

q2,

which is the relativistic form we expect in the continuum. Let us define E0 to be the ground-state
energy (with λ turned on) and E1(p) be the energy of the lowest odd Z2 excitation at momentum
p. Then we should define the physical mass mphys as:

mphys = E1(p = 0)− E0 . (9)

A consistency check is that for low values of p, we should have E1(p)− E0 ≈
√
m2

phys + p2. Now

notice that in introducing a momentum, we were forced to introduce the lattice spacing into the
story. The total length of the space that we are considering is L = Na. The correlation length
between excitations on dimensional grounds goes like 1/mphys. We need L ≫ 1/mphys. This
needs to be ensured for consistency. We know how to use the adiabatic theorem to get the true
ground state with λ ̸= 0 for the AHO. For the ϕ4 case, we adopt the same route. We initiate all
j-sites to be in the ground state and then use ASP.

3.1 One particle state

In a free scalar quantum field theory, we define a 1-particle state at momentum p to be

|p⟩ = a†p|0⟩ . (10)

Now

a†p =
1√
N

N∑
j=1

eipxja†j , (11)

4



which gives

|p⟩ = 1√
N

N∑
j=1

eipxja†j |0⟩ =
1√
N

N∑
j=1

eipxj |0 · · · 1︸︷︷︸
j′th

· · · 0⟩ , (12)

where in the j′th term, j’th lattice site is in the first excited state and all the other sites are in the
ground state. Hence, in the free theory, the single particle state is a linear superposition in the
position basis as exhibited above. Now that we have the single particle state in the free theory,
we can use our friend the adiabatic theorem to perform ASP and get the true single particle state
in the interacting theory.

3.2 Bare parameters vs physical parameters

On the lattice we started off with the following parameters:

N,µ0, λ, κ . (13)

For convenience let’s set κ = 1, to admit a relativistic continuum limit. We introduced the lattice
spacing by considering the DFT. We have a box of size L = Na. Let’s keep the size of the
box fixed by fixing N, a. Then we are left with the “bare” parameters µ0, λ. In the discussion
above we introduced the physical mass mphys in terms of E1(0), E0 which are µ0, λ dependent.
It makes ample physical sense to say that we are given a particular mphys and we want to run
our simulations for this value. This gives us 1 condition for 2 bare parameters µ0, λ. We can
specify another physical condition by giving the value of the 2-2 scattering amplitude at some
centre-of-mass momentum p0. Using these to specifications, we can tune µ0, λ for our choice of
N, a. Then we can rerun for different a’s to approach the continuum limit.

3.3 What if the coupling is not just nearest neighbor?

Write the most general finite-range, translation-invariant quadratic form

Hnn =
1

2

R∑
r=1

ηr
∑
j

(ϕj+r − ϕj)2, ηr ≥ 0.

Fourier transforming gives a lattice “Laplacian” ω2(k) = µ2 + 4
∑

r ηr sin
2( rk2 ).

• Same universality (generic case). If ηr are short-ranged and positive, the small-k expansion
is

ω2(k) = µ2 + v2k2 + α4k
4 + · · · ,

so the continuum limit is the same ϕ4 up to irrelevant (∂2xϕ)
2 terms and a rescaled v. Emergent

Lorentz symmetry (linear dispersion) appears once you tune to the critical line (µ2 → µ2
c).

3.4 Lifshitz theories

Consider adding a next to nearest neighbor coupling:

κ

2
(ϕj+1 − ϕj)2 +

κ̃

2
(ϕj+2 − ϕj)2 . (14)

In the continuum limit this leads to[
]
κ

2
(a∂xϕ(x) +

a2

2
∂2xϕ(x))

2 +
κ̃

2
(2a∂xϕ(x) + 2a2∂2xϕ(x))

2

] ∣∣∣∣
x=xj

(15)
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Expanding and dropping the total derivatives ∂xϕ∂
2
xϕ = 1/2∂x(∂xϕ∂xϕ), and using ∂xϕ∂

3
xϕ =

∂x(∂xϕ∂
2
xϕ)− (∂2xϕ)

2 we can choose:

κ̃ = −1

4
κ , (16)

to be left with (∂2xϕ)
2 as the leading term. This is the Lifshitz Hamiltonian as the dispersion

relation will correspond to E ∼ k2.

4 The g0 ≫ 1 case

What happens when g0 ≫ 1? Is there another way to set up the problem more efficiently? This
question was briefly addressed in [1].

We start with our usual lattice Hamiltonian and do the following rescaling: ϕj → g
−1/6
0 ϕj ,

πj → g
1/6
0 πj we get

g
1/3
0 H =

∑
j

[
1

2
π2
j + ϕ4j

]
+

κ

g
2/3
0

[
1

2
(ϕj+1 − ϕj)2

]
(17)

With this rescaling, we have reorganized the perturbative expansion in a non-standard way, where
we can now treat the quadratic term as the perturbation. Even when we simulate on a quantum
computer, we can do ASP in this manner as the first part of the Hamiltonian we can handle
using approximate techniques.

A key point to note is that the perturbation is now on the gradient term which was responsible
for generating entanglement across the chain. The first piece is a local piece. As such in the limit
g0 ≫ 1, we have the situation where there is no entanglement! Let {|n⟩}n≥0 be the single-site
AHO eigenstates of hAHO = 1

2p
2+ 1

2m
2
0x

2+gx4 with energies εn. We use tensor products
⊗

j |nj⟩
as our unperturbed basis.

What small-κ gives you

(1) One-particle band from AHO data only. Create a single local excitation |1⟩ on site j
in the AHO ground-state sea:

|j⟩ =
⊗
ℓ ̸=j

|0⟩ℓ ⊗ |1⟩j .

Since ϕ is odd, ⟨1|ϕ|0⟩ ≡ f1 ≠ 0 while ⟨0|ϕ|0⟩ = 0. To first order in κ the bond ϕjϕj+1 hops this
excitation by one site; in momentum space

|k⟩ =
1√
N

∑
j

eikja |j⟩, E1(k) = ε1 − 2t cos(ka) + O(κ2),

with a hopping amplitude

t =
κ

a2
|f1|2, f1 = ⟨1|ϕ|0⟩AHO .

(2) Ground-state energy density (benchmarkable). Second-order perturbation theory
lowers the extensive ground-state energy by virtual odd-parity excitations on neighboring sites:

E0

N
= ε0 −

κ2

a4

∑
n odd

|fn|4

∆n
+ O(κ3), fn = ⟨n|ϕ|0⟩, ∆n = εn − ε0.
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This depends only on single-site spectra and overlaps. It’s a clean, reproducible target for
numerics and for QC validation.

5 Elastic two–particle scattering in 1+1 dimensions

We work in the symmetric phase of the scalar theory, where the physical one–particle excitation has
massm. The single–particle dispersion at small momentum is well–described by E(k) =

√
m2 + k2,

which we regard as a calibration: it defines what we mean by a particle and fixes the conversion
between total energy and relative momentum for the two–body problem. Throughout this
section we restrict attention to the elastic window 2m < Etot < 4m, so that two incoming
particles remain two outgoing particles. In 1+1 dimensions there is no scattering angle; elastic
two–body scattering depends on a single invariant, which can be taken as the relative momentum
k in the center–of–mass (COM) frame where the incoming four–momenta are (Ek,±k) with
Ek =

√
m2 + k2.

A conceptually clean way to define the scattering information is through the phase shift
δ(k). Intuitively, one may think in the relative coordinate x as follows: far from the short–range
interaction region the exact two–body wave is a superposition of free plane waves, and the effect
of the interaction is to imprint a phase on that wave. In practice, rather than reading this phase
from asymptotic real–line scattering, it is more robust to place the system on a ring of length
L and study its energy spectrum. The finite–volume energies then encode the same phase δ(k)
through a simple quantization condition that we now derive carefully.

Consider two identical scalar particles on a periodic line of length L. In the COM frame their
relative motion is described by a single coordinate x with periodic boundary conditions. Far from
the interaction region the relative wave solves the free Helmholtz equation and hence is a linear
combination of e±ikx. Matching the wave across the short–range region amounts to saying that
the outgoing wave has the same magnitude as the incoming wave (elastic unitarity) but acquires
a phase 2δ(k) when it has passed through the interaction zone and traversed the ring. Explicitly,
we have the general asymptotic solution:

ψ(x) = e−ikx ± S(k)eikx , S(k) = e2iδ±(k) . (18)

We put the box as x ∈ [−L/2, L/2] so that when L ≫ 1 we have x running from −∞ to +∞.
Then putting a hard wall at x = L/2 gives for the upper sign:

ψ(L/2) = 0 =⇒ 1 + e2iδ+(k)+ikL = 0 =⇒ 2δ+(k) + kL = (2n+ 1)π . (19)

We get a similar condition for the lower sign with 2nπ on the rhs. We can write the combined
condition in the schematic manner:

k L+ 2 δ(k) = π n, n ∈ Z. (20)

This equation is the 1+1D analogue of Lüscher’s relation and it encapsulates all elastic scattering
information in a single function δ(k). Operationally, one computes the two–particle energies
En(L) on a ring, converts each energy to a relative momentum via En(L) = 2

√
m2 + k2n, and

then solves (20) for δ(kn). Repeating this for several n or several volumes produces δ(k) on
a grid of momenta. The same relation also makes the appearance of two–body bound states
transparent: a level that approaches a value below 2m as L→∞ corresponds to a pole of the
scattering amplitude on the imaginary–k axis and is accompanied by a jump of δ(k) by π as k
passes through threshold, in accordance with the one–dimensional version of Levinson’s theorem.
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While the phase shift is the most compact language, it is often helpful to keep the equivalent
plane–wave picture in mind. For an incoming relative plane wave from the left, the exact solution
has the asymptotics

ψ(x→ −∞) = eikx + r(k) e−ikx, ψ(x→ +∞) = t(k) eikx,

where t(k) and r(k) are the transmission and reflection amplitudes. Elastic unitarity is simply
|t(k)|2 + |r(k)|2 = 1. For a parity–symmetric short–range interaction these amplitudes are
determined by a single phase; one convenient parametrization is

t(k) = eiδ(k) cos δ(k), r(k) = i eiδ(k) sin δ(k),

which makes |t|2 + |r|2 = 1 manifest and exhibits the direct correspondence between the fi-
nite–volume phase δ(k) in (20) and real–line scattering. If one prefers to work with an on–shell
contact amplitude T (k) for the relative motion, the mapping is equally simple:

T (k) = − 2k tan δ(k), t(k) =
1

1 +
i

2k
T (k)

, r(k) =
− i

2k
T (k)

1 +
i

2k
T (k)

. (21)

These identities are purely kinematical; no perturbative expansion is assumed. They are useful
because different non–perturbative routes naturally give access to different objects: finite–volume
spectra give δ(k) via (20), while real–time wave–packet experiments directly yield |t(k)|2 and
|r(k)|2. When both are available, one can extract δ(k) from either route and check consistency.

It is instructive to comment on the low– and high–energy limits. As k → 0, a short–range
interaction in one dimension tends to impede transmission; in the phase–shift language this is
reflected in δ(k) approaching an integer multiple of π

2 , so that either |t| → 0 and |r| → 1 or, in
the presence of special cancellations, transmission is enhanced. If a shallow two–body bound
state is present just below threshold, the phase rises rapidly through π in a small band of k above
zero, producing a pronounced low–energy structure in |t|2. In the opposite regime k →∞, the
interaction appears point–like and weak compared to the kinetic term; correspondingly δ(k)→ 0,
the reflection probability |r(k)|2 → 0, and |t(k)|2 → 1.

Everything in this section is agnostic to how the data are obtained. In a numerical lattice study
one may compute En(L) and use (20) to reconstruct δ(k). In a real–time study one may prepare
two narrow wave packets initially well separated and centered at ±k, evolve to late times, and
measure transmitted and reflected weights far from the interaction region. An optional and often
illuminating observable is the time delay, defined by τ(k) = 2 dδ

dE ; a positive delay corresponds
to lingering due to an effectively attractive interaction region, while a negative slope indicates
a repulsive bump, all consistent with causality bounds. For the purposes of these notes we
emphasize the phase shift extracted from finite–volume spectra as the primary non–perturbative
definition of elastic 2→2 scattering in 1+1 dimensions, and we use the plane–wave amplitudes
(t, r) mainly as an interpretive bridge.

Puzzle. In the single anharmonic oscillator (AHO) with λ > 0 there are no scattering
states—only a discrete ladder of bound levels. Yet in the lattice/field theory built from the same
onsite potential we speak freely of elastic 2→2 scattering, phase shifts, and transmission/reflection.
How can scattering suddenly appear if the local potential is still confining? What changed?

Answer. The AHO has no “away”: it is one coordinate in a confining well, so every normalizable
state is bound and there are no asymptotic plane waves. Scattering needs two ingredients that
the AHO lacks but the field theory has.
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First, motion. Turning on the nearest–neighbour “spring” term (κ > 0) couples sites and
creates extended normal modes labeled by a momentum k. Local excitations now propagate.
Second, asymptotic separation. On the infinite line, two widely separated one–particle wave
packets scarcely feel each other; their total energy Etot = 2

√
m2 + k2 depends continuously

on k. When they pass through the short–range interaction region (set by the local λϕ4), they
momentarily overlap and pick up a phase; before and after, they are again free and far apart.
That phase is the scattering information.

Two sanity checks close the loop. If you set κ = 0, sites decouple, nothing moves, and the very
notion of “incoming/outgoing” collapses—no scattering, just many independent AHOs. If you set
λ = 0 with κ > 0, excitations move but do not interact—there is a continuum of two–body energies
but zero phase shift. Only when κ > 0 and λ > 0 do you have both propagation and a localized
interaction, which is exactly when scattering in the sense of a phase (or transmission/reflection)
makes sense.

6 Scattering on a quantum computer

This section outlines two complementary ways to extract elastic 2→2 phase shifts for the 1+1D
lattice ϕ4 chain directly on a quantum processor. Both methods share the same state-preparation
backbone: prepare exact free-theory eigenstates and adiabatically dress them to the interacting
theory at the target couplings. Working at fixed lattice (N,κ, µ2

0, g0) and boundary condition
(periodic for sharp crystal momentum, or open for parity-resolved standing waves), one first
calibrates the single–particle dispersion E1(k), then proceeds with either a time–domain scattering
experiment or a finite–volume spectroscopic inversion.

Common preparation (adiabatic dressing from the free theory). At λ = 0 the chain
is quadratic. Prepare the exact free vacuum |0free⟩. A single free one–particle plane wave at

momentum k is a†k|0free⟩, where a
†
k = 1√

N

∑
j e

ikxja†j is the normal–mode raiser. For two particles

at total momentum P = 0, use a†ka
†
−k|0free⟩ or a narrow superposition around k. With the state

prepared, turn on interactions along a smooth schedule s ∈ [0, 1] 7→ λ(s) (and optionally co–tune
µ2
0(s)) using a boundary–flattened ramp so that leakage scales as O(1/T 2). Momentum and Z2

parity keep the evolution within the intended symmetry sector, adiabatically mapping free states
to their interacting counterparts.

A. Wave–packet scattering in real time

Prepare two narrow, counter–propagating one–particle packets centered at ±k0 and localized far
apart. Dress them adiabatically to the interacting theory at λ⋆, then evolve in real time under
H(λ⋆) long enough for the packets to separate again after a single collision. The phase shift is
read off in two equivalent ways. One can measure a Wigner time delay by comparing to a “free”
reference evolution that reproduces the measured E1(k); the peak of the cross–overlap C(∆t) =
⟨Ψfree(t+∆t)|Ψ(t)⟩ yields τ(k0) = 2 dδ

dE

∣∣
k0
, which integrates locally to δ(k0). Alternatively, one

can project the outgoing right–moving packet onto the corresponding freely propagated packet
and take the complex argument of the overlap; for a sufficiently narrow packet this phase equals
approximately 2 δ(k0). Both readouts use standard Hadamard–test primitives with a single clean
ancilla controlling short segments of the same Trotterized evolution used for state preparation.
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B. Finite–volume spectroscopy and the quantization condition

Instead of scattering, prepare symmetry–projected few–body states and measure energy levels.
First tabulate the single–particle dispersion E1(k) by dressing a†k|0free⟩ and estimating E1(k)−E0

via a short real– or imaginary–time autocorrelator or a Rayleigh quotient. Then prepare a
dressed two–particle, P = 0, even–parity state and extract the lowest two–body level E2(L) either
by a brief imaginary–time filter (single–exponential slope), a short real–time autocorrelation
(single–frequency fit), or a shallow variational deflation pass. In the elastic regime one solves
E2(L) = 2E1(k) for the relative momentum k, and substitutes into the finite–volume quantization
rule. For periodic boundaries,

kL+ 2 δ(k) = 2πn (n ∈ Z),

while for hard walls the even/odd standing–wave branches read kL + 2 δ+(k) = (2n+1)π and
kL+ 2 δ−(k) = 2nπ. Repeating the procedure for another level (or another L) over–constrains
the inversion and fixes the branch n.

Remarks on resources and stability. Both routes reuse the same registers and Trotter
blocks as ground–state ASP. The adiabatic map eliminates the need to guess interacting creation
operators; free–theory creators are exact and easy to synthesize as linear combinations of disjoint
local raisers. The time–domain route is conceptually transparent but requires longer coherent
evolution; the spectroscopic route trades long evolution for short filters or shallow variational
layers and an algebraic inversion. In practice it is effective to anchor δ(k) at one or two momenta
with finite–volume levels and confirm with a single wave–packet run at k0 via the time–delay or
asymptotic–phase measurement.

7 Bound states near threshold and the onset of inelasticity

We begin from the same kinematic calibration used in the elastic section: the physical one–particle
mass m defines the two–body threshold at total energy Etot = 2m. A two–particle bound state
is a normalizable state with energy EB < 2m. On the infinite line this means that the relative
momentum is purely imaginary, k = iκB with κB > 0, and the relative wave decays as e−κB |x|.
The corresponding total energy is

EB = 2
√
m2 − κ2B , 0 < κB < m,

so that “shallow” indicates κB ≪ m, i.e. a level just below threshold. It is useful to keep in
mind an intuitive picture that is continuous with the anharmonic–oscillator discussion: the
nearest–neighbour “spring” term (κ > 0) enables localized excitations to move, while the
short–range interaction acts only when two wave packets overlap. A bound state corresponds to
the situation where the interaction region is effectively attractive in the relevant channel, allowing
the two-particle relative coordinate to localize with a decaying envelope.

On a finite ring of length L a true bound state appears as a level that approaches a value
strictly below 2m as L→∞, with finite-size corrections that are exponentially small in L. The
exponential falloff is governed by the same decay constant κB : to leading order one finds

EB(L) = EB + c e−κBL + · · · ,

where c is a constant set by the wavefunction overlap around the periodic image. This behavior
sharply contrasts with the power–law 1/L shifts of ordinary scattering levels and provides a
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practical diagnostic in numerical data. In the absence of a level below 2m, one can nevertheless
detect the proximity of a shallow would–be bound state by examining the near–threshold elastic
phase. The one–dimensional quantization condition

k L+ 2 δ(k) = πn, En(L) = 2
√
m2 + k2,

continues to hold in the purely elastic window and, when a pole sits just below threshold at
k = iκB , enforces a rapid variation

δ(k) ≈ arctan
κB
k

+ δsmooth(k).

Here δsmooth(k) denotes any slowly varying background from short–range details. As k → 0+, the
pole term drives δ(k) toward π (modulo π), which is the one–dimensional version of Levinson’s
theorem for the even channel. In practical terms, very close to threshold the lowest scattering
level shifts in a way that mirrors the arctan(κB/k) shape when one varies L, and the Wigner
time delay τ(k) = 2 dδ/dE becomes large and positive. If the interaction is not attractive enough
to bind, δ(k) instead starts near 0 (modulo π) and changes only slowly with k.

For the symmetric phase of scalar ϕ4 in 1+1 dimensions with the standard sign convention
(λ > 0 repulsive at low energies), a two–particle bound state is not expected generically; indeed
in that case the near–threshold phase typically does not exhibit a rapid π rise, and all two–body
levels remain above 2m as L → ∞. The same diagnostics, however, do reveal bound states in
models or parameter regimes with effective attraction, such as the broken phase (kink–antikink
composites), sine–Gordon breathers, or lattice tunings that generate an attractive channel. The
analysis presented here is agnostic to the microscopic source of attraction and applies unchanged
once the elastic window is isolated.

The discussion so far has assumed total energies strictly below the first inelastic threshold. In
our setting with a Z2 symmetry forbidding odd particle-number changes, the next channel opens
at Etot = 4m with 2 → 4. Crossing this point alters two qualitative features. On the infinite
line, part of the outgoing flux can now populate multi–particle states, so the elastic two–body
amplitude is no longer a pure phase. It is convenient to write the elastic S–matrix as

Sel(k) = η(k) e2iδ(k), 0 ≤ η(k) ≤ 1,

where η(k) is the inelasticity. In the purely elastic window one has η(k) = 1; once Etot ≥ 4m
this factor drops below unity as probability leaks into four–particle states. On a ring, the simple
quantization condition kL+ 2δ = πn no longer suffices by itself in the vicinity of the threshold:
additional levels with predominantly four–body content crowd near E = 4m and produce a
pattern of avoided crossings with the two–body tower. This spectral clutter is the finite–volume
signature that inelastic channels have become relevant. For the purposes of a clean elastic analysis
it is therefore best to restrict attention to energies 2m < Etot < 4m, or to remain comfortably
below the first avoided crossings associated with four–body states in the finite–volume spectrum.

In practice, the two complementary non–perturbative routes of the previous section provide
everything one needs. From spectra, one either identifies a sub–threshold level and fits its
exponentially small L–dependence to extract κB , or reconstructs δ(k) from the quantized momenta
and examines its near–threshold behavior for the arctan(κB/k) fingerprint. From real–time
dynamics, one prepares slow, well–separated wave packets, observes the strong low–momentum
reflection and large positive time delay characteristic of a shallow bound state, and, when desired,
infers κB from the energy–dependence of the phase. All of these steps are phrased at the level of
observables and require no perturbative assumptions; they are designed to connect smoothly to
the computational strategies developed later while keeping the physics transparent.
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A A minimal MPS recipe for half–chain entanglement

This appendix summarizes, in self–contained form, the matrix–product–state (MPS) ingredients
used to produce the half–chain entanglement entropy S1/2(κ) curves in the earlier section. The
discussion assumes only standard linear algebra (singular–value decomposition) and the Schmidt
decomposition of bipartite quantum states.

Local Hilbert space and operators. Each lattice site carries a truncated single–oscillator
space

Hloc = span{|n⟩, n = 0, . . . , nmax}, d := nmax + 1.

In this basis it is convenient to use the standard harmonic–oscillator matrices

a|n⟩ =
√
n |n− 1⟩, a†|n⟩ =

√
n+ 1 |n+ 1⟩,

and then

ϕ =
a+ a†√

2
, π =

a† − a
i
√
2
, ϕ2 = ϕϕ, π2 = π π, ϕ4 = ϕ2ϕ2.

The lattice Hamiltonian used in the main text is

H(κ) =

N∑
j=1

[
1
2 π

2
j +

1
2 µ

2
0 ϕ

2
j + g0 ϕ

4
j

]
+

κ

2

N−1∑
j=1

(
ϕj+1 − ϕj

)2
,

with open boundaries unless stated otherwise.

MPS representation (open boundary). An MPS represents the many–body wavefunction
as

|Ψ⟩ =
∑
{nj}

(
A

[1]
1α1

(n1)
)(
A[2]

α1 α2
(n2)

)
· · ·

(
A

[N ]
αN−1 1(nN )

)
|n1n2 · · ·nN ⟩,

where each site tensor A[j](nj) has shape (Dj−1 × Dj) for every physical index value nj ∈
{0, . . . , d − 1}. The {Dj} are the bond dimensions; open boundaries mean D0 = DN = 1.
Small bond dimensions already capture low–entanglement states efficiently; bond growth reflects
increasing entanglement.

Canonical form and the Schmidt spectrum at a cut. Fix a bond between sites ℓ and
ℓ+1. Contracting sites 1 through ℓ into a matrix ML and sites ℓ+1 through N into a matrix MR

produces a bipartite reshaping

Ψ ←→ Θ(left),(right) ∈ C(dℓ)×(dN−ℓ).

The singular values {sr} of Θ are the Schmidt coefficients across that cut; by the Schmidt
decomposition,

|Ψ⟩ =
∑
r

sr |φr⟩[1..ℓ] ⊗ |χr⟩[ℓ+1..N ],
∑
r

s2r = 1.

The von Neumann entropy across the cut is

S(ℓ) = −
∑
r

s2r ln s2r.

12



In practice, one does not build Θ densely. Instead, one brings the MPS into a mixed canonical
form with the orthogonality center at the chosen bond by performing QR (or SVD) sweeps from
the left and right, and then performs a single SVD on the 2-site “theta” tensor Θ[ ℓ,ℓ+1 ] to read
off the same {sr}. This is exactly what the notebook’s routine does at the middle bond, yielding
S1/2 = S(N/2−1).

Ground state at κ = 0 (exact product state). At κ = 0 the ground state factorizes:

|Ψ0⟩ =

N⊗
j=1

|0⟩AHO,
(

1
2π

2 + 1
2µ

2
0 ϕ

2 + g0ϕ
4
)
|0⟩AHO = E0 |0⟩AHO.

As an MPS this is obtained by placing the normalized local ground vector v0 ∈ Rd on every site,
with bond dimension Dj ≡ 1. The Schmidt spectrum across any cut is then {1}, and S(ℓ) = 0
identically.

Adiabatic / projection step (minimal propagator). To obtain the interacting ground
state at a target κ > 0 one may either (i) implement a real–time adiabatic ramp, or (ii) use an
imaginary–time projector as a proxy. Both approaches rely on short two–site updates built from
Trotter–Suzuki factorization. A symmetric second–order (Strang) step for a small time increment
δt reads

e−δtH(κ) ≈ e−
δt
2

∑
j hon

j

[ ∏
⟨j,j+1⟩

e−δt hbond
j,j+1

]
e−

δt
2

∑
j hon

j ,

where
honj = 1

2π
2
j +

1
2µ

2
0 ϕ

2
j + g0ϕ

4
j , hbondj,j+1 =

κ

2

(
ϕj+1 − ϕj

)2
.

The two–site exponential is applied as a gate on the physical indices of sites j and j+1, then the
result is split back into an MPS by a single SVD at that bond (truncating very small singular
values if needed). For real–time adiabatic evolution one replaces δt 7→ i δt and lets κ vary smoothly
from 0 to κf ; for the imaginary–time proxy one keeps κ fixed and halves δt in stages (Strang:
“half onsite / full bond / half onsite”) until convergence.

Reading off S1/2. After the last time–step at a given κ, bring the MPS to mixed canonical
form at the middle bond, compute the singular values {sr} there, and evaluate

S1/2(κ) = −
∑
r

s2r ln s2r.

By construction this is purely a property of the lattice state—no continuum limit or renormalization
input is required.

B Qubit counting for lattice ϕ4 in 1+1D

This section collects the bookkeeping needed to estimate qubit requirements for adiabatic state
preparation (ASP) and basic spectroscopy on a lattice ϕ4 chain. The starting Hamiltonian and
conventions match Sec. 1:

H =

N∑
j=1

[
1
2 π

2
j +

1
2 µ

2
0 ϕ

2
j + g0 ϕ

4
j

]
+

κ

2

N−1∑
j=1

(
ϕj+1 − ϕj

)2
, (κ = 1 in examples).
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There are two layers of counting: the data register (what must be encoded permanently) and
a small number of work ancillas (temporary qubits reused when synthesizing gates). Rényi-2
two-copy measurements are not considered here.

Local Hilbert space choices and per-site qubits

Each site carries a finite local Hilbert space that must be mapped to qubits. Two standard
digitizations are used in practice.

Fock (oscillator) truncation (JLP style). Keep the first d = nmax+1 eigenstates of the
single-site AHO (or SHO in the weakly anharmonic limit):

Hloc = span{|0⟩, |1⟩, . . . , |nmax⟩}, d = nmax+1.

Encode the d-level “qudit” using either

q
(binary)
site =

⌈
log2 d

⌉
or q

(unary)
site = d.

Binary is qubit–efficient (fewest qubits per site) at the cost of slightly denser operator synthesis;
unary is more transparent but expensive in qubits. For anharmonic onsite physics (moderate/large
g0) one often finds that small d already converges well.

Field-grid (position-basis) digitization. Discretize the field value on a symmetric grid
ϕj ∈ [−Φmax,Φmax] with 2nϕ points, and encode the grid index in nϕ qubits:

q
(ϕ-grid)
site = nϕ.

Local polynomials g0ϕ
4, µ 2

0 ϕ
2 are diagonal; π2 is diagonal after a local QFT on those nϕ qubits.

One must choose Φmax and nϕ to control truncation and discretization errors.

Total data qubits and ancillas

For N sites,
Qdata = N × qsite.

Gate synthesis for e−i∆t ( 1
2π

2+ 1
2µ

2
0 ϕ2+g0ϕ

4) and e−i∆t 1
2 (ϕj+1−ϕj)

2

typically benefits from a handful
of clean ancillas (O(1); reused across sites/bonds). A conservative allowance of 5−8 work ancillas
suffices for ASP/Trotter circuits and basic spectroscopy; these do not scale with N when scheduled
sequentially.

Concrete budgets for a 127-qubit device (single copy, no QPE)

Adopt κ = 1 and a = 1 for lattice units, keep aside ∼ 7 ancillas for synthesis, leaving ∼ 120 data
qubits. The finite-volume sanity condition mphysL = mphysN ≳ 10 guides the choice of N and
target mass.
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Option A: compact Fock truncation. Take nmax = 3 (d = 4) with binary encoding: qsite = 2.
This yields up to Nmax = ⌊120/2⌋ = 60 sites; with a margin, N ≃ 56 is comfortable. The mass
window mphys ≳ 10/N ≈ 0.18 suggests targeting mphys ∼ 0.25–0.35. A practical starting box is

(N, mphys, g0, µ
2
0 ) ≈ (56, 0.30, 0.7, tuned to hit mphys),

with µ 2
0 adjusted at fixed g0 to match the desired gap. This setting supports ASP entanglement

curves, dispersion near small momenta, and two-particle finite-volume levels for a phase-shift
point.

Option B: higher onsite resolution, fewer sites. Take nmax = 7 (d = 8) with binary
encoding: qsite = 3. Then Nmax = ⌊120/3⌋ = 40; using N ≃ 36 gives headroom. The finite-volume
window mphys ≳ 10/36 ≈ 0.28 suggests mphys ∼ 0.3–0.5. A balanced starting point is

(N, mphys, g0, µ
2
0 ) ≈ (36, 0.40, 0.3, tuned).

Fewer sites mean a coarser momentum grid but improved onsite fidelity.

Choosing between digitizations

For the qubit budgets above, Fock truncation with binary encoding is the most economical in
qubits and aligns with the AHO continuity emphasized earlier. A field-grid choice with, say,
nϕ = 6 bits per site would cap the chain near N ∼ 20 within the same 120 data-qubit envelope,
pushing mphys ≳ 0.5; this is workable but less favorable for low-momentum scattering kinematics.

Practical checklist

Select N so that mphysN ≳ 10. Fix a local truncation d and encoding, then verify convergence of
the target observables (gap, simple correlators, entanglement across a central cut) under modest
increases of d. Tune µ 2

0 at fixed g0 to hit the target mphys; if a second physical input is desired (e.g.
a phase shift at a chosen momentum), adjust g0 while re-tuning µ 2

0 to keep the mass fixed. The
peak ancilla count remains O(1) for ASP/Trotterized evolution and does not alter the data-qubit
budgets above.
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Schwinger and Thirring models
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1 Cosine-first route: from transmons to bosonized QFTs and
scattering

1.1 From the transmon AHO to a lattice cosine scalar

A single transmon is a weakly-anharmonic oscillator with compact phase φ̂:

Htrans = 4EC(n̂− ng)2 − EJ cos φ̂, [φ̂, n̂] = i. (1)

In the phase basis, 4EC n̂
2 acts as a kinetic term. An array (capacitive/inductive couplings)

reduces to a 1D field φx with conjugate Πx:

H =
L∑

x=1

[ 1

2Ceff
Π2

x +
K

2
(φx+1 − φx)

2 − EJ cos(φx − φ0)
]
. (2)

Expanding about the bias setpoint φ0: −EJ cos(φx − φ0) = −EJ + EJ
2 δφ

2
x − EJ

24 δφ
4
x + · · · , so

the AHO/ϕ4 story is the small-excursion limit of a compact cosine theory.

1.2 Conventions: Dirac fermion form

We work in 1+1 dimensions with natural units ℏ = c = 1 and metric

ηµν = diag(+,−), ϵ01 = +1, ϵ01 = +1,

so that ϵµνϵµρ = δνρ. A convenient explicit representation of Dirac matrices is

γ0 = σ1, γ1 = i σ2, γ5 ≡ γ0γ1 = σ3, (3)
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with {γµ, γν} = 2ηµν . We write a two-component Dirac spinor ψ, its adjoint ψ̄ ≡ ψ†γ0, and
define the vector and axial currents

jµ ≡ ψ̄ γµψ, jµ5 ≡ ψ̄ γ
µγ5ψ. (4)

Gauge conventions. The U(1) gauge field is Aµ, field strength Fµν ≡ ∂µAν − ∂νAµ, and
covariant derivative

Dµ ≡ ∂µ + i eAµ, (5)

with gauge coupling e (mass dimension 1 in 1+1D). The topological θ-term is written as

Lθ ≡
θ

2π
ϵµνFµν =

θ

π
F01. (6)

1.3 Schwinger model (QED1+1) in fermionic form

With fermion mass mf and vacuum angle θ, the Minkowski Lagrangian is

LSch = −1

4
FµνF

µν + ψ̄ (i /D −mf )ψ +
θ

2π
ϵµνFµν , /D ≡ γµDµ. (7)

Useful consequences/notations we will use later:

• The electric field is E ≡ F01; Gauss’s law in 1+1D gives a linear potential between charges.

• Under a global chiral rotation ψ → eiαγ
5
ψ, the anomaly shifts θ → θ − 2α and rotates

the mass term mf ψ̄ψ → mf ψ̄(cos 2α + iγ5 sin 2α)ψ; in bosonization this becomes a shift
of the cosine’s argument by θ.

• In the bosonized form used later we will identify the Schwinger mass µS = e/
√
π and the

fixed bosonization frequency β =
√
4π.

1.4 Massive Thirring model (current–current interaction)

We take the (dimensionless) Thirring coupling gTh in the standard normalization:

LTh = ψ̄ (i/∂ −mf )ψ −
gTh

2

(
jµj

µ
)

= ψ̄ (i/∂ −mf )ψ −
gTh

2
(ψ̄γµψ)(ψ̄

µψ). (8)

Remarks linking to our bosonic conventions:

• In the bosonic dual (sine–Gordon) we will use β2

4π = 1
1+gTh/π

, so that the free-fermion point

gTh=0 maps to β2=4π.

• The SG cosine coefficient is linear in mf (overall prefactor scheme/scale dependent; fixed
once and for all by a chosen normal-ordering convention).

Summary of conventions we stick to later.

Metric: ηµν = diag(+,−), ϵ01 = +1,

γ0 = σ1, γ1 = iσ2, γ5 = σ3, /∂ = γµ∂µ, /D = γµ(∂µ + ieAµ),

jµ = ψ̄γµψ, jµ5 = ψ̄γµγ5ψ,

Schwinger: LSch as in (7), Thirring: LTh as in (8).

(9)

These choices match the bosonized scalar conventions used later: in Schwinger we will take
β =

√
4π and identify the gauge-induced mass µS = e/

√
π; in Thirring↔SG we will quote

Coleman’s relation β2/(4π) = 1/(1 + gTh/π) for the same β that appears in the sine–Gordon
cosine.
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1.5 Two bosonized targets captured by the cosine

(a) Schwinger (QED1+1) → cosine boson. One-flavor QED1+1 with coupling e, fermion
mass m, vacuum angle θ bosonizes to a compact scalar ϕ:

LbosSch = 1
2(∂ϕ)

2 − 1
2 µ

2
S ϕ

2 + c(µR)m cos
(
βϕ− θ

)
, µS =

e√
π
, β =

√
4π , (10)

where c(µR) depends on the normal-ordering convention (fixed below to match modern numer-
ics).

(b) Massive Thirring ↔ sine–Gordon (Coleman). The massive Thirring model LTh =

ψ̄(i/∂−mf )ψ−gTh
2 (ψ̄γµψ)(ψ̄

µψ) is quantum-equivalent to sine–Gordon LSG = 1
2(∂ϕ)

2+
µ2
SG
β2 (cosβϕ−

1) with the universal coupling map

β2

4π
=

1

1 + gTh/π
, (11)

and a cosine amplitude linear in mf (overall prefactor set by the chosen scheme). Solitons ↔
Thirring fermions; breathers ↔ fermion–antifermion bound states [2, 3].

2 Modern, quotable parameter dictionaries

2.1 Schwinger (fermionic) → bosonized cosine (continuum and lattice)

A convenient, widely used normalization (matching [7]) is:

H =

∫
dx :

[
1
2Π

2 + 1
2(∂xϕ)

2 + e2

2πϕ
2︸ ︷︷ ︸

µ2
S/2 ϕ2

− bme

2π3/2
cos

(√
4π ϕ− θ

)
︸ ︷︷ ︸

mass-induced cosine

]
:, b = eγ , (12)

⇒ µS =
e√
π
, β =

√
4π, gcos ≡

bme

2π3/2
.

A second-order lattice discretization with spacing a gives

H = χ
∑
x

[
1
2π

2
x+

1
2(ϕx−ϕx−1)

2+µ2

2 ϕ
2
x−λ cos(βϕx−θ)

]
, χ =

1

a
, β =

√
4π, µ2 =

a2e2

π
, λ =

a2bme

2π3/2
e2π∆(a) ,

(13)
where ∆(a) is the lattice propagator at the origin (finite; depends on discretization). Many
numerics set a = 1 (so χ = 1, µ2 = e2/π).

Small-amplitude (“SG4”) expansion near ϕ0 = θ/β. With δϕ = ϕ− ϕ0,

V (ϕ) = 1
2 µ

2
Sϕ

2−gcos cos(βϕ−θ) = V0+
1
2M

2 δϕ2+
λϕ4

4 δϕ4+· · · , M2 = µ2S + gcosβ
2, λϕ4 = −gcosβ

4

6
.

(14)
This is the bridge to your ϕ4 notes.
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2.2 Massive Thirring ↔ sine–Gordon (with an explicit, modern map)

In a bosonization scheme where composite operators are normal ordered at a common scale µR,
one has:

β2

4π
=

1

1 + gTh/π
, jµ = ψ̄γµψ ←→ β

2π
ϵµν∂νϕ , (15)

ψ̄ψ ←→ −C(µR) cos(βϕ) , µ2SG = κ(µR)mf , κ(µR) = β2C(µR) . (16)

Thus the SG cosine coefficient is linear in mf (the proportionality κ is scheme-fixed by one
calibration, e.g. the soliton or first-breather mass). Equation (16) is the form commonly quoted
in modern RG/numercs discussions referencing Coleman’s map [2].

3 Bosonization derivations (pedagogical sketch)

3.1 Schwinger ⇒ massive scalar + cosine with θ

Use the operator dictionary jµ ↔ 1√
π
ϵµν∂νϕ, ψ̄ψ ↔ −C̃ : cos(

√
4πϕ) :, couple Aµ linearly,

integrate out the quadratic gauge field to generate 1
2(e

2/π)ϕ2, and rotate away the explicit θ

into the phase of mψ̄ψ (anomaly) so the cosine is shifted: cos(
√
4πϕ − θ). Normal-order at

µS = e/
√
π to match Eq. (12) (the famous b = eγ appears) [4].

3.2 Massive Thirring ⇔ sine–Gordon

Hubbard–Stratonovich J2
µ with an auxiliary Aµ, integrate out the fermion to get a Gaussian

for Aµ (equivalently a scalar with stiffness ∝ 1 + gTh/π), rescale to a canonical kinetic term to
obtain Eq. (11), and map mf ψ̄ψ to a cosine with amplitude ∝ mf [2, 3].

4 What to measure (bosonic view) and why we later switch to
qubits

For packets in the cosine model, track Ex(t) ∝ ⟨ϕx+1 − ϕx⟩, local energy hx(t), and two-point
functions to diagnose elastic vs. inelastic channels. Digitally, the bosonic encoding is deep (per-
site basis changes); the staggered-fermion spin-chain is qubit-native and much shallower for
Qiskit demos, while retaining the same scattering phenomenology [8].

Acknowledgments for historical pointers

For bosonization and the Schwinger model: Schwinger [1], Coleman [4], Coleman’s Thirring↔SG [2],
Mandelstam’s operator construction [3]. For lattice fermions and Hamiltonian LGT: Kogut–
Susskind [5] and Kogut’s RMP [6]. For modern cosine-route scattering and parameter normal-
izations: Belyansky et al. [7]; and large-scale QC Schwinger simulations: Farrell et al. [8].
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From ϕ4 to the Ising chain: a projector’s-eye view

Figure 1: Ising spin chain from anharmonic oscillators. Each site is drawn as a projected
double well with local states |L⟩, |R⟩ (σz = ±1). The dashed curve shows the symmetric
well; the solid curve includes a longitudinal tilt (hz), with a bracket indicating the induced bias.
Nearest-neighbor coupling −J σzjσzj+1 is depicted between two central sites. Intra-site tunneling,
controlled by the transverse field hx, mixes |L⟩ and |R⟩ but is not labeled on the plot to avoid
overlap.

In the previous sections we built a lattice scalar theory by placing an anharmonic oscillator
on every site,

H lat
ϕ4 =

∑
j

[
1
2Π

2
j + U(ϕj)

]
+

κ

2a2

∑
j

(ϕj+1 − ϕj)2, U(ϕ) =
m2

2
ϕ2 +

λ

4
ϕ4, (1)

with lattice spacing a, kinetic coupling κ for gradients, and on–site double–well when m2 < 0
(spontaneous Z2 breaking). Let v ≡

√
|m2|/λ denote the well minima; in the deep–well regime

the local spectrum at each site consists of two low–lying states localized near ϕ = ±v, split by
a small tunneling amplitude through the barrier.

The key observation is that, at energies well below the local barrier, each site is effectively
a two–level system. Let {|L⟩j , |R⟩j} be wavefunctions localized in the left/right well. Form
symmetric/antisymmetric combinations

|+⟩j =
|L⟩j + |R⟩j√

2
, |−⟩j =

|L⟩j − |R⟩j√
2

,

and use them as a qubit basis. We now define Pauli operators by their action in this two–dimensional
subspace:

σzj |L⟩j = +|L⟩j , σzj |R⟩j = −|R⟩j , σxj |L⟩j = |R⟩j , σxj |R⟩j = |L⟩j .

(Equivalently, σzj measures the sign of ϕj and σxj flips between the two wells.)
Projecting the on–site part of (1) onto this subspace produces two familiar terms. First,

quantum tunneling between ±v gives a level splitting ∆, which appears as a transverse field:[
1
2Π

2
j + U(ϕj)

]
−→ −∆

2
σxj + const. (2)

Second, a small tilt of the double well (e.g. by adding a linear term ϵ ϕ or by asymmetrically
shifting m2) biases one well over the other. In the two–level subspace this is a longitudinal field,

ϵ ϕj −→ −ε
2
σzj , ε ∝ ϵ ⟨L|ϕ|L⟩ − ϵ ⟨R|ϕ|R⟩ ≃ 2ϵv. (3)
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The inter–site coupling originates from the discrete gradient term. In the deep–well limit
the low–energy configurations have ϕj ≈ v sj with Ising variables sj = ±1 (the sign of the local
displacement). Then

(ϕj+1 − ϕj)2 ≈ v2(sj+1 − sj)2 = 2v2
(
1− sjsj+1

)
.

Up to an overall constant, this favors aligned neighbors and projects to a nearest–neighbor Ising
coupling:

κ

2a2
(ϕj+1 − ϕj)2 −→ − J σzjσzj+1 + const, J ∝ κv2

a2
, (4)

where the proportionality absorbs scheme–dependent form factors from the projection. Putting
(2)–(4) together we obtain precisely the transverse–field Ising model with a possible longitudinal
bias,

Heff = −J
∑
j

σzjσ
z
j+1 − hx

∑
j

σxj − hz
∑
j

σzj + const, hx ∼ ∆
2 , hz ∼ ε

2 . (5)

The absence of a same–site σ2j term is automatic: σ2j = 1 in the projected two–level Hilbert
space. Thus, replacing the local coordinate ϕj by its two lowest well states is precisely the step
that takes us from a lattice ϕ4 theory to a spin chain with σzσz couplings.

This construction makes the continuum connection transparent. Near its quantum criti-
cal point (hz = 0, hx/J = 1), the transverse–field Ising chain flows to the 1+1–dimensional
Ising conformal field theory with central charge c = 1

2 . On the other hand, the continuum
Landau–Ginzburg effective theory for the Ising universality class is a real scalar field with a
Z2-symmetric ϕ4 potential. In other words, the same Z2–invariant quartic theory we developed
from a lattice of anharmonic oscillators is the coarse–grained field theory of the Ising chain near
criticality, while the deep–well projection of the lattice ϕ4 recovers the Ising spins themselves.
The two descriptions are therefore dual perspectives on the same long–distance physics: ϕ is the
coarse–grained order parameter; σz is its two–state remnant at strong discretization.

The dictionary extends to excitations and will be useful later. The classical kink of ϕ4

interpolating between −v and +v maps to a domain wall between opposite σz domains. A
small longitudinal field hz tilts one well, confining kink–antikink pairs into “mesons”; this has
a precise counterpart in both languages: a linear string tension for σz domain walls and a
confining potential for ϕ kinks. Finally, at hz = 0 the low–energy fermionic quasiparticles of the
transverse–field chain are the familiar Bogoliubov modes of the quadratic (free) ϕ fluctuations
around the symmetric point, completing the bridge between the operator content on both sides.

For our purposes, the takeaway is practical. We can think of the AHO chain with a deep
double–well as the parent model: keeping the full local Hilbert space and weak gradients
yields the lattice ϕ4 of Eq. (1); projecting each site to its lowest doublet and keeping near-
est–neighbor gradients yields the TFIM (5). The quantum–computing primitives we developed
for ϕ4 (wave–packet preparation, vacuum subtraction, two–particle scattering) thus carry over
seamlessly to Ising, with the simple replacement ϕj 7→ σzj for spatial structure and a transverse
σx term governing local tunneling.

1 Ising chain: definitions, notation

We work on a ring of N spin−1
2 degrees of freedom (sites labeled j = 1, . . . , N) with lattice

spacing a and periodic boundary conditions. The Hamiltonian family we will study is

H(J, hx, hz) = − J
N∑
j=1

σzj σ
z
j+1 − hx

N∑
j=1

σxj − hz

N∑
j=1

σzj , σαN+1 ≡ σα1 , (6)

with J > 0 the ferromagnetic Ising coupling, hx the transverse field, and hz the longitudinal
field. Throughout, σαj denotes a Pauli matrix σα (α = x, y, z) acting only on site j.
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Notation and operator placement. When we write σαj we mean the tensor product

σαj ≡ I⊗(j−1) ⊗ σα ⊗ I⊗(N−j),

so every local term in (6) acts nontrivially on its indicated site(s) and as the identity elsewhere.
In particular, the nearest–neighbor Ising interaction is the sum of two-site operators σzjσ

z
j+1 =(

I⊗(j−1) ⊗ σz ⊗ σz ⊗ I⊗(N−j−1)
)
, wrapped periodically by σαN+1 ≡ σα1 .

1.1 The solvable limit H(J, 0, 0).

Setting hx = hz = 0 gives

H(J, 0, 0) = − J
N∑
j=1

σzj σ
z
j+1, (7)

the quantum operator whose eigenbasis is the simultaneous σz-eigenbasis. Equivalently, (7)
is the energy functional of the classical one-dimensional Ising model with spins sj = ±1 via
σzj |sj⟩ = sj |sj⟩:

E[s1, . . . , sN ] = − J
N∑
j=1

sj sj+1.

This limit is “solvable” in two complementary senses:
(i) As a quantum Hamiltonian: it is already diagonal in the computational basis. Every

product state |s1⟩ ⊗ · · · ⊗ |sN ⟩ with sj = ±1 is an eigenstate, and the energy depends only on
the number of domain walls (bonds with sj ̸= sj+1). Writing Ndw for that number,

E = −J
∑
j

sjsj+1 = −J
[
(N −Ndw)−Ndw

]
= −JN + 2J Ndw.

Thus the two fully aligned ferromagnets | ↑↑ · · · ↑⟩ and | ↓↓ · · · ↓⟩ are degenerate ground states
with E0 = −JN ; each domain wall costs an energy 2J . Excitations are therefore freely moving
domain walls (kinks) at this level, with no interactions between them.

(ii) As a classical statistical model: the finite-temperature partition function Z =
∑

{s} e
−βE[{s}]

is exactly computable by a 2× 2 transfer matrix. Defining

T =

(
eβJ e−βJ

e−βJ eβJ

)
, λ± = eβJ ± e−βJ ,

one has Z = λN
+ + λN

− , and in the thermodynamic limit the free energy density is f =
−β−1 log λ+. All thermodynamic quantities follow directly; for example, the zero-field two-
point function decays as ⟨s0sr⟩ = (tanhβJ)r, so the correlation length is ξ−1 = − log tanh(βJ).
In one dimension there is no finite-temperature phase transition (no spontaneous magnetization
at T > 0), a fact that historically motivated the search for and eventual discovery of nontrivial
critical behavior in two dimensions.

Historical context and importance. The Ising model originated as a minimal theory of
cooperative magnetism. The one-dimensional case was solved early and showed no finite-T
transition, whereas the two-dimensional model famously does order below a critical temperature
and was solved exactly by Onsager, inaugurating modern critical phenomena. For us, the
H(J, 0, 0) limit plays a concrete pedagogical role: it anchors the notion of ferromagnetic order
and domain-wall excitations in a setting where the spectrum is transparent. Turning on hx
later will produce quantum fluctuations that delocalize those domain walls (and, at criticality,
lead to a relativistic scaling limit), while a longitudinal field hz breaks the Z2 symmetry and
ultimately enables inelastic scattering in the Ising field theory studied on quantum hardware.
We will build up to those deformations step by step, using only what we need for the scattering
experiments.
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1.2 The solvable limit H(J, hx, 0)

We now turn on a transverse field and set the longitudinal field to zero, giving the Transverse
Field Ising Model (TFIM)

H(J, hx, 0) = − J
N∑
j=1

σzj σ
z
j+1 − hx

N∑
j=1

σxj , σαN+1 ≡ σα1 . (8)

As before, σαj means a Pauli σα acting on site j and the identity elsewhere. The model is
translation invariant and has a global Z2 spin-flip symmetry generated by P =

∏
j σ

x
j , under

which σzj 7→−σzj . This is the standard transverse-field Ising model (TFIM).
At zero temperature there are two quantum phases separated by a continuous quantum

phase transition. For small transverse field, g ≡ hx/J < 1, the ground state is ferromagnetically
ordered along z (two nearly degenerate vacua on a ring, split only by nonperturbative tunneling
at finite N). For large transverse field g > 1, the ground state is a unique paramagnet polarized
along x. Exactly at g = 1 the system is critical with emergent relativistic invariance and
dynamic exponent z = 1. The scaling limit at this critical point is the Ising conformal field
theory with central charge c = 1

2 . This is the quantum 1+1D counterpart of the 2D classical
Ising critical point via the standard Trotter (quantum–to–classical) mapping.

The TFIM is exactly solvable: one diagonalizes it by a sequence of transforms (Fourier,
Jordan–Wigner, Bogoliubov). Without reproducing that machinery here, we record the outputs
we will need later. The elementary excitations are free Majorana fermions with single-particle
dispersion

ε(k) = 2J
√
1 + g2 − 2g cos(ka) , (9)

so the spectral gap is
m ≡ ε(0) = 2J |1− g| , (10)

and the group velocity is v(k) = ∂kε(k); at criticality the characteristic velocity is v∗ = 2Ja.
The equal-time correlations and order parameters are known in closed form: in the ordered
phase g < 1 the spontaneous magnetization along z is Mz = (1 − g2)1/8, while the correlation
length diverges near criticality as ξ ∼ |1−g|−1. The critical exponents are the Ising ones, β = 1

8 ,
ν = 1, η = 1

4 , consistent with the c = 1
2 CFT. In the scaling limit the finite-size spectrum on a

circle of length L = Na organizes into conformal towers with level spacings ∼ (2πv∗/L), a fact
we will use as a diagnostic when we calibrate dispersion and gap on finite rings.

Two remarks are especially relevant for the scattering agenda later on. First, the hz = 0
chain is integrable and its continuum limit is a free Majorana theory: multi-particle scattering
is purely elastic and factorized, and in the fermionic description the two-body S-matrix is just
a sign from Fermi statistics. As a result, wave-packet collisions at hz = 0 exhibit vanishing
inelastic production and zero Wigner time delay; this provides an ideal hardware baseline. Sec-
ond, even away from strict criticality the long-wavelength sector is well captured by relativistic
kinematics with the massm in (10) and the lattice-measured ε(k) in (20), so our later conversion
between lattice energies E, momenta p, and rapidities θ will be quantitatively controlled once
we have calibrated ε(k) directly on the device.

Historically, the TFIM in one dimension was among the first quantum spin chains to be
solved exactly. Lieb, Schultz, and Mattis established the fermionization framework for XY -
type chains; Pfeuty specialized it to the Ising case and derived the spectrum, gap, and order
parameters; Barouch and McCoy obtained exact space–time correlation functions and scaling
forms; and later developments connected the quantum critical point to the Ising minimal model
of conformal field theory. Standard references include [12, 28, 14, 16, 17].
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1.3 The longitudinal-field Ising chain: H(J, 0, hz)

We consider

H(J, 0, hz) = − J
L−1∑
j=1

σzjσ
z
j+1 − hz

L∑
j=1

σzj , J > 0, (11)

with open boundaries for definiteness (periodic boundaries are analogous). All terms mutually
commute: [σzj , σ

z
k] = 0 = [σzjσ

z
j+1, σ

z
kσ

z
k+1] , so the model is classical in the σz basis—eigenstates

are product states |s1s2 · · · sL⟩ with sj = ±1 the eigenvalues of σzj .

Ground states and symmetry breaking

At hz = 0 the Hamiltonian has a global Z2 spin-flip symmetry and two degenerate ferromagnetic
ground states, | ↑↑ · · · ↑⟩ and | ↓↓ · · · ↓⟩, with energy E0 = −(L − 1)J . A nonzero longitudinal
field hz ̸= 0 explicitly breaks Z2 and selects a unique ground state:

hz > 0 : |↑↑ · · · ↑⟩, hz < 0 : |↓↓ · · · ↓⟩,

lifting the degeneracy linearly in hz. There is no quantum phase transition as a function of hz
at T=0; instead there is a level crossing at hz = 0.

Excitations as domain walls and their confinement

Excitations are configurations containing domain walls (kinks) between ferromagnetic domains.
Consider hz > 0 and the ground state |↑ · · · ↑⟩. Introduce a down-spin droplet of length ℓ (sites
j = a, . . . , a+ ℓ− 1 flipped to ↓). Relative to the ground state:

• Each of the two broken bonds at the droplet edges contributes an energy penalty +J −
(−J) = 2J in total: ∆Ebonds = 2J .

• Each flipped spin changes the field term by −hzsj : (−hz)→ (+hz), i.e. +2hz per flipped
spin, so ∆Efield = 2hz ℓ.

Hence the energy of a two–domain-wall configuration with separation ℓ is

∆E(ℓ) = 2J + 2hz ℓ. (12)

This is a linearly confining potential between the two domain walls, with “string tension” 2hz.

No dynamics at hx = 0. Because every term inH(J, 0, hz) is diagonal in the σz basis, domain
walls are static—there is no hopping and thus no nontrivial real-time evolution or scattering.
The spectrum is a ladder of classical configurations, labeled by the number and positions of
domain walls and the size of reversed domains, with energies given by (12) (and generalizations
for multiple droplets).

1.4 The nonintegrable Ising chain H(J, hx, hz)

We now let both fields act:

H(J, hx, hz) = − J
N∑
j=1

σzj σ
z
j+1 − hx

N∑
j=1

σxj − hz

N∑
j=1

σzj , σαN+1 ≡ σα1 . (13)

As in the preceding sections, σαj denotes a Pauli operator acting on site j and the identity
elsewhere. Translation invariance remains intact for all (J, hx, hz). The global Z2 spin-flip
generated by P =

∏
j σ

x
j is a symmetry at hz = 0 and is explicitly broken as soon as hz ̸= 0.
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Two structural changes follow immediately from the longitudinal field. First, integrability is
lost in the lattice model away from special lines: the exactly solvable free–fermion structure at
hz = 0 no longer applies once hz ̸= 0. Second, in the ferromagnetic regime the longitudinal field
lifts the degeneracy of the two Ising vacua and produces a linear confining force between domain
walls (kinks): a pair of kinks that delimit a flipped domain now pay an energy proportional to
their separation, so the asymptotic excitations are not free kinks but rather a discrete tower of
meson-like kink–antikink bound states. In the weak-field limit their energies form a character-
istic almost equally spaced set near the two-kink threshold, a hallmark of linear confinement in
one dimension (see, e.g., [20, 21]).

The continuum interpretation sharpens these statements. Near the quantum critical point
of the transverse-field chain (hz = 0, hx/J = 1), the long-wavelength limit is the Ising conformal
field theory with central charge c = 1

2 . Moving away from criticality corresponds to perturbing
the CFT by its two relevant primaries, the energy density ε (even under Z2) and the spin σ
(odd). In field-theory language one writes the Ising Field Theory (IFT)

LIFT = LIsing CFT + τ

∫
ε(x) d2x + h

∫
σ(x) d2x, (∆ε = 1, ∆σ = 1

8 ),

with couplings τ ∝ hx/J − 1 and h ∝ hz/J . Two distinguished “integrable corridors” are
then visible in this plane. Along h = 0 the theory is a free massive Majorana field: scattering
is elastic and factorized, and the two–body S-matrix is just a sign. Along τ = 0, i.e. at the
critical transverse field with a longitudinal perturbation, Zamolodchikov discovered an integrable
massive theory whose exact spectrum contains eight stable particles with mass ratios fixed by
the exceptional Lie algebra E8; the two–body amplitudes are again purely elastic and exactly
known [18]. The generic case with τ ̸= 0 and h ̸= 0 is nonintegrable: elastic scattering persists
below the first inelastic threshold, but as soon as sufficient energy is available, particle production
2 → 4, 6, . . . occurs. It is precisely in this nonintegrable IFT regime that modern experiments
and simulations test real–time inelastic processes; the celebrated neutron–scattering observation
of the E8 mass pattern in a quasi–one–dimensional magnet [19] provides a complementary view
of the integrable edge of this physics.

For our purposes this landscape serves three roles. It provides a clean baseline at hz = 0,
where kink excitations map to free fermions and wave–packet collisions exhibit vanishing time
delay and no inelasticity. It supplies a conceptually sharp integrable checkpoint at τ = 0
with hz ̸= 0 (the E8 theory), where one again expects purely elastic behavior but with a rich
multiplet of masses. And, most importantly, it explains why turning on both deformations
produces inelastic channels and long–lived mesonic resonances: this is the regime in which
wave–packet collisions probe δ(E), Wigner time delays, and energy flow into multi–particle sec-
tors—the observables we will extract in the results section. Modern field–theory and scattering
reviews place this nonintegrable deformation of the Ising CFT within a broader program of
“integrable–plus–perturbations” where exact data (masses, form factors) along integrable rays
constrain and organize the physics away from them [22, 23, 24].

We will keep our exposition JW–free in the main text. Whenever a dispersion, mass gap,
or two–body level is needed, we will measure it directly on finite rings and use the relativistic
kinematics of the scaling theory to convert between energy, momentum, and rapidity. This
allows us to discuss wave–packet preparation, real–time collisions, and the onset of inelastic
production (as in the Preskill–et al. study) using only the spin–chain language, while situating
each calculation within the continuum IFT picture sketched above.

2 The S-matrix for Ising field theory

Continuum kinematics. We have in 1+1D

E2 = p2 +m2 . (14)
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↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓

kink (domain wall)

j = 1 j = N

Figure 2: A single domain wall (kink) separating ferromagnetic regions. In the classical/diagonal
limit H(J, 0, 0), each kink costs energy 2J . Kink refers to a configuration where up changes to
down along the chain while anti-kink refers to where down changes to up.

↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑

kink antikink

separation ℓ

Figure 3: A kink–antikink pair encloses a flipped domain of length ℓ. With a longitudinal field
hz ̸= 0, each flipped spin raises the energy by ∼ 2hz, producing a linear “string” potential
V (ℓ) ≃ 2mkink + σ ℓ with σ ∝ hz/a.

These are solved by the parametrization in terms of the rapidity θ:

E = m cosh θ, p = m sinh θ, s = 4m2 cosh2(θ/2). (15)

There is no scattering angle; two-body kinematics is one-dimensional up to particle exchange.
Our goal is to describe what we mean by “scattering” in the quantum Ising field theory

(IFT) language, in exactly the form that will be used later for wave–packet collisions and for
extracting time delays and inelasticity.

Asymptotic particles and states. In the scaling regime of the Ising chain, the long–wavelength
excitations are massive relativistic particles with mass m. In the center–of–mass (c.m.) frame,
two incoming particles carry momenta ±p and energies E/2 each. An in state is prepared by
sending two well–separated wave packets towards each other; an out state is what you have long
after the collision, when the outgoing packets are again well separated. The scattering operator
S maps the in–basis to the out–basis,

|out⟩ = S |in⟩,

and encodes the amplitudes for all possible outcomes.

Elastic 2→ 2 in 1+1D and the phase shift. Below the first inelastic threshold (i.e. for
total c.m. energy 2m ≤ E < 4m), the only process available is elastic 2→ 2 scattering. In
1+1 dimensions with identical particles, kinematics leaves a single invariant: the rapidity dif-
ference 2θ. Unitarity and translation invariance then imply that the entire two–body process is
characterized by a single complex number of unit modulus,

S(2θ) = e i δ(2θ),

whose phase δ(2θ) is the elastic phase shift. In a free (integrable) Majorana theory—our hz = 0
baseline—the two–body S is just a sign from fermionic exchange, so δ is a constant (no energy
dependence) and wave packets suffer no time delay.
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ℓ

V (ℓ)

2mkink

string tension σ

E0

E1

E2

E3

↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑

ℓ

Figure 4: In a longitudinal field, a kink–antikink pair feels a linearly rising potential V (ℓ) ≃
2mkink + σ ℓ, producing a discrete tower of confined “meson” bound states En.

Above threshold and inelasticity. Once the c.m. energy exceeds the first production
threshold (E ≥ 4m for IFT without additional bound states), channels like 2→ 4 open. The
two–body subspace no longer evolves unitarily by itself; a convenient parameterization is

S2→2(2θ) = η(2θ) e i δ(2θ), 0 ≤ η ≤ 1,

where η(2θ) is the inelasticity parameter. Probability conservation says that the missing weight
is precisely the total inelastic probability,

Pinel(E) = 1−
∣∣S2→2(2θ)

∣∣2 = 1− η(E)2.

In the purely elastic window one has η = 1; as inelastic channels open, η decreases from unity.

What wave packets actually measure: Wigner time delay. Real experiments and our
quantum–hardware runs use packets, not plane waves. For a narrow packet peaked at energy
E the peak of the transmitted/reflected packet is shifted in time by

∆t(E) =
∂

∂E
δ(2θ(E)) ,

the Wigner time delay. Thus the energy–dependence of the phase shift is directly observable
as an advance or delay in the packet’s centroid. We will use this relation verbatim when we
analyze collisions.

How spectra encode the same information (finite volume). On a ring of length L the
two–body c.m. momenta are quantized. In the elastic window, imposing single–valuedness of
the two–particle wave function yields the Bethe–Yang condition (see the ϕ4 discussion)

p(E)L + δ(2θ(E)) = 2π n, n ∈ Z.

Given two–body energies E2(L) at several L’s (measured on hardware or computed classically),
one can invert this relation to obtain δ(2θ). In the inelastic regime the simple one–channel
form breaks down, and spectral methods must be generalized to coupled channels; in our work
we instead diagnose inelasticity directly from late–time observables (sector weights and en-
ergy–density tracks).
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Why this is enough for us. These few ingredients—rapidity kinematics, the elastic phase
shift δ, the inelasticity η with Pinel = 1 − η2, the Wigner time delay ∆t = ∂Eδ, and the
finite–volume quantization condition—are exactly the notions that appear in the Preskill et al.
analysis. In the free/near–integrable corridors one finds η ≈ 1 and a flat δ; in the nonintegrable
regime δ(E) acquires structure and η(E) < 1 once thresholds open. Our lecture will use only
this minimal dictionary when we connect spectra and real–time data to scattering information.

2.1 Conventions-in-brief: units, kinematics, sanity checks

We set ℏ = c = 1 and keep the lattice spacing a explicit when it clarifies dimensions. States are
normalized so that one-particle plane waves on a ring of length L = Na,

|p⟩ = 1√
N

N∑
j=1

eipaj |0 · · · 1j · · · 0⟩, p =
2πn

L
,

obey ⟨p′|p⟩ = δp,p′ . In the scaling regime we convert between (E, p) and rapidity θ by E =
2m cosh θ, p = m sinh θ; this is the only relativistic dictionary we will use later. The phase shift
δ(2θ) is defined by S(2θ) = eiδ(2θ) in the elastic window; the Wigner time delay is ∆t(E) =
∂Eδ(2θ(E)).

Spectral-phase subtleties

On a ring the two-body energies E2(L) in the elastic regime satisfy

p(E)L+ δ(2θ(E)) = 2πI, I ∈ Z.

Given two volumes L1, L2 and the same Bethe integer I tracked across them, a finite-difference
estimate for the phase is

δ(2θ(E)) ≈ 2πI − p(E)L2 with p(E) =

√
E2

4 −m2 ,

wherem is the gap you have measured separately on the same chain. The only practical subtlety
is to keep the same I (branch identity) when you change L; we will do this by matching to the
nearest free level and unwrapping δ as L varies, which yields smooth δ(E) curves rather than
jagged, wrapped points.

How to calibrate E(p) and v(p)

Prepare |p⟩ as above and evolve for a short time t underH(J, hx, hz). The overlap ⟨p|e−iHt|p⟩ has
a phase φ(t) ≈ E(p) t for small t; thus E(p) is the slope of the phase. The group velocity is then
v(p) = ∂pE(p), which you can also read off from the drift of the packet centroid ⟨x(t)⟩−⟨x(0)⟩ ≈
v t for a narrow packet. We will use this measured E(p) both to convert energies to rapidities
and to predict noninteracting benchmarks at hz = 0.

Elastic vs. inelastic in real time: what the plots actually show

Below the first inelastic threshold E < 4m, two counter-propagating packets emerge still as
two packets; the only trace of the interaction is a time shift ∆t(E) = ∂Eδ. Above threshold,
part of the norm leaks into multi-particle sectors. On the lattice, this is visible in two com-
plementary ways that we can adopt: (i) late-time sector weights, where we project onto “one
packet left/right” and call the complement Pinel(E); (ii) energy-density tracks, where ⟨σzjσzj+1⟩t
(and related one-point functions) reveal extra streaks characteristic of produced quanta. Both
readouts are purely in the spin language, require no new notation, and mirror the diagnostics
used in the hardware study.

10



Three sanity checks

At hz = 0 (integrable corridor) one expects Pinel ≈ 0 and a nearly flat δ; measured ∆t should be
consistent with zero within errors. Near criticality at hx ≈ J , the dispersion becomes relativistic
and finite-size spectra organize into nearly uniform spacings ∼ 2πv/L, which you can verify from
your E(p) calibration. Finally, when extracting δ from spectra, track a fixed Bethe integer I
across several L’s and unwrap the phase; plotting wrapped principal values without branch
tracking is the common source of “sawtooth” artifacts that are not physics.

3 W-state wave-packet preparation

So far, we have been a bit cavalier about how to prepare the initial states. We have made
it seem that this step is trivial. Whilst it is true that QISKIT enables state preparation, the
depth of the circuit involved in actual quantum computers needs to be brought down. This was
accomplished in [26] which we will discuss next. After this step, we can do ASP to get the true
interacting states. However, note that in [26], they use ADAPT-VQE using an MPS circuit
simulator on classical hardware to keep the depth down. So essentially, they figure out U(θ) to
apply after the W-state step and then continue on the quantum hardware.

3.1 Step-1

Our target single–particle state on an N -site ring (sites j = 1, . . . , N , spacing a) with mean
momentum p and envelope fj is

|ψf,p⟩ =
N∑
j=1

fj e
ipaj | · · · 1j · · · ⟩,

∑
j

|fj |2 = 1,

where | · · · 1j · · · ⟩ denotes “site j excited, all others in |0⟩”. Step-1 prepares, in constant depth,
a coherent state whose one–excitation slice is exactly the uniform W state; later we will add a
momentum phase ramp and optional shaping.

A single depth–1 layer. Starting from |0⟩⊗N , apply the same small rotation to every site:

|Ψ0⟩ =

N⊗
j=1

(
cosα |0⟩j + sinα |1⟩j

)
.

This is one layer of identical single–qubit gates (e.g. Ry(2α)).

Decomposition by Hamming weight1. Expand the tensor product and group basis strings
by their number K of excitations. It is convenient to introduce the Dicke states,

|DN
K⟩ =

1√(
N
K

) ∑
strings of length N

with K ones

| string ⟩,

which form an orthonormal basis for the permutation–symmetric subspace at fixed K. Then

|Ψ0⟩ =

N∑
K=0

(cosα)N−K(sinα)K

√(
N

K

)
|DN

K⟩.

In particular, the K = 1 Dicke state is the uniform W state

|DN
1 ⟩ =

1√
N

N∑
j=1

| · · · 1j · · · ⟩.

1The Hamming weight for binary is simply the count of 1’s in a string.

11



Exact weights and a useful choice of angle. Because the Dicke sectors are orthogonal,
the probability to have exactly K excitations after a computational–basis measurement is

Pr[K] =

(
N

K

)
(sin2 α)K (cos2 α)N−K .

We parameterize the small angle by

sin2 α =
λ

N
,

with a fixed λ > 0 that we may tune. In the large–N limit with λ fixed this binomial distribution
approaches a Poisson law,

Pr[K] ≈ e−λλ
K

K!
(N →∞, sin2 α = λ/N).

To see this, simply note that for N ≫ 1,
(
N
K

)
→ Nk/k! while the rest of the factors read

(λ/N)k(1− λ/N)N (1− λ/N)−k ≈ (λ/N)ke−λ/N . The special case λ = 1 is particularly conve-
nient: it maximizes the raw one–excitation weight Pr[K=1] and will be our default.

The one–excitation slice is exactly W. Projecting |Ψ0⟩ onto the K = 1 subspace yields
a pure Dicke state with amplitude

⟨DN
1 |Ψ0⟩ = (cosα)N−1(sinα)

√
N,

so the corresponding probability weight is

Pr[K=1] = N sin2 α (cos2 α)N−1.

With sin2 α = λ/N this becomes Pr[K=1] ≈ λe−λ, maximized at λ = 1 where Pr[K=1] ≈ e−1.
Thus, after a single depth–1 layer, the coherent state already contains the exact uniform W
component we need, with a tunable overall weight.

Optional: seeding a shaped envelope. If a nonuniform envelope is desired from the outset,
choose site–dependent angles αj so that

sin2 αj = λ |fj |2,
∑
j

|fj |2 = 1.

Then ⊗
j

(
cosαj |0⟩j + sinαj |1⟩j

)
has, in its K = 1 slice, a superposition proportional to

∑
j fj | · · · 1j · · · ⟩. The overall one–

excitation weight is again ≈ λe−λ for large N , while the mean and variance of K follow from
the same binomial analysis (we leave those straightforward formulas to the reader to record
where convenient).

This completes Step 1: a depth–1 preparation that seeds the exact W component (or a
shaped variant) with controllable weight. In the next step we will imprint the momentum
ramp eipaj by a single layer of local Z phases and then discuss the parity sieve and subsequent
“cleaning” that isolate the interacting one–particle packet.

3.2 Step 2 (imprinting momentum)

The goal of this step is to turn the uniform one–excitation slice produced in Step 1 into a plane–
wave one–excitation with mean momentum p. Concretely, for each basis vector | · · · 1j · · · ⟩ in
the K = 1 sector we want a phase factor eipaj . We will follow the discussion in [25].
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A single layer of local Z–rotations. Apply on every site j a Z–rotation with angle ϕj ,

U =
N⊗
j=1

Rz(ϕj), Rz(ϕj) = exp
(
− i

2
ϕj σ

z
j

)
.

Let |x1x2 . . . xN ⟩ be a computational basis state with xj ∈ {0, 1}. Using Rz(ϕj)|0⟩j = e−iϕj/2|0⟩j
and Rz(ϕj)|1⟩j = e+iϕj/2|1⟩j , one may factor each site’s phase as

e±iϕj/2 = e−iϕj/2
(
eiϕj

)xj .

Multiplying over all sites gives

U |x1 . . . xN ⟩ = exp
(
− i

2

N∑
j=1

ϕj

)
exp

(
i

N∑
j=1

ϕjxj

)
|x1 . . . xN ⟩.

Writing S = {j : xj = 1} for the set of excited positions (of size K =
∑

j xj), this is

U |x1 . . . xN ⟩ = e−
i
2

∑
j ϕj · e i

∑
j∈S ϕj |x1 . . . xN ⟩.

The first factor is a global phase, independent of the bitstring, and can be dropped. In the
K = 1 sector, S = {j} for some site j, so the state picks up precisely eiϕj .

Choosing the ramp. Set ϕj = p a j (with sites labeled j = 1, . . . , N ; one may also use
j = 0, . . . , N−1). Then each one–excitation basis vector | · · · 1j · · · ⟩ acquires the desired factor
eipaj . Acting on the uniform W slice from Step-1 therefore yields the plane–wave W component
at momentum p.

A harmless implementation detail is that
∑

j ϕj contributes only a global phase. If one
prefers to eliminate it identically, center the ramp, e.g.

ϕj = p a
(
j − N + 1

2

)
,

which leaves all relative phases unchanged.

Shaped envelopes. If Step-1 was seeded with a nonuniform envelope so that the K = 1 slice
is proportional to

∑
j fj | · · · 1j · · · ⟩, the same phase layer produces

N∑
j=1

fj e
ipaj | · · · 1j · · · ⟩,

i.e. a wave packet with envelope fj and mean momentum p. Because the phases have unit
modulus, normalization is unaffected.

After this single depth–1 layer of local Z–rotations, the odd–parity one–excitation compo-
nent prepared in Step A has become a momentum–selected W (or shaped) state. In the next
step we perform the mid–circuit parity sieve and subsequent “cleaning” to isolate the interacting
one–particle packet at the chosen momentum.
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q1

q2

q3

a : |0⟩

Figure 5: Mid–circuit parity measurement by CNOT accumulation (illustrated for three data
qubits; the pattern extends to all N sites). The ancilla ends in |K mod 2⟩ and is measured;
outcome 1 heralds odd parity. The data qubits are not disturbed apart from a global projector
onto the odd subspace.

3.3 Step 3 (mid–circuit parity sieve)

The aim of this step is to project onto odd Hamming weight while preserving the positional
coherence created in Steps A–B. The observable we measure is the global Z–parity

ΠZ =
N∏
j=1

σzj = (−1)K ,

where K is the number of excited sites. This measurement distinguishes only “even” vs “odd”
K, learning nothing about the locations of the excitations; the phase ramp eipaj therefore
survives intact in the K = 1 slice.

It is convenient to describe the measurement by projectors Peven = 1
2(I + ΠZ) and Podd =

1
2(I−ΠZ). Acting on the Step–1 state (after the momentum phases of Step-2), the post–selected
odd–parity state is |Ψodd⟩ = Podd|Ψ⟩/

√
podd, where the heralding probability is podd = Pr[odd].

With the seeding choice sin2 α = λ/N from Step-2 (or its site–dependent variant satisfying∑
j sin

2 αj = λ), the Hamming–weight distribution is well approximated by Poisson(λ) in the
large–N limit, giving

Pr[odd] = e−λ sinhλ, Pr[K=1 | odd] =
λ

sinhλ
.

At the natural choice λ = 1 the odd–parity heralding rate is e−1 sinh 1 ≈ 0.432, and, condi-
tional on passing, roughly 85% of the amplitude already sits in the desired K = 1 plane–wave
component. In particular, the one–excitation slice after the sieve is precisely

1√
N

N∑
j=1

eipaj | · · · 1j · · · ⟩ (or
∑
j

fje
ipaj | · · · 1j · · · ⟩ if Step A used a shaped envelope).

A compact mid–circuit parity circuit (CNOT accumulation). One standard realiza-
tion uses a single ancilla qubit: prepare the ancilla in |0⟩; apply CNOTs from each data qubit
(control) to the ancilla (target); measure the ancilla in the Z basis mid–circuit; keep runs with
outcome “1” (odd parity) and discard the rest. Because the data qubits are never targeted by
these CNOTs, their positional coherence and momentum phases are unaffected.

Remarks. The alternative “phase–kickback” version prepares the ancilla in |+⟩, applies C-
Z from each data qubit onto the ancilla, and measures the ancilla in the X basis, with |−⟩
heralding odd parity. Either implementation measures ΠZ and therefore commutes with the
local Z–phase layer of Step B, guaranteeing that the momentum profile is preserved. In what
follows we simply condition on the odd–parity outcome and proceed to the cleaning step that
removes the small residual K ≥ 3 admixture while keeping the total momentum fixed.
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Step 4: Cleaning

After Steps 1–3 the post–selected state lies in the odd Z–parity sector and carries total lattice
momentum p. Its one–excitation slice already has the desired phase ramp (and optional en-
velope), but a small admixture of higher odd Hamming weights (K = 3, 5, . . .) remains at the
same total momentum. The purpose of this step is to suppress that admixture while preserving
momentum p and Z–parity, yielding the interacting one–particle packet.

Symmetry protection. Let T denote lattice translation by one site and ΠZ =
∏

j σ
z
j the

global Z–parity measured in Step 3. We choose a shallow unitary U(θ⃗) that commutes with
both symmetries,

[U(θ⃗), T ] = 0, [U(θ⃗),ΠZ ] = 0,

so that U(θ⃗) maps momentum–p, odd–parity states to momentum–p, odd–parity states. This
guarantees that cleaning cannot leak amplitude to other momentum or parity sectors.

A minimal translation–invariant, parity–preserving ansatz. An effective choice is a
short product of exponentials of sums repeated on every bond or site, which ensures translation
invariance, together with generators that contain only an even number of spin–flip operators to
preserve ΠZ . A convenient three–parameter form is

U(θ1, θ2, θ3) = exp
(
i θ1

∑
j

σzjσ
z
j+1

)
exp

(
i θ2

∑
j

σxj σ
x
j+1

)
exp

(
i θ3

∑
j

σzj

)
, (16)

with periodic boundary conditions implicit in the sums. The first and third factors are diagonal
in the computational basis; the middle factor flips spins in pairs and therefore preserves Z–parity.
Each exponential compiles to a constant two–qubit depth on a nearest–neighbor architecture
by staggering bonds.

Energy minimization inside the symmetry block. Let |Ψodd,p⟩ denote the Step–3 state.

We determine θ⃗ by minimizing the Rayleigh quotient

E(θ⃗) =
⟨Ψodd,p|U(θ⃗)†H U(θ⃗) |Ψodd,p⟩

⟨Ψodd,p|Ψodd,p⟩
.

Because U(θ⃗) preserves momentum and parity, this optimization is confined to the (p, odd) block
of H. By the Rayleigh–Ritz principle, decreasing E increases the overlap with the lowest–energy
eigenstate in that block; at the optimum θ⃗⋆ one has

U(θ⃗⋆) |Ψodd,p⟩ ≈ |1p⟩,

the interacting one–particle state at total momentum p. A practical confirmation is the smallness
of the energy variance ⟨H2⟩ − ⟨H⟩2 on the cleaned state.

Measurements and shallow depth. Evaluating E(θ⃗) requires only translation–averaged
few–body correlators because the generators in (16) are uniform sums. Gradients may be
obtained by small finite differences or standard parameter–shift rules, but in practice a coarse
grid over θ1,2,3 already suffices because the parameter space is low–dimensional. Each layer in
(16) is a translation–invariant brickwork; on a ring it is implemented by identical two–qubit
gates on alternating bonds, giving a total two–qubit depth of only a few layers.

A circuit sketch for one translation–invariant bond layer. The figure illustrates the
uniform application of a two–qubit gate e iθ2 σ

x⊗σx
on every bond; staggering even and odd

bonds yields constant depth. The ZZ layer has the same pattern.
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q1

e iθ2 σ
x⊗σx

q2

e iθ2 σ
x⊗σx

q3

e iθ2 σ8⊗σx

· · ·

qN

e iθ2 σ
x⊗σx

wrap

Figure 6: A translation–invariant two–qubit layer acting identically on every bond (j, j+1)
around the ring. Staggering over even/odd bonds realizes constant two–qubit depth.

Outcome. Applying U(θ⃗⋆) to the Step–3 state variationally projects it onto the lowest–energy
state in the (p, odd) sector. The result is an interacting one–particle wave packet with the
prescribed momentum and envelope, ready to be used (in duplicate, with ±p and well–separated
supports) for real–time collision experiments and the extraction of phase shifts, Wigner time
delays, and inelastic probabilities.

3.4 Choosing the cleaning angles θ⃗

The cleaning unitary U(θ⃗) in (16) is fixed by a tiny set of angles θ⃗ = (θ1, θ2, θ3). The goal is to
lower the Rayleigh quotient

E(θ⃗) =
⟨Ψodd,p|U(θ⃗)†H U(θ⃗) |Ψodd,p⟩

⟨Ψodd,p|Ψodd,p⟩
,

while staying inside the (p, odd) symmetry block. In practice one can choose θ⃗ with very few
measurements by exploiting the fact that E is smooth and nearly quadratic in each angle near
the optimum. Three equally simple routes are useful; any one of them suffices.

A parabolic line search with coordinate sweeps. Fix two angles and scan the third over
three small values, fit a parabola, and jump to its minimum. Concretely, for a chosen step size
s (e.g. s = 0.05–0.2 radians), measure E− = E(θi = −s), E0 = E(0), E+ = E(+s) with the
other angles held fixed. The one–dimensional quadratic minimizer is

θ⋆i = s
E− − E+

2 (E− − 2E0 + E+)
.

Update θi ← θ⋆i and sweep i = 1, 2, 3 once or twice. Stop when the energy decrease per sweep
is within noise and the energy variance ⟨H2⟩ − ⟨H⟩2 ceases to improve. In many cases θ3
contributes little and may be omitted, leaving a two–angle search.

A parameter–shift gradient step. If the layers are implemented with Pauli generators (e.g.
XX, ZZ, Z), the parameter–shift identity yields an exact derivative with two evaluations along
each coordinate:

∂E
∂θi

=
1

2

[
E
(
θi+

π
2

)
− E

(
θi−π

2

)]
.

A single small update θi ← θi − η ∂θiE with η ∼ 0.1–0.3 typically suffices; confirm with the
variance proxy that the state sharpened toward an eigenstate.
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A small–angle quadratic jump. Near θ⃗ = 0 one may write E(θ⃗) ≈ E0 + g⃗ · θ⃗ + 1
2 θ⃗

TH θ⃗.
Estimate the gradient and diagonal Hessian by central and second differences at ±s,

gi ≈
E(+s)− E(−s)

2s
, Hii ≈

E(+s)− 2E(0) + E(−s)
s2

,

neglect off–diagonal couplings on the first pass, and jump to θ⋆i ≈ −gi/Hii. A brief parabolic
polish as above can follow.

What is actually measured. Because U(θ⃗) and H are translation–invariant sums, E(θ⃗)
reduces to a handful of translation–averaged few–body correlators, such as ⟨σzjσzj+1⟩, ⟨σxj ⟩, and
⟨σzj ⟩, which can be estimated with good signal–to–noise by averaging over all sites/bonds. As

a convergence check, monitor the energy variance Var(H) = ⟨H2⟩ − ⟨H⟩2; it decreases as the
state approaches the interacting one–particle eigenstate in the (p, odd) block and plateaus when
further improvement is negligible.

Defaults that work out of the box. Initialize θ⃗ = 0 and perform a single coordinate sweep
with the parabolic formula using s = 0.1 rad. Repeat once. If desired, apply one gradient step
from the parameter–shift rule. In all cases the unitary U(θ⃗) preserves momentum and Z–parity
by construction, so the momentum profile set in Steps 1–3 remains intact while the residual
K ≥ 3 weight is variationally suppressed.

3.5 2-particle scattering

We are now in a position to discuss 2-particle scattering in this theory. We will set up initial
states with momenta p and −p. The situation is depicted in the figure.

j = 1 j = N

L window R window

seed Ry(2α
(L)
j )

Rz(ϕj=+paj)

seed Ry(2α
(R)
j )

Rz(ϕj=−paj)

aL aR

measure Π
(L)
Z measure Π

(R)
Z

keep odd keep odd

U(θ⃗) cleaning (translation-invariant, parity-preserving)

Figure 7: Two-packet center-of-mass state preparation. Seed small, shaped rotations only
inside two disjoint windows L and R, imprint opposite momentum ramps (+p on L, −p on R),
perform block-wise odd-parity measurements to herald one excitation in each block, then apply
a shallow translation-invariant cleaner U(θ⃗) to project onto the interacting one-particle in each
block. Packets are well separated at t=0, so the total momentum is zero.
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site j

t
Elastic: two fast tracks only

collisionslope ∼ v(p)

site j

t
Inelastic: extra slow central track

collision

inward skew

fast v(p)

slow vslow ≪ v

Figure 8: Schematic “energy-density tracks” (space–time ridges of vacuum-subtracted local
energy) for two-packet scattering. Left: Below inelastic threshold, two clean outer ridges depart
the collision with slopes set by the group velocity v(p). Right: Above threshold, the outer ridges
exhibit an inward skew after impact and a third, slow central ridge appears, signaling inelastic
production of a heavier excitation. This is a qualitative cartoon, not data.

Vacuum–subtracted energy–density tracks as an inelasticity diagnostic

On the lattice Ising Hamiltonian

H(J, hx, hz) = −J
∑
j

σzjσ
z
j+1 − hx

∑
j

σxj − hz
∑
j

σzj ,

a convenient local energy density is built by assigning each bond term once and each on–site
term to site j:

hj ≡ −J σzjσzj+1 − hx
2

(
σxj + σxj−1

)
− hz

2

(
σzj + σzj−1

)
.

(Any symmetric partition of the on–site pieces is acceptable; the diagnostics below are insensitive
to this choice.) Following Refs. [25, 26], we vacuum–subtract the expectation value to remove
static backgrounds and visualize transport:

∆εj(t) ≡ ⟨ψ(t)|hj |ψ(t)⟩ − ⟨0|hj |0⟩.

Space–time tracks. Plotting ∆εj(t) as a function of site j and time t yields a heatmap
with bright, ballistic tracks. For two counter–propagating packets in the center–of–mass frame,
purely elastic scattering produces two clean outer ridges which depart the collision region with
slopes set by the group velocity v(p). As the collision energy crosses the first inelastic threshold,
Refs. [25, 26] report two robust signatures: (i) an inward skew of each outgoing bump shortly
after impact (the outgoing one–particle packets are pulled toward the center by probability flux
into additional channels); and, at later times, (ii) the emergence of a slower central ridge — a
low–velocity energy–density track associated with the heavier product in 1+1→ 1+2 processes.
On present hardware, the early–time skew is especially clear and noise–resilient [25].

Correlator “track finders”. The MPS companion study [26] sharpens these features by
conditioning on the locations of the fast packets using energy–density correlators. Two–point
functions C2(j, t; j

′, t)= ⟨∆εj(t)∆εj′(t)⟩ already correlate opposite–moving tracks; three–point
correlators C3(jL, jR, jc; t) peak sharply when jL, jR sit on the outer ridges and jc on the slow
central track, enforcing the kinematics of the inelastic channel in the center–of–mass frame.
This provides a quantitative, basis–independent way to identify multi–track final states in the
post–collision wavefunction.
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A scalar diagnostic (windowed central energy). For a compact number to plot versus
center–of–mass energy, define a window of width w centered at the collision point n0 and
integrate

∆Ecenter(t;w) =

n0+⌊w/2⌋∑
n=n0−⌊w/2⌋

∆εn(t).

In the elastic regime ∆Ecenter(t) drops rapidly after the packets separate; when inelastic pro-
duction occurs it exhibits a sustained tail (or a delayed peak) reflecting the slow central
track [25, 26]. Averaging ∆Ecenter(t) over a late–time window (before ring wrap–around) yields a
robust scalar that correlates closely with the inelastic probability extracted by sector projectors
in numerics [26].

Practical notes. All required observables reduce to translation–averaged Pauli expectations
⟨σzjσzj+1⟩t, ⟨σxj ⟩t, and ⟨σzj ⟩t, measured both for the scattering state and the prepared vacuum
and then subtracted. The same readout supports (i) space–time heatmaps, (ii) two-/three–point
correlator scans to localize tracks, and (iii) the scalar ∆Ecenter(t;w). On hardware, early–time
snapshots already reveal the skewed outer bumps; longer evolutions make the central slow ridge
visible and match tensor–network benchmarks [25, 26].

A Miscellaneous points

A.1 Rapidities, crossing, and the physical strip

The physical strip for θ is 0 ≤ ℑθ ≤ π. Crossing symmetry identifies s-channel and t-channel
processes via θ → iπ − θ. Simple poles at 0 < ℑθ < π correspond to bound states with
residues proportional to the on-shell three-point couplings. Cuts associated with multiparticle
thresholds start at real θ beyond kinematic onsets; in integrable theories these are absent in
two-body amplitudes.

A.2 Minimal CFT recap for benchmarks

The Ising CFT is the minimal modelM(4, 3) with c = 1
2 and primaries {⊮, σ, ϵ} of weights (0, 0),

( 1
16 ,

1
16), and (12 ,

1
2). On a cylinder of circumference L, energies are En(L) = e0L+

2πv
L (− c

12+∆n+
∆̄n). Measuring this spectrum at criticality fixes v and validates the normalization used away
from criticality [1, 2]. This also sets the scale for comparing lattice and continuum quantities.

A.3 Truncated Conformal Space (TCSA) as a physics tool

Although our results later will not depend on any particular method, it is helpful to know that
many quantitative checks in the literature use TCSA [11]: one truncates the Ising CFT Hilbert
space on a circle and turns on τ and g, obtaining finite-L spectra and matrix elements directly
comparable to the definitions in this chapter. This is often used to benchmark mass ratios along
the E8 line and to study confinement and inelasticity when τg ̸= 0.

Reading guide

For an overview of integrable QFT and statistical models see [3]. E8 scattering and mass ratios
originate in [18]; form-factor technology is reviewed in [4, 5]. Finite-volume effects stem from
[7, 8]. Confinement and meson spectra in the nonintegrable Ising regime are discussed in [9, 10].
CFT finite-size methods are in [1, 2]. Experimental signatures of E8 in quasi-1D magnets
provide useful physical context (see, e.g., Coldea et al. 2010).
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B Classical vs. Quantum Ising Models

B.1 Classical Ising model (statistical)

Consider spins si = ±1 on a d-dimensional lattice with Hamiltonian

Hcl(s) = −J
∑
⟨ij⟩

sisj − h
∑
i

si, (17)

and partition function Zcl =
∑

{s} e
−βHcl . Thermal fluctuations (controlled by T = 1/β) drive

order–disorder transitions in d ≥ 2; e.g. the 2D zero-field model has a finite-T critical point
(Onsager).

B.2 Quantum Ising / TFIM (Hamiltonian)

The transverse-field Ising model (TFIM) replaces c-number spins by Pauli operators on a Hilbert
space:

Hq = −J
∑
⟨ij⟩

σzi σ
z
j − hz

∑
i

σzi − Γ
∑
i

σxi , (18)

with [σx, σz] ̸= 0. Quantum fluctuations originate from the noncommuting transverse field Γ.
At T = 0 this model exhibits a quantum phase transition tuned by Γ/J (for hz = 0 in 1D, the
critical point is at Γ = J).

B.3 Quantum↔ Classical mapping (expanded derivation)

We derive the mapping of the d-dimensional transverse-field Ising model (TFIM)

Hq = −J
∑
⟨ij⟩

σzi σ
z
j − hz

∑
i

σzi − Γ
∑
i

σxi

to an anisotropic classical Ising model in d+1 dimensions by making all algebraic steps explicit.

Step 1: Lie–Trotter decomposition. Split Hq = Hz +Hx with

Hz = −J
∑
⟨ij⟩

σzi σ
z
j − hz

∑
i

σzi , Hx = −Γ
∑
i

σxi .

For inverse temperature β, write the partition function

Z = Tr e−βHq = lim
M→∞

Tr
(
e−∆τHze−∆τHx

)M
, ∆τ ≡ β/M,

with Trotter error O((∆τ)2) that vanishes asM →∞. Note: all terms within Hz commute with
each other, and all terms within Hx commute with each other, so no further Trotter breakup is
needed inside those blocks.

Step 2: Insert complete sets in the σz basis. Let {|s(τ)⟩} denote simultaneous eigenstates
of all {σzi } with eigenvalues si(τ) = ±1, one such basis at each time slice τ = 1, . . . ,M . Insert
M resolutions of the identity:

1 =
∑
{s(τ)}

|s(τ)⟩⟨s(τ)|, and use periodicity s(M+1) ≡ s(1) (due to the trace).

This gives

Z =
∑
{s(τ)}

M∏
τ=1

⟨s(τ)|e−∆τHze−∆τHx |s(τ+1)⟩.
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Step 3: Evaluate the diagonal (spatial) factor. Hz is diagonal in the σz basis, hence

⟨s(τ)|e−∆τHz |s(τ)⟩ = exp
[
∆τ J

∑
⟨ij⟩

si(τ)sj(τ) + ∆τ hz
∑
i

si(τ)
]
.

This yields a spatial Ising weight with coupling

Ks ≡ ∆τ J, hs ≡ ∆τ hz.

Step 4: Evaluate the off-diagonal (temporal) factor one spin at a time. Because
Hx =−Γ

∑
i σ

x
i factorizes across sites,

⟨s(τ)|e−∆τHx |s(τ+1)⟩ =
N∏
i=1

⟨si(τ)|e∆τΓσx
i |si(τ+1)⟩.

So it suffices to compute, for a single spin with a ≡ ∆τ Γ,

Tx(a) ≡ e aσ
x
= cosh a1+ sinh a σx.

In the σz eigenbasis {|+⟩, |−⟩} (with σz|±⟩ = ±|±⟩ and σx|±⟩ = |∓⟩),

Tx(a) =

(
cosh a sinh a
sinh a cosh a

)
{σz-basis}

.

We now parameterize the matrix element between s, s′ ∈ {+1,−1} as a nearest-neighbor Ising
weight

⟨s|Tx(a)|s′⟩ = A(a) eKτ (a) s s′ .

Matching the two independent entries,

cosh a = AeKτ , sinh a = Ae−Kτ .

Divide the equations to solve for Kτ and then back-substitute for A:

e2Kτ =
cosh a

sinh a
= coth a ⇒ Kτ (a) =

1
2 ln coth a , A(a) =

√
sinh a cosh a .

Thus the single-spin temporal transfer factor is strictly positive (no sign problem) and can be
written purely as an Ising coupling times a site-local normalization.

Step 5: Assemble the classical partition function. Collecting all slices and sites, we
obtain

Z =
∑

{si(τ)=±1}

[∏
τ,i

A(∆τΓ)
]
exp

[
Ks

∑
τ

∑
⟨ij⟩

si(τ)sj(τ) + Kτ

∑
i

∑
τ

si(τ)si(τ+1) + hs
∑
i,τ

si(τ)
]

≡ N Zcl(Ks,Kτ , hs),

with overall normalization

N =
[
A(∆τΓ)

]NM
=

(√
sinh(∆τΓ) cosh(∆τΓ)

)NM
.

Therefore, the TFIM maps to an anisotropic classical Ising model in d+1 dimensions with
couplings

Ks = ∆τ J, Kτ = 1
2 ln coth(∆τ Γ), hs = ∆τ hz .

The classical spins si(τ) live on a (d+1)-dimensional space–(imaginary)-time lattice with peri-
odic boundary condition si(M+1) = si(1) in the time direction.
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Asymptotics and anisotropy. In the Trotter limit ∆τ → 0 (fixed Γ), a = ∆τΓ→ 0 and

coth a ∼ 1

a
+O(a), Kτ ∼ 1

2 ln
1

∆τΓ
→ ∞,

so time-like bonds are very strong compared to space-like bonds Ks = ∆τJ → 0. Physical
(isotropic) scaling emerges after rescaling the time lattice spacing so that correlation lengths in
space and (imaginary) time scale with a common emergent velocity (dynamical exponent z = 1
for the TFIM).

Recovering the quantum critical point. For the d=1 TFIM (1+1D classical Ising), the
exact classical critical line is

sinh(2Ks) sinh(2Kτ ) = 1.

Substituting Ks = ∆τJ and Kτ = 1
2 ln coth(∆τΓ) and expanding for small ∆τ reproduces

Γ = J in the continuum limit—i.e. the quantum critical point maps onto the classical critical
manifold.

Stoquasticity (positivity of weights). In the σz basis, all factors are nonnegative:

⟨s(τ)|e−∆τHz |s(τ)⟩ > 0, ⟨s(τ)|e−∆τHx |s(τ+1)⟩ > 0,

so the resulting classical weight is positive definite. This is the content of “stoquasticity” for
the TFIM and explains why worldline/path-integral QMC has no sign problem here.

Recipe (at a glance).

1. Choose M and ∆τ = β/M ; write Z = Tr(e−∆τHze−∆τHx)M .

2. Insert σz resolutions of identity between every factor.

3. Read off Ks = ∆τJ and hs = ∆τhz from the Hz diagonal weight.

4. For each site, rewrite ⟨s|e∆τΓσx |s′⟩ = AeKτ ss′ with Kτ = 1
2 ln coth(∆τΓ).

5. Drop the overall constant N if you only care about normalized observables; keep it if you
want the absolute free energy.

Common pitfalls.

• Forgetting periodicity in imaginary time: the trace enforces si(M+1) = si(1).

• Mixing bases: only insert σz identities; evaluating Hx in σx and Hz in σz simultaneously
is inconsistent.

• Over-Trotterizing Hz: its terms already commute; unnecessary splitting just adds book-
keeping.

• Discarding N prematurely: thermodynamics depending on absolute free energy (e.g. spe-
cific heat) requires keeping track of N , though it cancels in most normalized correlators.
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Checks and limits.

• Γ → 0 (a → 0): Kτ → ∞ locks si(τ) constant in time; one recovers the classical d-
dimensional Ising model with coupling Ks = βJ (since ∆τM = β).

• J → 0: Ks → 0 decouples spatial neighbors; the model reduces to independent 1D classical
chains in the time direction with coupling Kτ—i.e. paramagnet along x.

Summary box.

ZTFIM = N
∑

{si(τ)=±1}

exp
[
Ks

∑
τ,⟨ij⟩

si(τ)sj(τ) +Kτ

∑
i,τ

si(τ)si(τ+1) + hs
∑
i,τ

si(τ)
]
,

Ks = ∆τJ, Kτ = 1
2 ln coth(∆τΓ), hs = ∆τhz,

N =
(√

sinh(∆τΓ) cosh(∆τΓ)
)NM

, si(M+1) = si(1).

B.4 Exact solution of the 1D TFIM at hz = 0 (outline)

Adopt periodic boundary conditions on N sites and set a = ℏ = 1. A Jordan–Wigner (JW)
transformation maps spins to fermions,

σzj = 1− 2 c†jcj , σxj =
(
c†j + cj

)
exp

(
iπ

∑
ℓ<j

c†ℓcℓ

)
, (19)

which turns Eq. (18) (with hz = 0) into a quadratic BCS-like Hamiltonian. After Fourier
transform and a Bogoliubov rotation one obtains

H =
∑
k∈BZ

εk

(
γ†kγk −

1
2

)
, εk = 2

√
(Γ− J cos k)2 + (J sin k)2 = 2

√
Γ2 + J2 − 2ΓJ cos k.

(20)
The gap closes at k = 0 when Γ = J , identifying the quantum critical point. At criticality,
low-k excitations are relativistic with velocity v = 2J :

εk
k→0−−−→
Γ=J

2J |k|, ∆L ∼
πv

L
(L = N). (21)

B.5 Phases, observables, and entanglement

For hz = 0 in 1D:

Γ/J < 1 : ferromagnet, mz = lim
|i−j|→∞

⟨σzi σzj ⟩1/2 ̸= 0, gapped, (22)

Γ/J > 1 : paramagnet polarized along x, gapped, (23)

Γ/J = 1 : quantum critical (Ising CFT, c = 1
2). (24)

Equal-time correlations cross over from exponential decay (gapped) to power-law at criticality.
The bipartite entanglement entropy of a block of length ℓ obeys

S(ℓ) =


c

3
ln ℓ+ const, critical (c = 1

2),

area law (saturating), gapped phases,
(25)

a sharp quantum signature with no classical counterpart.
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B.6 Quick comparison table

Aspect Classical Ising Quantum Ising (TFIM)

Variables si = ±1 Pauli operators σx,zi

Fluctuations Thermal (T ) Quantum (Γ noncommutes)
Dynamics Added phenomenologically Intrinsic unitary e−iHt

Transitions Thermal (d≥2) Quantum at T = 0 (tuned by Γ/J)
Mapping — dD ↔ (d+1)D classical (Trotter)
Simulation Classical MC, exact results in 2D (h = 0) JW/DMRG (1D), QMC (stoquastic), TN, QC

B.7 Notes for quantum computing

The 1D TFIM is exactly solvable (free fermions), enabling: (i) calibration/benchmarking of
variational and Trotterized algorithms against exact spectra (20); (ii) quench dynamics with
known light-cone velocity v (21); (iii) entanglement scaling tests (25). In higher d, stoquasticity
permits sign-problem-free worldline QMC for equilibrium, while real-time dynamics remains a
natural task for quantum circuits.

C Unitarity in 1+1D two–particle scattering: elastic vs. inelas-
tic

Setup and normalization. Work in the center-of-mass (CM) basis of two-particle states

|p⟩2 ≡ |p,−p⟩, ⟨p′|p⟩2 = (2π) 2Ep δ(p
′ − p),

with Ep =
√
m2 + p2. Translation invariance implies momentum conservation, so two-to-two

matrix elements in the CM basis are diagonal in p.

Start from operator unitarity. Unitarity is

SS† = 1.

Sandwiching between CM states and inserting a resolution of the identity over a complete set
of out-states {|k⟩2} ∪ {|X⟩ ̸=2} (two–particle and all multi–particle sectors):

⟨q|SS†|p⟩2 =
∑
k

⟨q|S|k⟩2 2⟨k|S†|p⟩ +
∑
X ̸=2

⟨q|S|X⟩⟨X|S†|p⟩

= ⟨q|p⟩2 = (2π) 2Ep δ(q − p). (26)

Parameterizing the elastic matrix element. By CM momentum conservation the elastic
2→ 2 matrix element is diagonal:

2⟨q|S|p⟩2 = (2π) 2Ep δ(q − p) S2(p),

which defines the (single “partial wave” in 1+1D) two–body S-eigenvalue S2(p).

Purely elastic scattering

If no inelastic channels are kinematically open, the second sum in (26) vanishes:∑
X ̸=2

⟨q|S|X⟩⟨X|S†|p⟩ = 0,
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and (26) reduces to 2

(2π) 2Ep δ(q − p) |S2(p)|2 = (2π) 2Ep δ(q − p).

Hence
|S2(p)| = 1 =⇒ S2(p) = e2iδ(p),

with a real phase shift δ(p) (time-reversal and real analyticity ensure δ ∈ R). Therefore,

2⟨q|S|p⟩(elastic)2 = (2π) 2Ep δ(q − p) e2iδ(p)

i.e. the two–body matrix element is a pure phase multiplying the momentum delta.

Inelastic scattering open

When channels with n ≥ 3 final particles are open, the second term in (26) is nonzero. Using
the elastic parameterization above, unitarity gives

(2π) 2Ep δ(q − p) |S2(p)|2 +
∑
X ̸=2

⟨q|S|X⟩⟨X|S†|p⟩ = (2π) 2Ep δ(q − p). (27)

Rotational (here: parity) and translational invariance force the inelastic sum to be proportional
to (2π) 2Ep δ(q − p). Defining the inelasticity (absorption) parameter η(p) ∈ [0, 1] by

|S2(p)| ≡ η(p), 1− η2(p) =
1

(2π) 2Ep

∑
X ̸=2

⟨p|S†|X⟩⟨X|S|p⟩2,

we may write the most general solution as

S2(p) = η(p) e2iδ(p),

with δ(p) ∈ R. Consequently,

2⟨q|S|p⟩(inelastic)2 = (2π) 2Ep δ(q − p) η(p) e2iδ(p), 0 ≤ η(p) ≤ 1

and probability conservation becomes

1− η2(p) =
∑
n≥3

∫
dΦn

∣∣M2→n(p→ {ki})
∣∣2,

i.e. the loss from the elastic amplitude equals the total inclusive probability into all inelastic
channels (the 1+1D optical theorem in this single–channel setting).

Remarks.

• In 1+1D there is only one independent “partial wave” in the CM frame; the above S2(p)
coincides with that single eigenvalue. For identical particles (bosons/fermions) the ex-
change symmetry is already baked into the definition of the two–body sector; the form
S2 = ηe2iδ still holds.

• In integrable models (e.g. massive Ising without a longitudinal field) η(p) = 1 exactly and
scattering is purely elastic; relevant deformations that break integrability open channels,
η(p) < 1, and encode inelasticity in the deficit 1− η2.

2Obviously we need an identity like
∑

k(2π)
2(2Ep)

2δ(k − p)δ(k − q) = (2π)(2Ep)δ(p − q). Figure out where
this comes from!
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D State preparation in Qiskit and why we prefer the W-state
route

D.1 What “state preparation” means

Given n qubits initially in |0⟩⊗n, state preparation is the task of applying a circuit U such that

U |0⟩⊗n = |ψtarget⟩, |ψtarget⟩ =
2n−1∑
x=0

αx |x⟩. (28)

Depending on structure in {αx}, the circuit can be extremely shallow (product states) or expo-
nentially large (generic amplitude encodings). Qiskit exposes several families of methods that
cover this spectrum.

D.2 Cheap cases: basis and product states

Computational basis states. To prepare a basis state |bn−1 . . . b1b0⟩ with bj ∈ {0, 1}, apply
X on qubits with bj = 1. Depth is O(1) ignoring parallelization constraints.

Single-qubit product states. States of the form
⊗n

j=1(cos
θj
2 |0⟩+e

iϕj sin
θj
2 |1⟩) are obtained

with single-qubit rotations (e.g. Ry(θj) and Rz(ϕj)). Again, depth is O(1) plus compilation
overhead.

D.3 Structured superpositions: uniform and domain-specific

Common structured states (e.g. the uniform superposition 1√
2n

∑
x |x⟩) compile to very shallow

circuits (Hadamards on each qubit). Qiskit wraps these as small helper circuits (“distributions”
in domain libraries), which are practical on hardware because two-qubit gates are minimal.

D.4 Arbitrary amplitude loading: exact but expensive

For a generic complex-amplitude target

|ψ⟩ =
2n−1∑
x=0

αx|x⟩,

Qiskit provides StatePreparation (and the legacy initialize) which synthesize an exact
circuit mapping |0 . . . 0⟩ 7→|ψ⟩. Internally this decomposes into uniformly controlled rotations /
isometries (Möttönen/Householder/CSD-style constructions).

• Asymptotic cost. In the worst case, the gate & CNOT count scales as Θ(2n) and depth
scales similarly. This is information-theoretically unavoidable for arbitrary data loading.

• Hardware caveat. Mid-circuit initialize implies resets and deep isometry synthesis.
On noisy devices this is prohibitive beyond very small n.

D.5 Variational state preparation: approximate but hardware-friendly

When the goal is “prepare an eigenstate of H” (ground or low-lying), Qiskit favors variational
circuits (e.g. TwoLocal, EfficientSU2, ADAPT-VQE pools). One optimizes parameters θ to
maximize overlap with the target or to minimize ⟨H⟩. This avoids the Θ(2n) data-loading cost,
but the final state is only approximately prepared and the optimization can be nontrivial.
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D.6 Two practical gotchas

1. Gradients through initialize. Because initialize is not a differentiable parametriza-
tion, gradient-based training does not flow through it. Use variational ansätze for trainable
pipelines.

2. Compilation to native gates. Even simple-looking high-level blocks can balloon after
transpilation (basis changes, routing, cancellation limits). Always judge by the compiled
depth/CNOT count for the target backend.

D.7 Why the W-state approach (Preskill et al.) is superior for NISQ QFT
tasks

Many QFT tasks of interest (1+1D ϕ4, Ising field theory near criticality, Schwinger model
sectors, etc.) ultimately need few-particle wavepackets with well-defined quantum numbers
(total momentum, parity, charge). The W-state strategy is:

1. Prepare a number-conserving, symmetry-adapted fiducial state such as a one-excitation
delocalized packet (a “W-state”):

|W (f)⟩ =

N∑
j=1

fj |0 · · · 010j0 · · · 0⟩,
∑
j

|fj |2 = 1, (29)

or its two-excitation generalization with prescribed relative momentum.

2. Dress this fiducial with a shallow, locality-preserving circuit (few layers of nearest-neighbour
two-qubit gates and single-qubit rotations), with parameters θ fixed classically to best
match the interacting eigenpacket, as diagnosed by e.g. band energies, overlaps, or few-
point correlators.

This route outperforms generic Qiskit state-prep in the present, noisy regime for several concrete
reasons:

(i) Right sector, right symmetries, from the start. Amplitude-loading methods blindly
populate the full 2n space, while scattering/eigenpacket physics lives in a tiny symmetry sector
(fixed particle number, momentum window, Z2 parity, gauge charge). The W-state is born in
the correct sector, so the circuit never wastes depth suppressing unphysical components.

(ii) Circuit depth scales with correlation length, not Hilbert dimension. A shallow
dressing circuit (few layers of local gates) is sufficient to imprint the needed correlations onto a
delocalized single (or few-) excitation. Empirically the required depth tracks the physical corre-
lation length / interaction range, rather than 2n. This is precisely what present-day hardware
can realize.

(iii) Excellent initial overlap with low-lying eigenstates. A momentum-selective W-
packet has large overlap with the one-particle band of the interacting theory after weak-to-
moderate dressing. Thus, modest parameter counts (dozens, not thousands) can deliver high
fidelities. In contrast, a generic StatePreparation either explodes in size or, if aggressively
approximated, spends gates encoding irrelevant amplitudes.

(iv) Clean diagnostics for scattering. For inelasticity studies one wants to distinguish
genuine multiparticle production from artifacts of bad initial states. Starting from a number-
conserving W-state and locally dressing it keeps leakage to wrong sectors visible and small,
simplifying the interpretation of measured S-matrix proxies (time-of-flight, wavepacket separa-
tion, phase shifts from finite-volume spectroscopy).
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(v) Classical outer loop; quantum inner loop optional. The angles θ dressing the
W-state can be tuned using classical surrogates (MPS/DMRG on the same finite chain, or
linear-response fits) before compiling once to hardware. One can still do a small quantum
refinement (few SPSA steps) if desired. Either way, this avoids the cost and instability of deep,
fully variational circuits trained entirely on device.

(vi) Hardware efficiency and robustness. The W-state itself is cheap to prepare (laddered
X plus a tree of controlled rotations or a linear-depth excitation-conserving circuit). The sub-
sequent dressing uses only short-range two-qubit gates that map well to heavy-hex and similar
topologies, minimizing SWAP overhead and reducing Trotter or synthesis error accumulation.

D.8 How it fits with Qiskit in practice

In Qiskit terms:

1. Build |W (f)⟩ with an excitation-preserving primitive (e.g. Givens/FSIM ladders or CX+single-
qubit trees). For fixed momentum k, choose fj ∝ eikj times a Gaussian envelope.

2. Compose with L layers of a local ansatz (e.g. brickwork of nearest-neighbour two-qubit
gates + on-site Rz), constrained by the symmetries you need (parity, particle number if
encoded accordingly).

3. Fix parameters θ offline via classical matching to low-lying eigenvectors (MPS) or by min-
imizing

∑
ℓwℓ∥⟨Oℓ⟩dressed−⟨Oℓ⟩target∥2 for a small diagnostic set {Oℓ} (energies, structure

factors, two-point functions).

Compared to StatePreparation or initialize, this pipeline maintains shallow depth, pre-
serves relevant symmetries, and yields states that are physically appropriate for scattering/eigenspectroscopy
while being implementable on today’s devices.

D.9 Summary

• Qiskit’s exact amplitude loading (StatePreparation/initialize) is mathematically clean
but scales as Θ(2n) and is unsuitable beyond very small n on noisy hardware.

• Variational ansätze reduce depth but must learn structure from scratch, which can be
data- and iteration-heavy and sometimes unstable.

• The W-state + shallow, symmetry-respecting dressing hits the sweet spot for QFT: it
starts in the correct particle-number/momentum sector, needs only local correlations to
be added, and can be pre-optimized classically. This yields high-overlap, interpretable
initial states for scattering and spectroscopy with a fraction of the circuit depth.

Minimal code sketch (illustrative)

(Pseudocode; adapt to your encoding and backend.)

# 1) Build a W-packet with envelope f_j (e.g., Gaussian * plane wave)

qc = QuantumCircuit(n)

prepare_W_packet(qc, f) # excitation-preserving ladder

# 2) Add L layers of local dressing that respect symmetries

for _ in range(L):

for j in range(n-1):

qc.xx(j, j+1, theta_xx[j]) # or a native 2q entangler
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for j in range(n):

qc.rz(phi[j], j)

# 3) Calibrate (theta_xx, phi) offline via MPS or small QC refinement

Bibliographic note

For completeness, include: methods for exact state synthesis (isometries, uniformly controlled
rotations), variational ansätze on IBM hardware, and recent W-state-based eigenpacket prepa-
ration for lattice field theories.

References

[1] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite conformal symmetry
in two-dimensional quantum field theory,” Nucl. Phys. B 241 (1984) 333–380.

[2] J. L. Cardy, “Conformal invariance and universality in finite-size scaling,” J. Phys. A
17 (1984) L385; P. Calabrese and J. Cardy, “Entanglement entropy and conformal field
theory,” J. Phys. A 42 (2009) 504005.

[3] G. Mussardo, Statistical Field Theory: An Introduction to Exactly Solved Models in Sta-
tistical Physics, 2nd ed., Oxford University Press (2020).

[4] F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory,
World Scientific (1992).

[5] M. Karowski and P. Weisz, “Exact form factors in (1+1)-dimensional field theoretic models
with soliton behaviour,” Nucl. Phys. B 139 (1978) 455–476.

[6] A. B. Zamolodchikov, “Integrals of Motion and S-Matrix of the (Scaled) T=Tc Ising Model
with Magnetic Field,” Int. J. Mod. Phys. A 4 (1989) 4235–4248.

[7] C. N. Yang and C. P. Yang, “Thermodynamics of a One-Dimensional System of Bosons
with Repulsive Delta-Function Interaction,” J. Math. Phys. 10 (1969) 1115.
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