Lecture - 14 (varum Rayhunathan) Topics which will be conored 1) From classical to quandum communication (devices systems) -> M. Fore, Quantum optics & lecture notes 2) Busics of Cryptography and Juntum key distribution. Neils en 8 chung, Quantum 3) Quantum optical treatment light computation Book > 2nd Quantization | Photon state In> > quantization | Cohorant state Id> 4) understanding how quantum states interact with optical companionss (become splitter + Interpresenter) (coory and knight, intro to quantum optics. Exem: One in class exern - 3rd week of october. (1/3rd weight age) 9 * Why Quantum key distribution? One · must matured of the quantium technologies · Strategies application in Cryptic graphy. * Photoms core the Curriers of quantum in pormation? They tend to have borng cohorance time (advantage) its deficult to build quantum memories (dis advantage) (dis advantage) > inferaction with matter qubits (vory nascent

& can we use lang length of jiker (delay lines) to

steers nemery? Ans No, delay line nemery are proon to lasses (drawback) But we can do con the fly precessing. This is pressible when photon sources and detectors are ejivent. * Typical Communication speeds Room temp desircuble (QRD Regrentes) & kbps - 10s of Mbps (auj speed) * cue cant use RF ar ingraved have less energy the KT Value is similar to hi then it may thermalised. So neet a growd idea to use it. wouldnigth neuryes used for quantum comm. [1] Visible: 400-700mm lesquel jour interjacing with cotoms/NV- centers/ion troops etc [2] Shorter near IR: 700 - 1000mm -> Free space Fiber-optic comm. entungled >1-.

• leverege advancement photon with Strategies

C700-800mm mitigate

Surlight [3] Necoz IR/Telecom: 1300-1600mm Communication. · Im GaAs SPADS nuncociure single mterjerence photon detector (SNPO)

Classical Optical Communication System Light Souvees: Bright Photons (mean Photon no. is
Laser much much greater
LED +man one) Modulation: Encede deta ento optical avvier > direct modulation (of current to a laser) > indirect modulation (External modulator) -> electron optic modulation. -> madulate 'light State of light cue | Phrese (PM) medulater

Chrocese cercordingly | prequency (FM) meadulater

Policization modulator Fibers S Free space -> in the content of JKD ree-space is used typically por being distance communication (>1000 km) $\alpha = 0.2 \, dB/km$ L= 1000 km $lolog(\frac{point}{pin}) = 0.2 \times 10^8 = 200 dB$

Detectors ⇒ High Speed photo dotectors > P-I-N diades > A Valanche photocletechors -> There was single (photo diade with built in gain) phreston detection bused can it: Noise and signal to Noise ratio (SNR)
digital modulation anto the aptical corres - Mannel - => 0 and 1 could be miss interpreted - => little neise Recouvered digital signed with noise added Recover the signed at the over put Noise can introduce oracer in the measurement. Sources of Noise

* Shot noise => occurs because of the shot -to-shot
(disportized) noture of photon queentization/
alosarption/detection. (quentum limited noise) * Thornal neise = inhorant newse due to the system (down as operating at the temp (T).

The way we quentize this is by using signal to naise ruitio. Var(I)=02

Any Signed

workent I $SNR = \frac{meam^2}{Voriance} = \frac{\overline{J}^2}{\sigma^2} = \overline{J}^2$ $Voriance = \frac{\overline{J}^2}{\sigma^2} = \overline{J}^2$ Noisa premer due to thornal noisa = 4kTB Thermal = $\frac{4 \text{ KTB}}{R}$ B = Bandwidth

Resistance The detection cuents or no. * Understanding Sheet needs of detection per unit time

P

Avy response in proportional to aptical

pawer Think of a hypothetical porcumeters with very high temperal precition. P= 21 h22 n = no. of proteens in the procesusement time windrew T = measeorement in time cuindrew hV = onergy of the Photon

Serregle phateen detecteon + Time Targer

what is the Brob of detecting n photon in a necessivement time window T.

(ceroider the necen Photons no = 7

divide the necessive ment time windows in n subbins

Prob. Of detecting the photon in a sub kin
$$\beta = \overline{x}$$

P(xi) = $\frac{1}{N} \cdot \frac{N}{n-\infty} \cdot \frac{N}{n-\infty}$

$$P(m) = 1 + \frac{1}{N-\infty} c_m p^m (1-p)^{N-m}$$

$$MCM$$
 shot raise limit) = \overline{m} $\int_{0}^{\infty} SNR |_{Shot} = \frac{\overline{m}^2}{\overline{m}} = \overline{m}$
 $O^2(m)$ short raise limit) = \overline{m} $\int_{0}^{\infty} SNR |_{Shot} = \frac{\overline{m}^2}{\overline{m}} = \overline{m}$

Current Variance due to sheet necess

$$= \overline{\pi}(9/\tau)^2 = (\overline{\pi} \psi/\tau)(\psi/\tau) = \overline{T} g(2B)$$

$$\sigma_{\text{sheet}}^2 = 29 \overline{1}B$$
 and $\sigma_{\text{Theorned}}^2 = 4 k T B / R$

Lecture - 15

SNR = $(\overline{I})^2$ = $(R Popt)^2$ RPopt = \overline{I} Snot + $(\overline{I})^2$ = $(R Popt)^2$ RPopt = \overline{I} Snot + $(\overline{I})^2$ = $(R Popt)^2$ RPopt = $(\overline{I})^2$ RPopt = $(R Popt)^2$ RPopt =

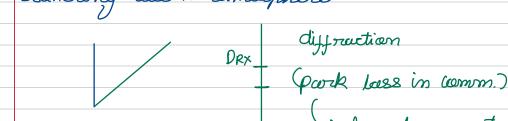
G: gain from the APD

Rociners sensitivity SNR = SNRO

Recivers sensitivity regers to Papt required to achive. SNR = SNRo

SNR(dB) = 1010g10 (SNR)

use can come up with a power budget for the communication link (Papt | & Popt | 72) to achies specyje SNR pergormance


For jixed Papt | Tx we can determine the muse. length to support a required SNR We cam come up with a power budget you the common link to achive specific SNR pergenmence. Or jour juried optical Popt Tx we can determine the max link length to supposed a nurginal SNR. SNR and BER are related
Bit conservate SNRT then BERY In Queentiern Roy distribution we don't use SNR but QBER. (Queentum bit crower rects) Chammel > Fiber -> Free space Impriorment in the optical churnel Fiber Channel: (1) optical lasses (Scattering & absorption)
(2) dispersion
(3) optical non-linearity single photon ofter propagation through a lossy channel (casily become Possion distributed)

time encoding optical fiber 10) and 11) overlap * dispersion con increase the order probability to eliminate cue use dispossion compensation siber (opposite n'(Represtiu index)

NON-linear Seyets

* Intensity dependent optical response from
the medium for optical non-linearity. Dessice and Juantan channel can have cross talk in frame course mixing. Ramun Scattering * Scattering of bright photons of the classical channel to the stokes and antistoke band Ty the guestiem chiennel over laps with the Stokes and unti Steekes band the guardim info ain be compromised. Free Space Channel

· Digraction (becom spreading) · Scattering due to atmosphere

> depends on aporture
cut Rx (Reciver)
> also on wavelength

* Fris formula jour pres spece transmission

 $\frac{\rho_{Rx}}{\rho_{R\tau}} \propto \frac{D_{Tx}^2}{\chi^2} \frac{D_{Rx}}{d^2} \qquad D_{Rx}, D_{Tx} \text{ operations size} \\ d \rightarrow distance} \\ \chi \rightarrow constant.$

To minimise path losses: - DTX, ORXT, NV, dV

* Scottering Occurs due to disposence in repraction index in the communication wave length

Particle size relative to coordingth also influence the Scattering.

Particle size ~ \(\rightarrow \) Results in significant scattering.

Scattering results in less of spatial cohorence

Satellite band QkD to determine by the initial atmosphere

Scattering. The lasses for large distance FS-9kD is less when compared to fiber QKD It is essential to have negligible beam tracking mechanism to ensure Tx-Rx are alinged for læng distance communication. For a giver Channel with 0.2 dBlkm, 1000km fiber will result in 200 dB of loss

PRX = 10⁻²⁰

Prx Læng distance jeker cæmm. happen due to the >> 5 DFA SOA > Raman Amplijacetian No doning theorem in quantum mechanics prevents the deplication of a general quantum state For Quantum Comm. one cannot use optical There's intrest in Quantum teleportetion and quantum optics technology as a way to reproduce duplicate the quantum state.

Disperent architecture peur optical Cammunication link.

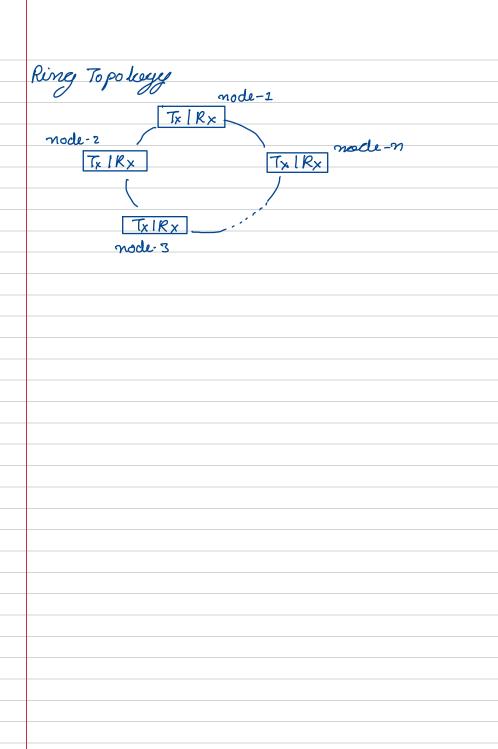
Tx Rx Tx Point to point link

Tx Rx Tx PRX Tx PRX Relay based

point to point link

For 9kD => Trusted Relay point to point link

Tx/Rx Tx/Rx Tx/Rx


Star notwork

For QRD => enterngled pair of phaten at the central nade get distributed to Alice - Bob (end to end)

Contral

MDJ-9KD
measurement device independent 9KD: states are
prepared at the end node and transmitted
to the central node you measurement.

measurement outcomes are know culos truensmitted aehat is not known that geruntus security.

Lecture -16

RAS preotocel

Alice -Bob Individual

Ey. Bank e commer site Bank can decode the Public key distributed

=> message with a to the individual Energyted message gets private key sent to the bank

(Public and Przivate Rey)

Computational complexity- generates sourity for public key cryptography.

 $E(M) = M^{\ell} \pmod{n}$ $= 0 (e^{N}) \mod q \text{ digits which}$ $E(M) = M^{\ell} \pmod{n} \qquad \text{makes up } n = f \times q.$

DCEIM) = E(M)d (mod.71)

* Quantum Rey distribution

· its based an principle of gM with riggours security proof to grewenter security

* Qukit States For ey: Hand V pol of photon in a single made

* Entangled pheoton Consider two mades a & b, 10/a, 11/a & 10/b11/b

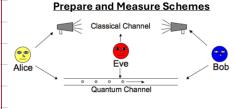
suppose => $\frac{|\psi\rangle_{ab} = \frac{|0a0b\rangle + |1a1b\rangle}{\sqrt{2}}$ (just one Esc) Polarization states used to enerall greantum injurimentian Prestilineurl Basis d1H>, IV>3-Pol. bases set's rehich d10>,1A>} > diageonal Basis Too > wieular Basis > Antidiageonal |A) = IH)-IV> \(\frac{12}{2} orthogenat to other set. d IL>, IR>} _____ => diageonal ID> = 14>+ 1v> V2 $|R\rangle = |H\rangle - |V\rangle$ 17> = 14>+111> >> Right coulder > left circular wouldnigth is a degree of preedom: d11/2,10/2} d 11/2, 10/23 opticul pulse in time can be used to execute quentum states: Early late dale), Beilly 5 790° OT 270° phuse cleley (might)

• when we do this in time cee call it

Time - bein encoding -> secitable for multi dimension

encoding

Enerodine in special modes of Joher cor free space

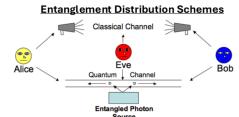

d | M, 2, | M2), ..., | M, 2}

orbital anguler mannentum stette are also used por multi-dimensional encoding

* in slice -> charlie sontungled phioton source

Alice Bob

Quantum Communication System - Classification



- Alice prepares states and sends this to Bob who does the measurement
 Forward or reverse reconciliation (to
- come up with a common key)

 Eve attempts to tap into the
- information
 During post-processing the extent of Eavesdropping is estimated to key or

communication to gain some/all the

reject the block of communication
• Example: BB84, COW, T12 etc.

- A central party (can be Eve as well) generates entangled pairs of photons
- Entangled photons distributed to Alice and Bob
- Based on their measurement they know what the other persons state is
- During post-processing the strength of entanglement is estimated using suitable metric (é.g. CHSH inequality)

Example: E91, BBM92 etc.

- Amenable to repeaters, entanglement swapping etc. → future quantum internet

Consider con entungled photon source at the central needle $|\psi_{ab}^{\dagger}\rangle = \frac{|0a0b\rangle + |1a1b\rangle}{\sqrt{2}}$ Z basis (1H), (V)) X basis d10>, 1A>4) States are oneoded single Bases Photon > Quantum schetion Source. State energling Alice 9 Bob will select Busis to de neasurement Bob's side Detect the state B.S IH Detetær HWP _1v) used to Octector solect basis Original BBS4 prictoral proposed the use of:-· ideal señagle photon source. · ideal basis/quantrem states encocles ideal basis de code

•	i deal single photon electron
	11
	in reality the above comprenents end up being nonideal
	rion idion
	Simulation and testion of agreement in march
	1 Original Vices VI Veca Cor Cessatory grading in Core
	> implementation assumption made 5 This opend side channel for attacks
	attacks
Note	
*	brivate key's are as being as the message
	0

Lecture -17

Exam on 17th Oct -	JOAM
make up be con 10th - 10	AM
single photon source weak coherent source Cattenuated laser source	modulation to encode quantum States (> Electrico - optic modulation
Entungled photon pair Source	Medulation
- Quantum light Source quari	1 100 C Ifelespone
detection (State manipulation
Single Photon detector SPAD SCSPD	Passiul Beam Splitter Gnterjercometer
	· Active Electrocoptic Modulator
Also Note: laser is no	

paissons distribution. 0

 $|\Psi\rangle = \cos(\theta) |0\rangle + e^{i\phi} \sin(\theta) |0\rangle$ 10) and 11) in light can represent production and time. Come of the most imp) Single Photon Source 1 -- [
(1) Ches: Q optic mock Fore ch-s) photon no.

Source which emits deterministically one photon
feor every excitation luser is not a single photon state ocen is If we can restric dos (density of Stale) available I thousand an inpulse function then only state is available for excitation the propulation (e-laton) and court one proton ⇒ eg guentum dots, Diamond-Nitsungen Vacancy center mændyer leg 20 material in bulk those one so many state but if we restric them we can get.

Represent quantum states in Bloch Sphere

 $\times : \left(\frac{10)+11}{\sqrt{2}}, \frac{(0)-11}{\sqrt{5}}\right)$

y: (10>+i11), 10>-i11>}

• opten single phieten enission is steedied at low temp How do you represent these states? Single photon states more generally are represented as Fock state (precton state => 1n) 10) => Vaccum State 12) => single photon State emists multiple photon in one pecket at a time N -> 9.0 in certine region of PN Junction (quality depends on the homogenity and hetrogenity of the PN Sunction coèncidence meusevement Thore is a metric Culled ge. $g_2(\tau) = \langle \underline{m}_1(t) \, \underline{m}_2(t-\tau) \rangle$ $\langle \underline{m}_1(t_1) \rangle \langle \underline{m}_1(t-\tau) \rangle$

92(2) continueus excitation This width is related in the readictive lip time. -> 7 (delay) > ane photoen et a time 92 (0) should be as class to zoro por a good single photon source Other, gr (a) <0.5 has single photon preoperties. 92(t) Pulsed excitation -2AT -AT O AT 2AT Populeur escenyple of this (SPE) is Revolum proton genration. Poth enterryled single photon state. $|\psi_{12}\rangle = \frac{|11,02\rangle + |01|2\rangle}{\sqrt{2}}$

(2) Entangled Phioton poir sources:

A multiprortite state is said to be entangled if it cannot be justerized into its individual states

Bipwrtite entangled states between made-1 2 mode-2.

Bell States Je those is 50%. Of $|\phi^{\pm}\rangle = \frac{|00\rangle \pm |11\rangle}{\sqrt{2}}$ neasuring the 1st $\sqrt{2}$ part and $\sqrt{50}$ chance of the 2^{nd} part these are $1\psi^{\pm}\rangle = 101\rangle \pm 110\rangle$ messionally enlarge $\sqrt{5+10}$

* consider a bipartite system made of:

d102,,112,3 & d102,112,3 any genral state of the bipertite states combe

(a,107+b, 11) (a21072+b21172)

= a,a2 10,02> + b, b2 11,12> + a,b2 0,12>+ a2b, 11,02>

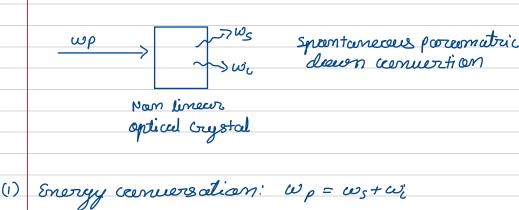
consider: $|\phi^{+}\rangle = 1 (10,00) + |1,10)$

for 10+2 to be a general state of medes 1 & 2:

a, az= 1/12 b, b2= 1/52 $a_1b_2 = 0$ $a_2b_1=0$ This is not satisfied you valid values of az,a,b,,bz => 10+>= cannot be separated to its individual To simultaneceus generale trece phieton with Strong correlation we make are ce speenfamerous percamentaric decuen conversion (SPDC) Recerse signal > photon process Should pump photon also hold ~ ω; photom Non linear apticul des consider pluse corcoane phiese concoare vector moteling speentanetity splitting of one pump photon For peorticular prescess: Energy conversation among the photon is required.

 $\omega \rho = \omega_s + \omega_i$

wave vector matching or phase mothing Kp = Rs + Ri Phase matching is achivedy ane combination of P, S, i such that the direction of the photen and energy of phiston are ws=wi ≥ degenrate SPOC process $w_{p} \rightarrow w_{p} + w_{p}$ They core correlated in E, t, would vector) Ws + Wi => Non degenerate SPOC process The signal and idler photon are highly correlated in energy, direction lacuse vectors, time, polarisation (due to phuse protching of the signal) g2(t)1 at zorce delay.


Wave vector mis match: $\sqrt{R} = R_p - (R_{s+R_i})$ = $n_{\rho} \cdot 2\pi \hat{e}_{\rho} - n_{s} 2\pi \hat{e}_{s} - n_{i} 2\pi \hat{e}_{i}$ = $2\pi \left[\frac{m\rho}{\lambda\rho} \stackrel{\text{d}}{=} \frac{n_i}{\lambda s} \stackrel{\text{d}}{=} \frac{n_i}{\lambda i} \stackrel{$ Consider the copragation of the wave in the orgsted: $\Delta k = 2\pi \hat{e} p \left[\frac{m_{e} - m_{s} - m_{i}}{\lambda_{p} \lambda_{s}} - \frac{m_{i}}{\lambda_{i}} \right]$ Energy conservation require: $\frac{1}{\lambda_0} = \frac{1}{\lambda_0} + \frac{1}{\lambda_0}$ Binegreenegence preoperties of the bustil are used to scatisfy the please matching condition. To access biragrangence proporties of the buystal disposent polarisation and buystal nature are combined.

Different Types of kiregrangent places velocity 1) Type-I signal and Idler are of the same polarisation orthogenal to pump. Hp -> Vs Vi , Vp -> Hs Hi J 2) Type-I: signal and Idler core of orthogonal pedevisation Hpcorvp -> HsVicor UsHi 3) Type 0: these policisation are identical Hp -> Hs, Hi cor Vp-> Vs, Vi => Note: Not all types of phase natching are polarisation combination will be satisfied. Cudput 14)
PBS
INP> PBS-> Polarisation Becom At the output (Pump input point) $|\psi\rangle = |v_s v_i\rangle + |H_s H_i\rangle$

check for type-I, where the out put is necesioned.

Lecture-18

Entangled Photon sawres (continued)

(2) prese metching: $\vec{k}\vec{p} = \vec{k}\vec{s} + \vec{k}\vec{i}$

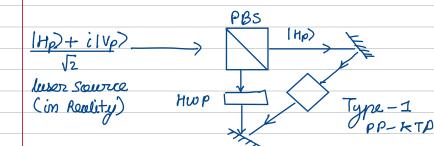
Technique to corchiteture phase matching

1) Birrepringent phase matching

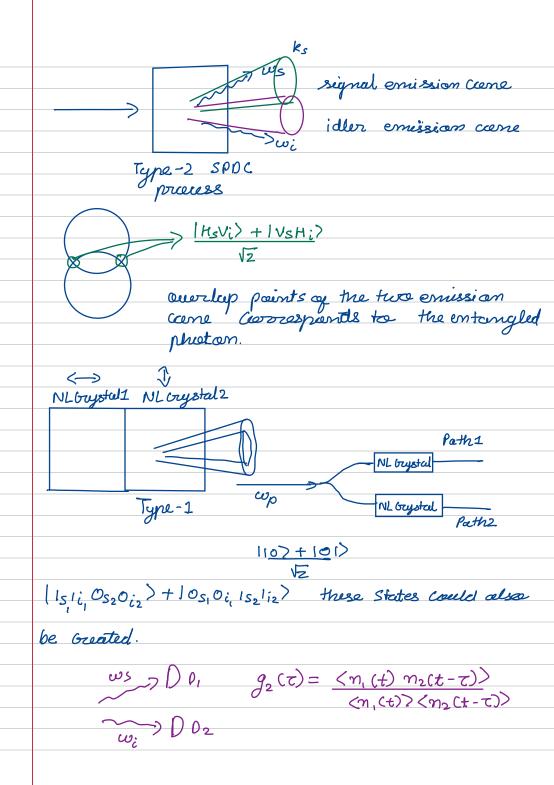
2) gueri Phuse matching

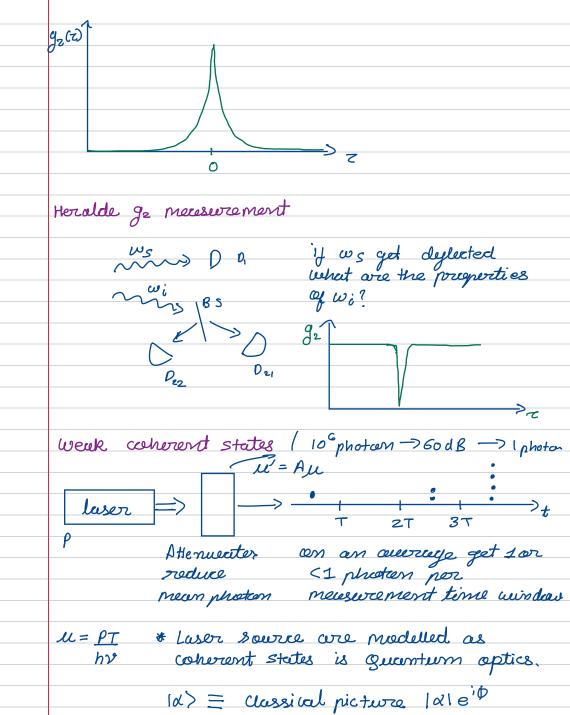
(PP) Periodically poled orystal to a achive phase moting

3) woul geviel -> l'ispers jon phase matching e.g LN wave geviele.


Types of Phase matching

Type-0: All 3 pol. States core identical


Type-1: Pol. of the pump is arthogonal to the signal and idler.


Type-2: S & i are corthogonal pol.

$$|\Phi^{\pm}\rangle = |\text{[IHsHi]} + |\text{VsVi}\rangle| => \text{Type-0}$$
 $|\nabla^{\pm}\rangle = |\text{[IHsHi]} + |\text{VsVi}\rangle| => \text{Type-1}$
 $|\psi^{\pm}\rangle = |\text{[IHsVi]} + |\text{VsHi}\rangle| => \text{Type-2}$
 $|\nabla^{\pm}\rangle = |\text{SpDC process}|$

| HsHi> + i | VsVi>

in quadreture 2) x, +i x2

Phuse Space representation of
$$\alpha = x_1 + i \times z_2$$
 x_2
 x_2
 x_3
 x_4

Clistribution of Photon follows Poison distribution

 x_4

Clistribution of Photon follows Poison distribution

 x_4
 x_4

Clistribution of Photon follows Poison distribution

 x_4
 x_4

Clistribution of Photon follows Poison distribution

 x_4
 x_4
 x_5
 x_4
 x_5
 x_4
 x_5
 x_5
 x_6
 x_6

events are four here

· Multiplication events result in pheatien no. splitting

Single Photon detection

* SPAD => Semi conductor photo diade certich work on the principle of Avalench multiplication

* SNSPD => Any delection with bult in gain is

suitable por making suitable single pheotom

detection.

SW impact jamisation

(e) A

absorption multiplication

absorption multiplication

precess

(nultiplication

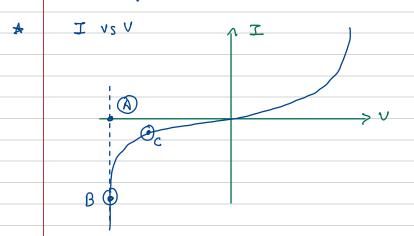
precess)

- e as they drift under the engluence of the opplied reverse bias they avelenth due to the large E-field at reverse bias.
- Impact ionization results in ⇒ 1€ -> 2€ 1 hole

To keep the multiplication process under contrad.

I coorder (e-hole) is preyentially multipled.

hood Avalanche electrant applicable.

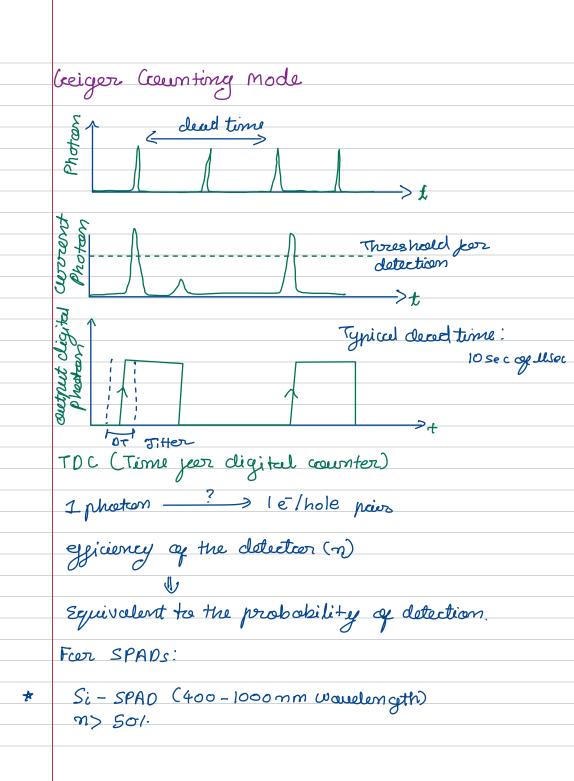

After Pulsing

Unweinted Pulses of woverit detected after the photon detection has happened.

(cracetes echo kind of signal)

The way this is prevented in the coucuit a talching nechonism dis-own the detector.

The time year this is called the dead time.



A -> bias Pt of the detector

B -> Pt. where coverest pulse is detected

C -> Latching Pt to two cy, the multiplication

Other than light there can be multiplication of thermally excited (woriers (dark current)

In GaAs SPADS (800-2000mm wavelength) n ≈ 10-30% * Jitter 50-200 psec > lurge Titter -> problem Super Conducting numoueire (SPD):
The State of the detection is changed from
superconducting to insulting with incident
phreton (Transition edge sensor art Varionts of SNSPP) of super con ducting material · NON NOTIN WSI MeSi Typical Time 210k · Operating term of SNSPD: 0.8 to 2k Incident photon break the cooper pair there by disrupting the super conductivity. After a finite time the SNSPD gots back to Super conducting State.

Circuit representation of SNSPD 295k 0.8-2.5k1 Rinetic inductor Insulating mode of Coverent places is Amough the circuit. Typical dead line word Consent the though the circle

	Same Typical pergernance metrits of
1.	High egiciency (7907.)
2.	Low dark counts (1-100 (counts)
3.	Jitter (<10ps)
4.	Short deed time (40-100 ns)
5	wide wous length operation (visible/nearIR/midIR)
	7

Lecture - 19

Reperence (line to line) - Grevorey and knight

Chp-2

(L)

(L)

Resoment

prequency

Optical causey

Coensider TEM pleane woul coupled into

Ex
$$(3,t) = (2\omega^2) q(t) \sin(k_3)$$
 $\omega \rightarrow \text{preq},$

By $V \rightarrow \text{Volume of cavity}$
 $\Sigma \rightarrow \text{pree space permocability}$

Making use of $\nabla \times B = 10 & 2E$ subsituting Ey in the CRAS and solving the per B

By =
$$\left(\frac{2\omega^2}{V \epsilon_0}\right)^{\frac{1}{2}} \left(\frac{\mu_0 \epsilon_0}{k}\right) \dot{q}(t) \cos(kz)$$

q(f) > This is Equivalent to the position verticable in a hormony c OSS c.

Total energy of the TEM wave = Emergy stored in E field

$$H = \int_{2}^{\infty} dv \left[\mathcal{E}_{o} \mathcal{E}^{2}(r,t) + \int_{\mu_{0}}^{\infty} \mathcal{E}^{2}(r,t) \right]$$

$$= \int_{2}^{\infty} dv \left[\mathcal{E}_{o} \mathcal{E}^{2}(z,t) + \int_{\mu_{0}}^{\infty} \mathcal{E}^{2}(z,t) \right]$$

$$H = \prod_{2} (\rho^{2} + \omega^{2} q^{2})$$

Replacing necesurable variable by experentions
$$\hat{E}_{\infty} = \left(\frac{2\omega^{3}}{V_{SD}}\right)^{1/2} \hat{q} \sin(k_{3})$$

$$\hat{\beta}_y = \left(\frac{2\omega^2}{V_{\epsilon_0}}\right)^{1/2} \left(\frac{\omega_0 \xi_0}{k}\right) \hat{p} \cos k?$$

$$[\hat{q}, \hat{\rho}] = i\hbar$$

HIY>= EIY)

$$\hat{\alpha} = \frac{1}{\sqrt{2\pi\omega}} (\omega \hat{q} + i\hat{p}) \qquad \hat{q} = \frac{1}{2\omega} (\hat{\alpha} + \hat{\alpha}^{\dagger})$$

$$\hat{\alpha}^{+} = \underbrace{1}_{12\pi\omega} (\omega \hat{q} - i\hat{p}) \quad \hat{p} = \underbrace{1}_{i} \pi\omega (\hat{a} - \hat{a}^{+})$$

$$\hat{E}_{x} = \hat{E}_{o}(\hat{a} + \hat{a}^{\dagger}) \sin kg \quad E_{o} = \pi \omega$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad B_{o} = \pi \omega \quad E_{o} \pi \omega^{3}$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad B_{o} = \pi \omega \quad E_{o} \pi \omega^{3}$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad B_{o} = \pi \omega \quad E_{o} \pi \omega^{3}$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad B_{o} = \pi \omega \quad E_{o} \pi \omega^{3}$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad B_{o} = \pi \omega \quad E_{o} \pi \omega^{3}$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad B_{o} = \pi \omega \quad E_{o} \pi \omega^{3}$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad B_{o} = \pi \omega \quad E_{o} \pi \omega^{3}$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad B_{o} = \pi \omega \quad E_{o} \pi \omega^{3}$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad B_{o} = \pi \omega \quad E_{o} \pi \omega^{3}$$

$$\hat{b}_{y} = \hat{b}_{o}(\hat{a} - \hat{a}^{\dagger}) \cos kg \quad E_{o}(\hat{a} - \hat{a$$

Number operator

$$\hat{N} = \hat{a} + \hat{a} \implies NO.$$
 of photon in the state

 $\langle m|\hat{a} + \hat{a}|m \rangle = m$
 $\langle m|H|m \rangle = h w (m + 1/2)$
 $|3\rangle$
 $|3\rangle$

For
$$\hat{a}$$
: $\frac{d}{dt} \hat{a} = \frac{i}{\hbar} \left[\hbar \omega \left(\hat{a} + \hat{a} + \hat{y}_{2} \right), \hat{a} \right]$

$$\hat{a}(t) = \hat{a}(0)e^{-i\omega t} \quad \text{similarly } ; \quad \hat{a}^{\dagger}(t) = a^{\dagger}(0)e^{i\omega t}$$

(
$$\hat{a}^{\dagger}\hat{a}^{\dagger} + 1/2$$
) $\hat{a}^{\dagger}|m\rangle = (E_m - \pi \omega) \hat{a}^{\dagger}|m\rangle$

The energy per $\hat{a}^{\dagger}|m\rangle$ state is $E_m - \pi \omega$
 $\Rightarrow \text{ possible in aperator}$
 $\hat{a}^{\dagger}|m\rangle$ state is at energy $E_m + \pi \omega$
 $\Rightarrow \text{ breation aperator}$.

 $\hat{a}^{\dagger}|m\rangle = (m-|m-1\rangle)$
 $(m|\hat{a}^{\dagger}\hat{a}^{\dagger}|m\rangle = (m-|C_{m-1}|C_{m-1}|m-1\rangle \Rightarrow \hat{a}^{\dagger}|m\rangle = \sqrt{m}|m-1\rangle$
 $m = |C_{m-1}|^2 \cdot 1$
 $C_{m-1} = \sqrt{m}$

Similarly $\hat{a}^{\dagger}|m\rangle = \sqrt{m+1}|m+1\rangle$

the (at a + 1/2) In) = En In)
applying a to both side $[\hat{a}, \hat{a}^{\dagger}] = 1$ $\hbar\omega$ ($\hat{a}\hat{a}^{\dagger}\hat{a} + \hat{a}$)(\hat{n}) = $En\hat{a}$ (\hat{n}) tw (aa++1) a (m) = Em a 1m) $\pi\omega\left(1+\hat{a}^{\dagger}\hat{a}+V_{2}\right)\hat{a}(m)=E_{m}\hat{a}(m)$ $(a+a+1/2)a\ln = (E_m-\pi\omega)a\ln$ The energy year & (n) state is En - hw

miliation operator âtin's state is at energy En +hw > breation operator.

 $E_{\chi}(3,t) = E_0 (a^+ e^{i\omega t} + a^- e^{-i\omega t}) \sin k_3$

Hin) = Emin)

$$\hat{a}^{+}|_{0}\rangle = \sqrt{1}.12\rangle$$

$$\hat{a}^{+2}|_{0}\rangle = \sqrt{1}.12|_{2}\rangle$$

$$\hat{a}^{+m}|_{0}\rangle = \sqrt{m}|_{m}\rangle$$

$$(m) = \hat{a}^{+}|_{0}\rangle$$

$$\sqrt{m}|_{0}\rangle = 0 \longrightarrow \text{Null yectors}.$$

$$(m-1|_{0}|_{m})$$

$$(m+1|_{0})$$

$$(m+1)$$

$$($$

Ex
$$(g_1t) = E_0$$
 $(\widehat{a} + e^{i\omega t} + \widehat{a}e^{-i\omega t})$ sink 3
Expected value for E_{∞}^2 \widehat{g} \widehat{g}_{y}^2
 $(m|\widehat{E}_{\infty}^2|m)$

$$= E_0^2 \sin^2 kg ((m|\widehat{a}\widehat{a} + \widehat{a} +$$

We net is the product of DEX & DN? $[\hat{E}_{\kappa}, \hat{N}] = E_0 \sin k_3 [\hat{\alpha} + \hat{\alpha}^{\dagger}, \hat{\alpha}^{\dagger} + \hat{\alpha}]$ = Eo sinkz ([â, â+â] + [â+, â+â]) = Eo sinky (â-â+) = ĉ (ĉ)= (mlEosinkz (â-2+) 1m) = 0 DEx. DN ≥ 0 por number State Minimum uncertainty in somethereous Meusurement of Êze & N = 0 $\langle \hat{c} \rangle = \langle \psi | \hat{c} | \psi \rangle$

$$\Delta E_{\infty} \cdot \Delta N \geq \frac{1}{2} |\langle \psi | \hat{c} | \psi \rangle|$$

This near zones over is related to simultaneous mecesevrement would and particle presperty

* DM. D\$≥1

Lecture-20

Quantum Optics (continued)

Coherent Communication

Tx & detection

 $E_x = E_o(\hat{\alpha} + \hat{\alpha}^+) \sin tz$

 $E = x_1 \cos \omega t + x_2 \sin \omega t$

$$\hat{\alpha}(t) = \hat{\alpha}(0) e^{-i\omega t}$$

$$\hat{F}(t) = F(\hat{S}(t)) = 0$$

$$\widehat{E}_{x}(t) = E_{0}(\widehat{\alpha}(0) e^{-i\omega t} + \widehat{\alpha}^{\dagger}(0) e^{+i\omega t}) \sin tz$$

$$= E_{0}(\widehat{\alpha}(\cos \omega t - i \sin \omega t) + \widehat{\alpha}^{\dagger}(\cos \omega t + i \sin \omega t)$$

=
$$E_0$$
 ($\hat{\alpha}$ (ces $\omega t - i \sin \omega t$) + $\hat{\alpha}^{\dagger}$ (ces $\omega t + i \sin \omega t$) sinkz
= E_0 ($2 \cos \omega t \left(\hat{\alpha} + \hat{\alpha}^{\dagger} \right) + \frac{2}{i} \sin \omega t \left(\hat{\alpha} + \hat{\alpha}^{\dagger} \right) \sin kz$

Quadrature operator:
$$\hat{x}_1 = \hat{\alpha} + \hat{\alpha}^+$$

$$\hat{x}_2 = \hat{\alpha} - \hat{\alpha}^+$$

$$E_{x}(t) = 2E_{0}(\hat{x}_{1}) \cos \omega t + \hat{x}_{2} \sin \omega t \sin kz$$

Find the expectation value for
$$\hat{x}_1$$
 & \hat{x}_2 number.
State $|m\rangle$

$$(m|\hat{x}_1|m) = (m|\hat{a} + \hat{a}^+|m\rangle = 0$$

$$(m|\hat{x}_2|m\rangle = 0$$

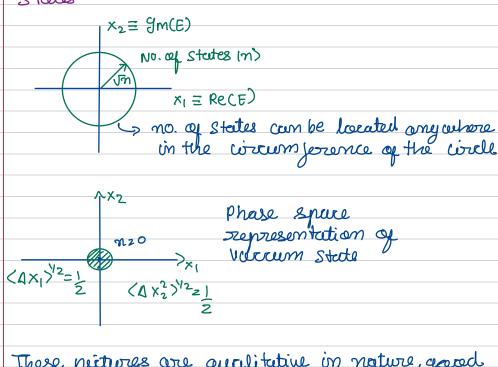
$$find (m|\hat{x}_1|m\rangle) & (m|\hat{x}_2|m\rangle$$

$$= 1 (m|\hat{a}^2 + \hat{a}^{+2} + \hat{a}\hat{a}^{+} + \hat{a}^{+}a|m\rangle$$

$$= 1 (m|1 + 2a^{+}a|m)$$

$$= \frac{1}{4} (n) + 2a^{\dagger}a(n)$$

$$= \frac{1}{4} [2m+1]$$


$$(n) \hat{\chi}_{2}^{2}(n) = -\frac{1}{4} (n) \hat{a}^{\dagger 2} + \hat{a}^{2} - \hat{a} \hat{a}^{\dagger} - \hat{a}^{\dagger} \hat{a}(n)$$

$$= \frac{1}{4} (2m+1)$$

 $\langle \Delta \hat{x}_{1}^{2} \rangle = \langle m | \hat{x}_{1}^{2} | m \rangle - (\langle m | x_{1} | m \rangle)^{2} = \frac{1}{4} (2m+1)$ $\langle \Delta \hat{x}_{2}^{2} \rangle = \frac{1}{4} (2m+1)$ For Voccumn State we get min value of variance for \hat{x}_{1} & \hat{x}_{2} minimum remertanity state.

Varience of the great return operations

Phase Space representation of the number States

These pictures are qualitative in noture, good jour Visualization of noise and the location of the State

As quadrature States have no classical amology this should not be taken too literally.

Croheront State

States which give the most sensible representation of classical states (lesser source)

Representation of the electric field evolving in spece and time

 $E(z,+) = E_0 \cos(\omega t - kz)$

Expectation values is a near zero quantity.

Noise limited by shoot-noise

Calculated the uncerteenity for
$$\hat{x}_1$$
 & \hat{x}_2 .

$$|\Psi\rangle = |m\rangle \implies E(\widehat{E}_{x}) = E(\widehat{x}_{1}) = E(\widehat{x}_{2}) = 0$$

 $|\Psi^{3}\rangle = C_{m}|m\rangle + C_{m+1}|m+1\rangle$

$$(\alpha) = \sum_{n=0}^{\infty} C_n(n)$$
Consider the eigenvalue equation per $\hat{\alpha}$:

$$\widehat{\alpha}(\alpha) = \alpha(\alpha)$$

$$\langle \alpha | \hat{\alpha}^{\dagger} = \alpha^{\dagger} \langle \alpha |$$

$$\hat{\alpha} \sum_{n=0}^{\infty} C_{n} | n \rangle = \alpha \sum_{n=0}^{\infty} C_{n} | n \rangle$$

$$\frac{U_1 - U_2 - U_3 - U_3}{v_2 - v_3} = \frac{U_1 - U_3 - U_3}{v_2 - v_3} = \frac{U_1 - U_3 - U_3}{v_2 - v_3} = \frac{U_1 - U_3}{v_3 -$$

$$\sum_{n=1}^{\infty} (n \sqrt{n} |n-1\rangle = \alpha \sum_{n=0}^{\infty} (n |n\rangle$$

$$\sum_{n=1}^{\infty} (n\sqrt{n} | n-1) = \alpha \sum_{n=0}^{\infty} (n/n) \qquad n-1=m$$

$$\sum_{n=0}^{\infty} (m+1) \sqrt{m+1} | nn \rangle = \alpha \sum_{n=0}^{\infty} (n/n)$$

$$\chi(n) = (n+1)(n+1)$$
 \longrightarrow Recursive reductionship
$$m = \underline{\alpha(n-1)} = \underline{\alpha} \cdot \underline{\alpha} \cdot \underline{\alpha} \cdot \underline{\alpha(n-2)} = \underline{\alpha} \cdot \underline{\alpha} \cdot \underline{\alpha(n-1)} = \underline{\alpha(n-1)} \cdot \underline{\alpha(n-1)} = \underline{\alpha(n-1)} \cdot \underline{\alpha(n-1)} \cdot \underline{\alpha(n-1)} = \underline{\alpha(n-1)} \cdot \underline$$

$$C_{m} = \frac{\alpha(m-1)}{\sqrt{m}} = \frac{\alpha}{\sqrt{m}} \cdot \frac{\alpha$$

$$\sqrt{m}$$
 \sqrt{m} \sqrt{m}

$$|d\rangle = \sum_{n=0}^{\infty} (o_{\infty} \frac{d^n}{n!})$$
 Note: d can be complete no.

$$= \sum_{j=0}^{\infty} \sum_{j=0}^{\infty} \frac{C_0^* \alpha^{*j}}{\sqrt{j!}} \frac{C_0 \alpha^{j}}{\sqrt{j!}} \langle i | j \rangle$$

$$\geq = b_{ij}$$

$$= \sum_{i=0}^{\infty} |c_0|^2 |\alpha|^{2i} - |c_0|^2 \sum_{i=0}^{\infty} |\alpha|^{2i} - |c_0|^2 e^{+|\alpha|^2} = 1$$

$$C_0 = e^{-|\alpha|^2/2}$$

$$|\alpha\rangle = \sum_{\gamma=0}^{\infty} \frac{e^{-|\alpha|^2/2}}{\sqrt{|\alpha|}} \alpha^{\gamma} |\alpha\rangle$$

<ilj>= bij

$$\hat{\alpha}(\alpha) = \alpha(\alpha)$$

$$\langle \alpha | \hat{\alpha}^{\dagger} = \alpha^{\dagger} \langle \alpha |$$

what is the expectation value of \hat{E}_{2} ?

 $\langle \alpha | \hat{E}_{x} | \alpha \rangle = ?$ for propogeting plane wave

This is slightly disposent from the standing would En represented in the optical country

$$= E_0 \left(\alpha \left[\frac{\partial}{\partial x} e^{-i(\omega t + kz)} + \frac{\partial}{\partial x} e^{+i(\omega t + kz)} \right] \alpha \right)$$

$$= E_0 \left[\alpha e^{-i(\omega t + kz)} + \alpha^* e^{+i(\omega t + kz)} \right]$$

 $\alpha = |\alpha|e^{i\Theta}$ $= aE_0[\alpha] \cos(\omega t + kz + \theta) \Rightarrow non \text{ garas expectation}$

= 2Eola | (ces (wt+kz+0) 2) non zora enquetation Value which is similar to classical Ejield evaluing in space and time

$$= E_0^2 \left[\alpha^2 e^{-i(\omega t + kz)} + \alpha^{*2} e^{2i(\omega t + kz)} + 1 + \langle \alpha | 2\tilde{\alpha}^{\dagger} \tilde{\alpha} | \alpha \rangle \right]$$

$$= E_0^2 \left[1 + 2|\alpha|^2 \cos(2\omega t + 2\kappa z + 2\theta) + 2|\alpha|^2 \right]$$

4 1012 (ces? (w++ kz+0)

$$\langle \Delta \hat{E}_{x}^{2} \rangle = \langle \alpha | \hat{E}_{x}^{2} | \alpha \rangle - \langle \alpha | \hat{E}_{x} | \alpha \rangle^{2} = \mathcal{E}_{0}^{2}$$

 $\langle \alpha | \hat{w} | \alpha \rangle = \langle \alpha | \hat{\alpha}^{\dagger} \hat{\alpha}^{\dagger} | \alpha \rangle = | \alpha |^{2} = N \implies \text{Mean no. of photoms}$

photoms
$$\langle \alpha | \hat{n} | \alpha \rangle = \langle \alpha | \hat{\alpha}^{\dagger} \hat{\alpha} \hat{\alpha}^{\dagger} \hat{\alpha} | \alpha \rangle = |\alpha|^{2} \langle \alpha | \hat{\alpha} \hat{\alpha}^{\dagger} | \alpha \rangle$$

$$= |\alpha|^{2} \langle \alpha | 1 + \hat{\alpha}^{\dagger} \hat{\alpha} | \alpha \rangle$$

$$= |\alpha|^{2} [|\alpha|^{2} + 1]$$

$$= |\alpha|^{2} [|\alpha|^{2} + 1]$$

$$\langle \Delta \hat{N}^2 \rangle = N(N+1) - N^2 = N$$
Mean and variance are identical = N

* Signed to neise rectio (SNR)

g what is the probability of necessaring n photon for a einstance of the measurement? $P(n) = |\langle n|\alpha \rangle|^2 = e^{-|\alpha|^2} |\alpha|^{2n} = e^{-N} N^n$ n!

rehich is the preisson distribution

Mean² ~ Mean
vorience Std. dev

$$SNR = N^2 = N$$
, $N = JN \ge g_{\mu}$ grantum limit of
 N JN recessorement encertainty
shot noise limited

uncertanity.

Robertius uncertainty 1 or 1

Squeezed State of light achieve zerle-sheet neare perfeormence.

$$\hat{X}_1 = \hat{\alpha} + \hat{\alpha}^{\dagger} \qquad \hat{X}_2 = \hat{\alpha} - \hat{\alpha}^{\dagger}$$

$$\frac{2}{2i} \qquad \text{The Variance in quadrature precessive ment of converse to the variance is equal to the variance state.$$

Phase Space representation of cohorent states

\[
\times_{\text{x}_{2}^{2}}\forall^{2} = \forall_{2} \\
\text{x}_{1}^{2} \text{ = \forall_{2}} \\
\text{x}_{1} \text{ \text{outs gorz \text{x}_{1}}} \\
\text{Displace ment operators \texts{D}}
\]

 $\hat{O}(\alpha) = e^{\alpha \hat{\alpha}^{\dagger} - \alpha * \hat{\alpha}}$ Ryone to the proof in gerry and knight section 3.2

(x) = \a)

Phase Shipting Operation

()(0) = e^{-i\theta \hat{N}} |m)

 $U(\theta)|n\rangle = e^{-i\theta N}|n\rangle$ Expanding this exprenential $= e^{-i\theta n}|n\rangle \Rightarrow no. \text{ state gets phase shipted}$ by n_{θ} .

Û(0)(x) = |xei0⟩ → converent state getsphase. Shipted by D. Ryere to gerry and knight section 3?