QT209: Introduction to Quantum
Communication and Cryptography

(August Semester 2025-26)

Instructors: Manukumara Manjappa (IAP)
Sanjit Chatterjee (CSA)
Varun Raghunathan (ECE)



Class Timing, venue and intended students

* Timing: Monday, Wednesday 10:00-11:30 AM
* ECE department, Room MP30

* Students: Core course for M.Tech. - QT programme
Elective for M.Tech. and Ph.D. students

Undergraduate students



Syllabus

Prof. Manukumara Manjappa:

1. Optics Introduction
2. Wave motion (SHM), Phase and Group velocity, wave propagation and wave equation, Huygens theory

3. Electromagnetic nature of light: Polarization, double refraction (QWPs and HWPs), Maxwell’s equations, Poynting vectors, The Continuity
conditions, Plane waves in dielectric medium, Total internal reflection and evanescent waves

4. Interference phenomena: two slit interference, coherence, Interferometers (Michelson and F-P)

5. Lasers, Photodetectors and Fiber optics: Laser basics, photodetectors, Fiber basics numerical aperture, Attenuation in optical fibers,
multimode and single mode fibers (basics).

Prof. Sanjit Chatterjee:

6. Cryptography and one-time pad
7. Public and private key cryptography
8. Quantum key distribution

9. Quantum cryptography.

Prof. Varun Raghunathan:

10. Quantum versions of classical devices - single photon sources, entangled photon sources, number states, coherent states, fiber and free-
space channel, single photon detectors

11. Implementation of BB84 and E91 protocols, implementational non-idealities, side-channels and possible mitigations strategies



Pre-requisites

* Basic linear algebra, differential equations, statistics and probability
* Basic concepts of Number Theory and Algorithm

* (Please fill more details)



Reference books

* Gerry and Knight, Introduction to Quantum Optics
* Mark Fox, Quantum Optics

* Neilsen and Chuang, Quantum Computation and Quantum
Information

* Ajoy Ghatak, Optics, 6 ed. McGraw Hill Education (India) Pvt Ltd. 2016.
* Eugene Hecht, Optics, 4" ed. Pearson Education, Inc., 2002.

* David J Griffiths, Introduction to electrodynamics, Prentice Hall 1999
* Katz and Lindell, Introduction to modern cryptography, 2nd ed.

* (Please fill more details)



Exams and evaluation

—_—

* 2 in-class tests/ quizzes
* 1 take-home assignment. | - 60% weightage

* 1 final exam (in class) - 40% weightage




Academic Integrity

Ethical integrity is essential in all human endeavours of excellence....A flourishing academic
environment entails rigorous and sincere adherence to ethical practices. Therefore, it is
important that the researchers and students in the Institute are sensitized in this matter,
and are informed about the commonly recognized unacceptable behaviours in classes,
research and research-communications.

Refer to “lISc Policy for Academic Integrity in Research” for more details.

Cheating: is unacceptable academic behaviour and may be classified into different categories:

- Copying during exams, and copying of homework assignments, term papers or manuscripts.
Allowing or facilitating copying, or writing a report or exam for someone else.

- Using unauthorized material, copying, collaborating when not authorized, and purchasing or
borrowing papers or material from various sources.

- Fabricating (making up) or falsifying (manipulating) data and reporting them in thesis and
publications.

Cheating in class tests, take-home exams, final exam will be taken very seriously and will be
severely penalized


https://iisc.ac.in/wp-content/uploads/2020/07/iisc_policy-for-academic-integrity-in-research_final.pdf
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Cryptography
(Aug-Dec 2025),
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Classical Optics — §cixe
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COURSE CONTENTS

Optics Introduction —=
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Wave motion (SHM), Phase and Group velocity, Dispersion, wave propagation and wave equation,

T R S e
Huygens theory

Electromagnetic nature of light: Polarization, double refraction (QWPs and HWPs), Maxwell’s

equations, Poynting vectors, The Continuity conditions, Plane waves in dielectric medium, Total

internal reflection and evanescent waves
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Interference phenomena: Coherence, Interferometers (Michelson and F-P)
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BOOKS/REFERENCES

e Ajoy Ghatak, Optics, 6 ed. McGraw Hill Education (India) Pvt Ltd. 2016.
 Eugene Hecht, Optics, 4™ ed. Pearson Education, Inc., 2002.
e David J Griffiths, Introduction to electrodynamics, Prentice Hall 1999.
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OPTICS

Optics is the branch of physics that studies the behavior and properties of light.
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THE CORPUSCULAR MODEL OF LIGHT s Y
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THE CORPUSCULAR MODEL OF LIGHT g e
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1600-1700s: Rene Descartes, Issac Newton (1704) FREATI
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e Light could propagate through vacuum.
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THE WAVE MODEIL OF LIGHT (Hooke, Huygens (1678), Thomas Young (1802), ... )

Displacement at y(x, f)

Propagation of the disturbances in time and space is termed as wave

Example: Propagatlon of transverse waves on a string
y(xt)=a sm(kx —-wt) = asin [k (x-0t)]
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\ \ (a,uo"“’a y was not accepted until 1802 when

| % | Thomas Young performed the famous interference experiment

\ /‘\ 7 \\ /\ which could only be explained based on a wave model of light.

V4 \/ \/ \ 1808: Polarization of light (Malus)

\ 1816: Fresnel's diffraction experiments
Dispjscermant af, £ =4 1849 and 1856: Measurement of speed of light
B t, relaked Sw  evwi®  1865: Maxwell’s EM Theory
' Bgatt"mn 1888: Heinrich Hertz: Experimental realization/detection of

a‘ Prate O 7= EM waves 10



MAXWELL’S ELECTROMAGNETIC (EM) WAVES

Maxwell’s theory: One of the greatest unification in Physics

Light waves are electromagnetic waves and EM waves are
. e it r-.r-
transverse in natiire. E We)gn ov AP N

= M
Propagation of EM waves: Plane wave solutions pf Maxwell’s
wave equations AL o IV gy

Eleeie—s E(21) =X Egcos(kz ~wt)
lj{ H(Z/t) = 9 Hycos (kZ —a)t)
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MAXWELL’S ELECTROMAGNETIC (EM) WAVES

f Maxwell’s theory: One of the greatest unification in Physics

Light waves are electromagnetic waves and EM waves are
transverse in nature,

Propagation of EM waves: Plane wave solutions of Maxwell’s

wave equations
E(zt) =X Eyjcos(kz —wt)

H(z,t) =19 Hycos(kz —wt)

Where, HO =+ 80/[,[0 EO
£ =8.86 x 10712 C2N~'m™2 and py = 12.57 x 107 Ns?>C™2

x-polarized wave

Max Planck: “Maxwell’s theory remails for all time one of the greatest triumphs of human intellectual
endeavors” 12



WAVE PARTICLE DUALITY  Einstein, de Broglie, Wilson, Millikan, Compton, ...
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WAVE PARTICLE DUALITY  Einstein, de Broglie, Wilson, Millikan, Compton, ...

Theory of Photoelectric effect in 1905: .. radiation energy consists of indivisible

" that radiation must, therefore, possess a_kind Of
c A4 molecular structure in energy, which of course

Particle nature of radiation contradicts Maxwell's theory.
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GEOMETRICAL (RAY) OPTICS %@ow ?ﬂP%ﬁ% S~

Propagation of light employs the concept of Rays
A
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GEOMETRICAL (RAY) OPTICS

Propagation of light employs the concept of Rays.
2\
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Limiting ray
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screen
The field of optics under the approximation of zero wavelength limi i.e. neglecting

the finiteness of the wavelength) is called Geometrical (Ray) optics. .



FERMAT’S PRINCIPLE

According to this principle the ray will correspond to that path for which the time taken is an extremum

in comparison to nearby paths. —5 LL‘?A'{— Foag Twe Ve=ogh HV\&Q 'E"“
Ao drova —

¢ % n ds = Optical Path length
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The actual ray path between two points is the one for which the optical path length is

stationary with respect to variations of the path: Fermat’s Principle
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WAVE OPTICS

A classical traveling wave is a self-sustaining disturbance of a medium, whlch moves

through space and in time transportmg energy an and momentum,
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WAVE OPTICS

A classical traveling wave is a self-sustaining disturbance of a medium, which moves
through space and in time transporting energy and momentum,

* Simple Harmonic Waves
The simplest kind of periodic motion, where the displacement varies

smusmdally with tlme and space. ~
Consider any progressive harmonic wave funcmx t) = A sin [k (x—0}) ]
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A harmonic function, which serves as the profile of a harmonic wave.
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PHASE VELOCITY
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SUPERPOSITION OF WAVES

Y1

AN

Let’s consider two sinusoidal waves having same frequency
and same propagation direction, . 4~ d\*rﬁ-u.wa..l_— Tl
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SUPERPOSITION OF WAVES
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SUPERPOSITION OF WAVES
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SUPERPOSITION OF WAVES

Constructive

Destructive
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GROUP VELOCITY AND DISPERSION
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GROUP VELOCITY AND DISPERSION
__phase vel. = group vel. ___phase vel. = - group vel.

Case 4: vn=0 B vg>0

___phase vel. < group vel.
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https://web.bryanston.co.uk/physics/AppIetsNVave%ZOanimations/Sound%20w‘aves/Dispersive%20waves.htm
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GROUP VELOCITY AND GROUP INDEX Ref: Ajoy Ghatak, Optics

2.06

dNegatiye \% - 1
mg - ispersion ' Vﬂ, -~ [rv\ C.)\b.) i A‘h %
5 sl e
I 202+ 0"‘;?:6{@ dp ‘tp\\m d’f\ >0 5 ?QZIE\‘R% &ff;&ﬂ\b\/\
2 | f’m gy\M)
0.5 0.75 1 1.25 1.5

e o=y gtov,
U O T BTG trerssa

Variation of group velocity with wavelength for

pure silica e TRYTe \ bronnel  avoreaam, ok 1.2 A
e A iﬁm“.' . el

DLEPEEL= IgaT =i ditfforents

um\»ﬁ:\a Avareld L diderens W% - agpeetRon




PULSE BROADENING (DISPERSION)
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GROUP VELOCITY DISPERSION (GVD)
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PROPAGATION OF THE PULSE IN OPTICAL FIBER
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GROUP VELOCITY AND DISPERSION
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GROUP VELOCITY AND GROUP INDEX

Con~20 ke Wabf\“:e 'PY‘O(PO\agﬂ\/\% i o wedligna Lhevoske o 4

79:.5 A «fomj\\/\g WMU\N dn Lo MCUQD
tren K(D = 22 ()

M —
¢~ e * - |\
UY NI N
~ 9 —~ ANC R C& . ,_.Q,-“
. W= ARG = = O "’&'T,’\S N T
(ho)= A e G
Th Yy = | [’V\ Ag )™ No &N
IS e

Tn o W dASpeveve ekt vam s :\EP 2




GROUP VELOCITY AND GROUP INDEX
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PULSE BROADENING (DISPERSION)
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GROUP VELOCITY DISPERSION (GVD)
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PULSE BROADENING (DISPERSION)
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PROPAGATION OF THE PULSE IN OPTICAL FIBER
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ELECTROMAGNETIC WAVES
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THE LIGHT WAVES: Maxwell’s Equations

N o g (WA eq/mw@ml (A O~ T&om\g\‘q ‘/\/\mw\o&«\,\em& e

R =
DA - Q [ Qrovge ol,mu\@
T-QR "E = 0 —'@ T~ Wontvont Aoty
Ec —> Q@W\f\&{—%w\"kr]
vRE @ w e g
— @E} o = WM&IQ;\‘H»\} I\
~ J 0 K“QR .
-’ Qtj 1 —
fo = & LS xle ' R )ren
“ =7 2 10



THE WAVE EQUATION
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HOMOGENEOUS AND INHOMOGENEOUS WAVES
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HOMOGENEOUS AND INHOMOGENEOUS WAVES
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HOMOGENEOUS AND INHOMOGENEOUS WAVES
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BOUNDARY CONDITIONS

Continuity of Normal and Tangential Components of EM waves at the interface
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BOUNDARY CONDITIONS

Continuity of Normal Components of EM waves at the interface R
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BOUNDARY CONDITIONS

Continuity of Normal Components of EM waves at the interface
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BOUNDARY CONDITIONS

Continuity of Tangentlal Components of EM waves at the interface
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REFLECTION AND TRANSMISSION AT THE BOUNDARY <.
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REFLECTION AND TRANSMISSION AT THE BOUNDARY
S N D=6 = law & "ﬁg‘ﬂﬁb‘w

. A
O~S \Qtsimcb = kg\ms "'\PE‘&;{Q;}:Q;‘WQ

O — OJVESLQ A SN E-FNG
o' — o\N\&(e Oy fr%\rem’b\%
q{; —~ angle O HVZA&WN
We ~vesall (-]Z o L’O/Cl AR
wWWeve. qii = Ef‘r '\\a’)
Ok R = A1 K

Reflection and transmission of a wave at a plane boundary. AN ;L,\e_ tkery %“;";9* \%\L:;Q*@(Ev; :K‘S‘ ’
Qat o + Ton ) ;‘: (keomep) ™ = P 2
- L _ Lk
N (e p b AR@&) H{Kk ave) = 77 N



EXTERNAL REFLECTIONS
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TOTAL INTERNAL REFLECTION AND EVANESCENT WAVES
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TOTAL INTERNAL REFLECTION AND EVANESCENT WAVES
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TOTAL INTERNAL REFLECTION AND EVANESCENT WAVES
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TOTAL INTERNAL REFLECTION AND EVANESCENT WAVES
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Incident wave Reflected wave Transmitted wave
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FRUSTRATED TOTAL INTERNAL REFLECTIONS
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FRUSTRATED TOTAL INTERNAL REFLECTIONS
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BEAM SPLITTER R

FTIR nio reflection
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The thickness of the resin layer is adjusted such that (for a certain
wavelength) half of the light incident through one "port" (i.e., face of

the cube) is reflected and the other half is transmitted due to FTIR

(frustrated total internal reflection)



WAVE PROPAGATION AND WAVE EQUATIONS

General form of wave equations
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QUANTIFICATION OF COHERENCE
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THE SPATIAL COHERENCE
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Complex degree of coherence and Fringe Visibility
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Complex degree of coherence and Fringe Visibility
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Complex degree of coherence and Fringe Visibility
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Complex degree of coherence and Fringe Visibility
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Complex degree of coherence and Fringe Visibility
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The Spatial Coherence

V — Imax— Imin

Imax Imin

E [ |

~ 4

~ Sl \ednon  eretng e g@&“(ii‘w
A Inedovennas,  anndl e RIS UAY 0

s movavi ¢t r\'\(\g /(A(va\ga& ’\\\r\ A~ ’\fQ\;\f\/\%ﬁ

Tine. \\“g\A\ Iwhemtiby O dovble  QRY <t N

A EN\*@\/&QNQCQ\ rﬁf{?\f\&gk _y oc wows fenEs O The

O M\(&%@? - Q\kgm\m@ QNA@&Q Memee el

”(-‘&Q pree wmtnd T Sponrol Orebr \/C’Gj - TN
Varercdened\ &fw}gei ovex  we_
ISV

https://rafael-fuente.github.io/






—>  Pnloheveand LG voawe

— FErxdendaed Lownnte
(Nor phewte comveltiond)

> Frivga indennby avemgRel svad

WAL W B2 L) ¢

Tmpveqwmem\q N Qa or v\td ok Ae

The Spatial Coherence

Qs movavi y=20

Iradiance [W/m?]

X [arb]

14

https://rafael-fuente.github.io/



The Spatial Coherence
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The Temporal Coherence : Hanbury-Brown-Twiss Interferometer (g!? correlations)

(a) . (b) 2R -
| T )
< .
. :E ik coherent light
- ?’V\W.: quantum
[j . ' ® & APD 0 ‘?‘”“if: NS/ l'” g Hanbury Brown-Twiss
light source h-ea:n splitter delay line time(?elu}-'r
»
(2) (WERAT) W)
3 (T)~ - ™ )—;> D< %Cﬂct)éﬂ_
. < \Pﬂgatr l elotion, 1 §AT) <0<, Tt Wi
- . “QL%DW fhfj foweize D o Bvgle phreten
Lmj © V‘
KS_UM\QUOW L(a ) i\m’\ Lourte
(= No ohevenia ‘
-0 = () - 4t mame G
0020 Tl pay) 0=y

( ~ I Cﬂ,’) ~
D) - Wt ( Loley £ w2l = & =0
@(a @:3 s /L ’5 CSD'\/\CRM\’C \’3{% 5\\)\& Q >'( = | ‘C Punt ,Q\V\&(& P gh_g?‘xe



POLARIZATION OF LIGHT WAVES
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ELLIPTICAL AND CIRCULAR POLARIZATIONS
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ELLIPTICAL AND CIRCULAR POLARIZATIONS

\ & (cbtjhcb,l_): b, > Phode ipyoreme
E')Q = & Qﬁ&(k‘é*\@«‘c)
By &y WL Oﬁ‘a“\ﬂ‘t "‘*%)

Me A e oo Wnde

Bx o wet(ka-wt)  omsl B ot (lee b o)

al (&
Ex —0) J = (W %EPM‘C’) NE N
—_ i’\'\r\%'z"m\-} SQ“#DQ

Mu\ﬁij‘\\,\S @4\ O J@j (=l c)yo "N _Qubﬂ)\\zsexq“(}\\;:g \ b @tu\@
KPQ%Q‘C/ Ej _ % CDQC‘DO — eghr\(k‘lf“bob) i‘&\/wfyo

6 é’l i — -
. = "'“—gv\\f\““)o \[ L - U&D\Ch‘lﬁmt)

— &iL}\C)\l\/\b\/\% (hos\n R 2 Q NG S %«:& 22




ELLIPTICAL AND CIRCULAR POLARIZATIONS
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DOUBLE REFRACTION IN UNIAXIAL CRYSTALS

e-ray

2
%

o-ray

Unpolarized beam

pes

2

Calcite

(a)

P!

When an unpolarized light beam is incident on a

calcite (uniaxial) crystal, it splits up into two linearly

polarized beams along ordinary and extraordinary

" s, )
\y. 7 \9@/ \ yﬁﬁ@%

Mg > My

Positive crystal (Quartz), when n,<n,

NO

L\a’\&‘!L

Phase retarders: Use of the birefringence property of anisotropic media to

introduce the phase shift between the two orthogonal polarization
components (E, and E,).

Uniaxial crystals: The two rays have the same velocities only along one
direction (called optic axis)

The anisotropic media (e.g. Uniaxial crystals) exhibit double refraction
(birefringence) property, in which the light travels through the crystal at
different speeds along the orthogonal directions called Slow axis (SA) and
the Fast axis (FA)

~e 790 (1negetoe. i)

Me << Mo

Negative crystal (Calcite), when n, > n,

The wave polarized along the Slow axis (e.g. E, component) moves slower
inside the crystal (retarder) than the one (e.g. E, component) polarized along
the Fast axis. The propagation direction will remain same for both the waves
but with different wave numbers (k= a/'v).

Velocities of ordinary (n,) and extraordinary (n )raysn and n, are the

0,0 = < (ordinary ray) refractlve indices and
n, Ois the angle that the
.5 2 ray makes with the
1 sin” @ cos” & :
= + — (extraordinary ray) optic axis

?)f.f (c/n, > (c/ n,)”

(ordlnaryfsE[ow axis)



LINEAR OPTICAL DEVICES

The difference in the velocity of the two components E, and E, will create phase difference of
magnitude

(b_ — Cb _ d, — (k —k )d d: light propagation thickness inside the crystal,
0 — Ye o — e 0 . : ) ) . .
n,: Index of refraction for light polarized along the ordinary (slow) axis
D4 n,: Index of refraction for light polarized along extraordinary (fast) axis
= — (ne — Ho)d A, : Wavelength of light in vacuum

o "'\&8;:t_‘\\>€— Q«{‘dﬂfw <Qq\Qle\;e_> <M0>"f\c-z) —> Q-JFD > Negative
PDS\\T\‘U‘& QN'%*RU CQU‘Q"‘W) Qoéf\/\Q) > 6‘30 —3 Positive

* The thickness of the phase retarder (d) must not exceed the coherence length (L) of the light wave.
* The phase difference (¢,) introduced by the phase retarder transforms a plane polarized wave into an elliptically
polarized wave with circular and linear polarizations as special cases depending on the thickness d of the phase

retarder and angle @between the polarization direction of the incident light and the slow axis of the phase

retarder.

* The phase retarder changes only the phase, and not the amplitude of the wave. 26



LINEAR OPTICAL DEVICES

* The Right circular polarization (RCP) or Left Circular Polarization (LCP) is defined by the rotation made of
the polarized light (at 45°) towards the slow (ordinary) axis of the crystal

If the slow (ordinary) axis is in the ‘horizontal’ direction, then the polarized light at 45° will be converted to
Right circular polarization (RCP): The phase difference (¢,) between Slow and Fast axes is negative.

If the slow (ordinary) axis is in the ‘vertical’ direction, then the polarized light at 45° will be converted to Left
circular polarization (LCP): The phase difference (¢,) between Slow and Fast axes is positive.

LN Do P
Fast axis A f Slow axis \?/Y Ex k&%& EV glw R

/ —3X " Positive \/\
- 45° 450 ne‘:/x &M@C%)

y jT B, \eodt By fa LCP

RCP —>  Negative ()%Q’“QQ
' MQQ
Quartz (n,<n,) . Calcite (n0 >n) b &\Q:rrc CP,Q
is Positi L Vi ¢, IS negative h G
¢, is Positive @Ex ¥ . - ey
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LASER: Light Amplification by Stimulated Emission of Radiation

Conventional
light source

Townes, Basov and Prochorov were awarded the 1964
Nobel Prize in physics for their fundamental work in the

field of Quantum Electronics and for MASER-LASER
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MAIN COMPONENTS OF THE LASER
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MAIN COMPONENTS OF THE LASER Ay v oy
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OPTICAL GAIN AND POPULATION INVERSION e
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OPTICAL GAIN AND POPULATION INVERSION
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2-LEVEL ATOMIC SYSTEM

At thermal equilibrium,
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3-LEVEL AND 4-LEVEL ATOMIC SYSTEM: LASING REQUIREMENTS
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_LEVEL AND 4-LEVEL ATOMIC SYSTEM: LASING REQUIREMENTS

3-Level Laser system

4-Level Laser system

Requires 3-energy non-degenerate energy levels

Requires 4-energy non-degenerate energy levels

The terminal level is the Ground state and hence it
requires more than half of atoms (>50%) are to be
transferred to the metastable state for the
population inversion condition

Since the Ground state is not involved in the Laser
transition states, therefore a any number of atoms
greater than the energy level [1> can give rise to
Population inversion

Can realize population inversion

More-easier to realize Population inversion

Optimum/less Laser Efficiency (more number of
spontaneous emission)

Much better Laser emission efficiency (Less
spontaneous emission)

This requires more pumping power (higher
pumping rates)

Requires less pumping power (Lower pumping
rates)

Only Pulsed Laser Operation is Possible

Both Continuous and Pulsed Laser operation is
possible

Higher Lasing Threshold

Lower Lasing Threshold

E.g. Ruby laser

E.g. He-Ne laser, Nd-YAG Laser

4-Level Laser system is Better than the 3-Level Laser system




OPTICAL FEEDBACK: OPTICAL CAVITY/RESONATOR

Pump

\ I l \ * A system of two parallel mirrors reflecting (confining) the light within :
\ Resonators/Cavities
Active medium
M > BRI A laser cavity/resonator acts a feedback to provide a portion of energy back into the
active (amplified) medium to create a sustained stimulated emission for coherent
M, M,
Mirror Semi-transparent laser action.
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TYPES OF LASERS

 Continuous Lasers: The lasers wherein the output of the laser is characterized by continuously
distributed power in time.
R The rf.QCJ.LLLCZ_& f\(“&-—odo.Qo’szT“”

Peak output power
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* Diode/Semiconductor Lasers (Tunable) el w@h:avw;‘f\w
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* Monochromatic laser

* 4-Level atomic lasers (He-Ne (632nm), Nd-YAG lasers (1064 nm))



TYPES OF LASERS

* Pulsed Lasers: The lasers wherein the output of the laser comprise of the light pulses that are

Il ic in tim =
periodic &»{%ﬁi& se Ewexrgy Pavg L"‘ At Pulse Period
PwUed loda~ «+ E = Pavg - At 5) E Energy per Pulse
Pulsed Laser Emlssmn Jrep frep ~ Repetition Rate
Peak o«rjg < E Povg Average Power
b%:
Perlod ) ,f-w_P Power Po Pavg - _ —F. ﬁ"ep C'\»l) Ppeax  Peak Power
S5 At : Pulse Width
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- \'d
a0 per P P, At
q avg _ Tavg
O ?‘Nﬁw peak — = (»\D

. frep T T
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1. Optical Communication: Binary Digital communication with ON and OFF pulses at very high data rates.

Applications:

2. Laser Surgery/Precision Cutting: Highly localized ablation of materials/tissues.
3. Nonlinear Optical Processes: High Peak Powers can aid in inducing the nonlinear optical processes in mat
4

. Ultrafast Processes: Investigate the processes in the time scales of ~ 10° (nano-sec) - 1018 (attohsec)



TYPES OF LASERS

Classification based on the type of active (gain) medium or pumping scheme employed

1. Gas Lasers: He-Ne (632nm), Ar-ion (~500nm), N, (337nm), CO, (10um) lasers

Pumped using electric discharge mechanism

2050 nm) D
Pumped using a flash lamps or by diode lasers or by electrical signals
3. Liquid Lasers: Dye Laser, Rhodamine 6G (Visible light)
Pumped using UV sources (SHG)

4. Semiconductor Lasers: Heterostructure p-n diodes (AlGaAs/GaAs, InGaAsP/InP) (Tunable wavelength);
Quantum Cascade Lasers, QCLs (3um (Mid-IR) — 150um (THz))

Pumped by Injection current through the forward biased p-n junction 6 6 @ @@



SEMICONDUCTOR LASER
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SEMICONDUCTOR LASER
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SEMICONDUCTOR LASER
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ENERGY BAND DIAGRAM OF P-N JUNCTION LASER DIODE
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SEMICONDUCTOR LASER: OPTICAL GAIN SPECTRUM
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SINGLE MODE LASING CONFIGURATION
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DISTRIBUTED FEEDBACK LASER: SINGLE MODE OPERARTION
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DISTRIBUTED FEEDBACK LASER: SINGLE MODE OPERARTION
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FIBER LASERS: A Laser with doped Fiber as a gain medium Tupieally ueed
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Advantages of Fiber Lasers
* High Efficiency (70-80%)
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ERBIUM-DOPED FIBER LASER AMPLIFIER (EDFA):
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ERBIUM-DOPED FIBER LASER: GAIN SPECTRUM

Erbium Doped Fiber
Normalized Absorption and Emission
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FIBER BRAGG GRATINGS: Fiber Resonators
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ERBIUM (Er)-DOPED FIBER LASER
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THE OPTICAL FIBER

An optical fiber consists of a central dielectric core, which is cladded by a material of slightly lower refractive ir
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THE OPTICAL FIBER

An optical fiber consists of a central dielectric core, which is cladded by a material of slightly lower refractive ir
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THE NUMERICAL APERATURE
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THE NUMERICAL APERATURE
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THE NUMERICAL APERATURE 1
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ATTENUATION IN OPTICAL FIBERS
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ATTENUATION IN OPTICAL FIBERS
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ATTENUATION IN OPTICAL FIBERS

Ref: Ajoy Ghatak, Optics (Sterlite Industries, India)
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OPERATING TELECOMMUNICATION BANDS
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‘MODES’ IN OPTICAL FIBERS

* The light propagation in Fibers is determined by the Maxwells equations

* The boundary conditions at the interface dictate the allowed modes in a Fiber

* Transverse Modes: Allowed field distribution
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‘MODES’ IN OPTICAL FIBERS
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MULTIMODE AND SINGLE MODE FIBERS —= Qrep —\wdex fibevg
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MULTIMODE AND SINGLE MODE FIBERS
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DISPERSION COMPENSATION IN FIBERS

Tree  DILPRYRIM uve{i&\‘w\‘W‘c D = _}‘}:E_-,
Digper Non L B
AT = (ﬂf{: Eijh\o FLS] Yeaan « WA L= lwe*iégj* d} FWQ“)M%§BJthh4
RN — . NNV
AN 0 Q_ST = D+ L A,/\;) AT — Twre eQe_\GtS (? cQggyev(\‘o\A)
Aol widt, N
n AN =2 9o g?ﬁf

@ 1-97 P & Rews drypersian bub
lorpes  ademuedion  Lodles

( Not {drsd (TO\UUT“b\( A
LJ/\' k,a'\(\& RN & onvaAMAMA Colr

Index difference (a.u.)
g

@ 1:SE pn =3 \ow geopealiey et
ok vegotine duggereten (<o

N | I R
—60 —40

-20 0 20 40 60

Radius (um) C?M\Se_ Wm&m&w\ﬁ) .
Qeﬁ*t&&ﬁ\ﬂ (iV\&&\h ’Pﬁ))j"’\e % N AT = Y8 )hmrf\f\fvv\
D{g?&[g\bm &W?EM&O\V\MM f}\b@w{ > ’E-wx?'lo% o\ﬁ;ve«(_cio\r\
C'\(\& % Q*‘\"‘”\Ee"* W e e Convn pamn Qedfin'on, e o hamitawng - TP

\ N I N 10
LRGN 'SUNT § aéu\\h%y‘wsﬂsami"gﬂu o “eoote dlhe. e dngpevSion



DISPERSION COMPENSATION IN FIBERS
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FIBER OPTIC COMMUNICATION SYSTEM
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Noise in Photodetectors:
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CHAPTER 1

Light Waves

1.1 INTRODUCTION

Visible light constitutes a small, albeit an important, segment of the broad spec-
trum of electromagnetic waves encompassing y-rays on one extreme and radio
waves on the other. Between these two extremes, lie X-rays, ultraviolet radiation,
visible light, infrared radiation and microwaves in decreasing order of frequency
(Table 1.1). At the present stage of development of the field of optics, it is really
not necessary to justify the wave nature of light. Having said that, it must also be
mentioned that the original controversy between the two protagonists (Sir Issac
Newton and Christian Huygens) representing two schools of thought — light being
corpuscular and light having wave nature — took a new twist with the develop-
ment of quantum mechanics. Light, like matter, is now understood to have a dual
character — the wave-like behavior as well as the particle-like (photon) behavior.
Both attributes may not be revealed in a single measurement. Broadly speaking,
light propagation in free space and in other media can be described in classical
terms whereas light-matter interaction (absorption and emission of light) can be
understood only in the quantum mechanical description. In this book, we are
primarily concerned with light propagation and hence the classical description
in terms of Maxwell’s equations is quite adequate. Maxwell’s equations predict
the velocity of propagation of electromagnetic waves in vacuum which is in
close agreement with the measured velocity of light. This observation firmly
establishes light in the realm of the electromagnetic waves.

1.2 MAXWELL’S EQUATIONS

All electromagnetic phenomena, including light propagation, can be fully
described in terms of Maxwell’s equations (written here, in the SI units):
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Table 1.1. The electromagnetic spectrum.

Spectral Region | Approximate Frequency Range
Gamma rays >10?° Hz
X-rays 10'7—10?° Hz
Ultraviolet 105 —10'" Hz
Visible (3.5-7.5) x 10" Hz
Infrared 10'2—10'“Hz
Microwaves 10°—10"2 Hz
Radiofrequency <10° Hz

- 0B

Vx E=——,
ot
- - oE

where w, and €, are, respectively, the permeability and permittivity of vacuum;

p and J are the charge and current densities, respectively.

There is a need to distinguish between the microscopic and macroscopic forms
of Maxwell’s equations. The charge and current densities in the microscopic
form of Maxwell’s equations are those which exist at the atomic level. Conse-

quently, the electric field £ and magnetic field B are expected to show rapid
variations over atomic and subatomic distances. Visible light with wavelength
range between 400 and 800 nm cannot probe the charge and current distributions
at the atomic level. X-rays and y-rays with much shorter wavelengths are better
suited to probe atomic distributions. Light waves can provide information on
charge and current distributions in matter averaged over distances of the order
of the wavelength of light. In that sense, light is a rather crude probe to inter-
rogate matter at the atomic level. Light waves perceive a medium more like a
continuum, and not a medium packed with discrete particles. The macroscopic
form of Maxwell’s equations uses the charge and current densities which are
averaged over microscopically large, but macroscopically small volumes. Macro-
scopically averaged fields vary smoothly in space and are mathematically well
behaved. The Gauss and Stokes vector theorems can be applied to these fields.
In this book, we shall deal with the macroscopic form of Maxwell’s equations.
Maxwell’s equations in the differential form (Eq. 1.1) can be derived from the
empirical integral formulation of the laws of electromagnetism developed over
centuries by Gauss, Ampere, Faraday and others. Maxwell brought symmetry

to these equations by introducing the displacement current density €,0 £ /0t. No
wonder, these equations are known as Maxwell’s equations. In the context of the
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macroscopic form of Maxwell’s equations, it is necessary to distinguish between
the free and bound charge and current densities. The free electrons in conductors
generate the free charge density (p;). In addition, it may also happen that the
centers of the positive and negative charges in a small macroscopic volume may
not coincide. If this happens, an electric dipole moment can be associated Witil

this volume and the medium is said to be polarized. The electric polarization P
is defined as

13 __ net electric dipole moment in a macroscopically small volume V (12)
N volume V B
The bound charge density in a polarized medium is given by
p,=—-V- P. (1.3)

The bound charge density p, is non-zero only if polarization P is spatially
changing. Electric polarization can be created in a medium either by aligning its
polar molecules or by displacing its negative charge with respect to the positive
charge by the application of an external electric field. The movement of the

free charges in a conductor gives rise to the free current density (J/;), and the
changing displacements of the bound charges from their equilibrium positions
give rise to the bound current density

N

f dpP

*Tdr’
We should also recognize the existence of the magnetic dipole moments in
magnetic materials. The bound current density can be generalized to include
these contributions as well;

N

N

dp —~
Jy= VXM, (1.4)

where magnetization M is the magnetic moment per unit volume defined in
the manner of Eq. (1.2). We now write Maxwell’s equations indicating these
contributions explicitly:

V- E=(p;+py)/€os (1.52)
V-

0, (1.5b)

=)
Il
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Y
VX E=——, (1.5¢)
ot
~ (L
V X B = /.LO Jf + Jb +an_t . (1.5d)

These equations along with the defining equations for the bound charge and
bound current densities constitute a formidable set of equations to deal with.
They can be made more compact by introducing two additional fields,

B =€, E + ;’, (1.6a)

o

H=—-M, (1.6b)
Mo

where D is the electric displacement field and H is the magnetic field. The field
B is usually called the magnetic induction or the magnetic flux density. The

term magnetic field is often used to refer either of the B or H field. Maxwell’s
equations (Eqs 1.5) can now be put in the form:

V. D=p,, (1.72)
V.B=0, (1.7b)
Y
VX E=——, (1.7¢)
o1
~ ~ 4D
Vx H=Jp+ . (1.7d)

Despite the presence of the source terms, Maxwell’s equations should not be
conceptualized in terms of the cause and effect, where the fields are determined
by the sources of the charge and current present in the medium. The sources
and fields are, in fact, inter-dependent — each affecting the other. True, the free
charges do not depend on the fields, but the bound charges and currents are field
dependent. The bound charges and currents change the fields and are in turn
modified by the changing fields.

Equations (1.7) appear deceptively simple but are actually unmanageable pri-
marily because, notwithstanding Eqs (1.6), no simple relationships exist between

the electric fields £ and D and between the magnetic fields B and H. Fortu-
nately, the elementary magnetic moments are not of much concern at the optical
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frequencies. Consequently, the magnetization M can be ignored and the rela-

tionship between the B and H fields for materials of optical interest is rather
simple:

B=pu H.
The permeability u of optical materials is essentially field independent and differs
only slightly from vacuum permeability w,. However, the electric polarization

P must be reckoned with and cannot be ignored. In the absence of a detailed

understanding in classical terms, the electric polarization P is usually expanded
as a power series in the electric field:

I 2 3
P =€ I:Xi(j)Ej +Xi(jk)EjEk +Xi(jl<)lEjEkEl +-- ] ; (1.8)

where E;, E > Ey are the components of the electric field contributing to the

ith component of the polarization P. The coefficients y™ with n =1,2,3,...
are the electric susceptibility tensors describing intrinsic material properties and
are best understood in quantum mechanical terms. Alternatively, they may be
treated as parameters to be determined empirically. Equation (1.8) is actually

more complicated than it appears because the polarization P at a certain space-

time point (7, t) may depend, in addition to field E at point 7 and time 7, on
fields in the spatial neighborhood of this point and may also depend on fields at
times prior to the chosen time 7. We shall ignore such complications. Here, we

assume polarization P (?, 1) to depend linearly on the local and instantaneous
field only. Hence, we can write

PG D) =exVE (1), (1.9a)

This is the regime of linear optics to which most of this book is devoted. The
remaining terms in Eq. (1.8) form the basis of the exciting field of nonlinear
optics (Chapter 14). Equation (1.9a) is equivalent to

D(r,0)=€E(F,0), (1.9b)
where
e=¢,(1+x") (1.9¢)

is the medium permittivity. Except for vacuum (y" =0), the linear susceptibility

xV and permittivity € are in general complex suggesting the polarization P and



6 Chapter 1: LIGHT WAVES

displacement field D do not always remain in phase with the electric field E.
For conducting media, the so-called constitutive relations (Eqs 1.6) need to be
supplemented by

J=0E, (1.6¢)

where o is the electrical conductivity of the medium. A homogeneous medium is
characterized by constant values of €, u and o, and an inhomogeneous medium
admits changes in these quantities from point to point in a smooth manner. For

linear optical materials (p; =0, J,=0, 0 =0), Eqgs (1.7) can be re-cast into the
form:

V.eE=0, (1.10a)

V.B=0, (1.10b)
~ B

Vx E= -2, (1.10¢)
o1
~  3E

V x B:,u,ea—t. (1.10d)

We note that for linear optical materials, only two fields £ and B need to be dealt
with, but the permittivity € and to some extent the permeability w are unknown
quantities to be determined with reference to experimental observations. It must
be appreciated that the averaging process has transferred the information on the
electromagnetic behavior of the medium at the atomic level to the macroscopic
or bulk properties of the medium — the permittivity € and permeability u in the
context of optical materials.

All electromagnetic fields including the light fields must be consistent with
Maxwell’s equations, but on their own these equations do not suggest the exis-
tence of fields of any particular kind. One needs to postulate specific forms of
the fields and then obtain conditions for their existence. Another point to be
noted is that these equations describe relationships for the spatial and temporal
variations of the fields, but do not provide any clue as to how these fields are
generated in the first place.

1.3 THE WAVE EQUATION

The electric and magnetic fields appear coupled in Maxwell’s equations. It is
possible to de-couple them. The decoupling process brings out some of the most
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exciting aspects of electromagnetism. For a homogeneous medium, except at its
boundaries, Eq. (1.10a) reduces to

V. E=0. (1.10¢)

This result in conjunction with Eq. (1.5a) suggests that a linear homogeneous
medium, with no free charge inside, cannot sustain any bound charge except
(may be) at its boundaries. We shall have to fall back to Eq. (1.10a) when the
boundaries of a homogeneous medium are approached. With Eq. (1.10e), the

V x Vx E simplifies to
VxVx E=V(V. E)=V?E=-V’E .

Taking curl of Eq. (1.10c), interchanging V and 9/d¢ operations on the right-hand
side and combining it with Eq. (1.10d) leads to the well-known wave equation

- PE

In a similar manner, we can obtain

~ B
VZB—,LEW =0. (1.11b)

Notwithstanding this apparent separation, the electric field £ and magnetic field

B of an electromagnetic wave remain dependent on each other through Maxwell’s
equations.

The wave equations (1.11) describe wave motion in a variety of situations,
as for example the waves in an elastic medium. We can interpret Eqs (1.11)
to describe the propagation of the electric and magnetic fields or more appro-
priately, the propagation of the electromagnetic waves. Extending the similarity
with the elastic waves a bit further, one may postulate the existence of some
kind of an elastic medium pervading all space which makes it possible for the
electromagnetic waves to propagate. Aether was thought to be such a medium.
It must necessarily be a thin medium since electromagnetic waves do propagate
in essentially free space. At the same time, aether must be sufficiently elastic for
wave propagation to take place. These are some of the internal inconsistencies
of the aether postulate. The results of an ingenious experiment performed by
Michelson and Morley were not consistent with the aether postulate. Aether
has no place in the special theory of relativity developed by Albert Einstein.
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Electromagnetic waves including the light waves can propagate in absolutely
empty space. They do not require matter to facilitate propagation. The chang-
ing electric and magnetic fields associated with an electromagnetic wave are
capable of sustaining each other. A comparison of the wave equation with its
counterpart for mechanical waves suggests that the product e must represent
the inverse of the square of the speed of propagation of electromagnetic waves.
A medium is not necessary for the propagation of electromagnetic waves. How-
ever, the velocity of propagation of electromagnetic waves in a given medium
is determined by its permeability and permittivity. The vacuum with permeabil-
ity my =47 x 107" Ns>*C~2 and permittivity €, = 8.85 x 107"2C>N~' m~? has
velocity ¢ =2.99 x 108 ms~! for the propagation of electromagnetic waves. This
value agrees very closely with the velocity of light measured in the laboratory.
This brings light within the domain of applicability of Maxwell’s equations.
The wave equation (1.11) is a linear, homogeneous, second-order differential
equation. The lineariii/ of the wave equation leads to the superposition principle

which states that if E; (j=1,2,3,...,n) are solutions of the wave equation,

then 3 ;a; E; is also a solution of the wave equation, where a; are arbitrary
constants (real or complex). The wave equation admits a variety of solutions —
some extremely simple in form, others sufficiently intricate. The implication of
this statement needs to be appreciated. All light fields in a homogeneous medium
must be solutions of the wave equation. However, external conditions must be
accurately controlled to generate light fields to correspond to a particular solution
of the wave equation. Some solutions may be mathematically easy to handle,
but difficult to realize in practice. Fortunately, external conditions can often be
manipulated to favor a particular kind of solution — generation of coherent light
in a laser is an important step in this direction. The plane wave solution

E (7:, Z_) :E() ei(k.?—wl)
is perhaps the simplest solution and the lowest order Bessel wave solution [1.2]
E(r, 1) = EyJy(ap)el P,

representing a nonspreading beam with & + 8% = (w/c¢)?, is one of the non-trivial
solutions of the wave equation.

A plane wave is actually unphysical in the sense that no experimental effort
can succeed to generate a plane wave. Notwithstanding this ‘awkwardness’, the
plane wave solution of the wave equation is an extremely useful solution. In
the backdrop of these remarks, we now discuss some monochromatic (single
frequency) solutions of the wave equation in a homogeneous medium. The
quasi-monochromatic and polychromatic wave solutions can be constructed in
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terms of the monochromatic wave solutions. This will be the subject matter of
the next chapter.

1.3.1 Plane Wave Solution

The general solution of the wave equation (1.11) can be written in the form
E(r,0)=E, (r, e, (1.12)

where E, (7, 1) and qb(?, 1) are the amplitude and phase of the wave, respec-
tively. A plane wave is characterized by phase qb(?, t) which, at any given time,
remains constant in a plane perpendicular to the direction of propagation of the
wave. The phase

b(r.0=k - T —or

satisfies this condition since the dot product k . 7 remains constant (=kry)
as the tip of the position vector » moves over a given plane perpendicular to

the direction of propagation k; r, is the component of 7 in the direction of k

(Fig. 1.1). The amplitude E, of a plane wave does not depend on position vector
7 and time 1.

A surface (in this case a plane) of constant phase is called a wavefront or
an equiphase surface. Let plane I in Fig. 1.1 represent the wavefront at the
space-time point (r,, 7,) with phase

I II
———— | S
r v :
! 1 1
0 — : .
E Lk
(75 %) (ro+ drp, 2+ di))

Fig. 1.1: Moving wavefront of a plane wave.
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This wavefront moves along with the wave and plane II is its subsequent position
at the neighboring space-time point (r, +dr,, t, + dt,). Therefore,

The velocity of propagation of the wavefront is given by

dr, o
v, = — .
Prody,  k

This is the phase velocity or the wave velocity. We could have defined the

phase of a plane wave with a negative sign before & - . That choice represents
another plane wave propagating in just the opposite direction. In fact, any well-
behaved mathematical function of (£k - r — wt) can represent a plane wave.
A particularly useful form of the plane wave is the harmonic plane wave

N

Er:ET)r cos(z o —wt+ ¢,) (1.13a)
in the real field notation or

E=Ey, ¢tk T=orton) (1.13b)
in the complex field notation, where ¢, is a constant called the phase constant.
To avoid trigonometric complications, we prefer to employ the complex field

notation. The real field can always be recovered from the complex field and its
complex conjugate:

Er _ Eof eilk-r—wt+dy) + % Eor e—i@-?_wrwo)_ (1_14)

N | =

A more general harmonic plane wave is described by the fields

E=E, ek o, (1.15a)
B =B, etk 7on, (1.15b)
The notation k is used to distinguish the complex wave vector from the real

wave vector k The complex wave vector or the propagation vector k allows
for the attenuation (or the gain) of the amplitude of a wave as it propagates in
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the medium. For complex E, and B,, the electric and magnetic fields may not
always remain in phase. The complex propagation vector may be expressed as

k=k+ia, (1.16)

where k is the real part of the propagation vector and a is a real vector called the
attenuation vector. For the harmonic plane wave solution to be consistent with
Maxwell’s equations in a homogeneous medium, following conditions must be
satisfied:

k- E,=0, (1.17a)

k- By=0, (1.17b)

-~ IxE

By= =70, (1.17¢)
w

-~ kxB

E,= — 2220 (1.17d)

Equations (1.17a) and (1.17b) specify the transversality condition of the complex
field amplitudes E, and B,. However, it must be understood that the electric and

magnetic fields are transverse to the real wave vector k only when the medium
is non-absorbing (a = 0). Combining Eqgs (1.17¢) and (1.17d) and making use
of the vector triple product, we get

0)2
—

>
>
I
=

m

S

[\ *)

I
S

2
k=k -

; (1.18a)

where

= pec’. (1.18b)

IR ]

The real and imaginary parts of the complex refractive index

n= n+ik (1.19)
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are known as the refractive and extinction indices of the medium, respectively.

The real and imaginary parts of the complex wave vector k and complex refrac-
tive index n satisfy the following relations:

kK —a* = (nz—Kz)—z, (1.20a)
C
k-a=n. (1.20b)

It should be noted that in place of permittivity and permeability, the complex
refractive index now describes the bulk properties of an optical material.

1.3.2 Spherical and Cylindrical Wave Solutions

A point source embedded in an isotropic medium generates a spherical wave
which propagates radially outward. The surfaces of constant phases for a spher-
ical wave are spherical, centered at the source point. The scalar electric field of
a harmonic spherical wave in the complex notation has the form

A
E(r) = =@, (1.21a)
r

where A is the amplitude of the spherical wave at unit distance from the point
source. The 1/r dependence of the field can be easily derived by integrating the
wave equation after expressing it in spherical polar coordinates. However, this
dependence follows from consideration of energy conservation. Equation (1.21a)
represents a diverging or an expanding spherical wave diverging from point
r =0, and the spherical wave converging to point » =0 is

A .
E(r) = —e!hmen, (1.21b)
r
The harmonic cylindrical wave solutions of the wave equation have the form

A
E(r) = —=e' &k, (1.21c)

ﬁ

where the wavefronts are in the form of coaxial cylindrical surfaces travelling
outward from an infinite line source at r = 0 or travelling inward to converge
on a line at r = 0.
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1.3.3 Beam-Like Solutions

Laser light possesses a high degree of directionality resembling closely the
directionality of a plane wave. But unlike for a plane wave, the field amplitude
of laser light decreases rapidly in the transverse plane. Laser light diverges
as it propagates, but for short distances the divergence of laser light is much
smaller than the divergence of a spherical wave. Of course, laser light is not
monochromatic but it is the closest approximation we have for monochromatic
light. We now seek a monochromatic solution of the wave equation which is
highly directional and possesses a low degree of divergence. It is hoped that
such a solution may provide at least an approximate description of laser light.
Here, we disregard the fact that the wave equation (1.11) is a vector equation.
Instead, we treat the electric and magnetic fields as scalar fields. By doing so, we
lose all information about the state of polarization of light to which this solution
may correspond. The solution may still be useful to describe interference and
diffraction phenomena. We begin by requiring that the beam-like solution be
monochromatic, so that

E(r,1)=E(r)e .

On substituting this solution, the wave equation (1.11a) reduces to Helmholtz
equation

(V24+k)E(r) =0, (1.22)

where

wZ

k* = pew? = 0*/v* = n2—2.
c

The propagation vector and index of refraction are assumed real in the present
context. To retain the beam-like character of the solution, we write

E(r)=s&(r)e™. (1.23)

The wave propagates in the z-direction with wave number k = n(w/c). Noting
that

0’ T\ aikz i 0 2| o( 5\ pikz
Py e(r)e™ | = 8_12+21k&_k e(r)e™,

Eq. (1.22) can be recast into the form

de(r) _

0’
e(r) ’i
0z

VZe(r)+ = ik

0, (1.24)
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where
5 02 02
Vie — 4+ —.
Loax? * 0y?

Making use of the slowly varying envelope approximation (SVEA)

2e(r) 9e(r)
k :
dz2 < 0z

Eq. (1.24) can be approximated to

VZe(r)+2ik

be(r) _y, (1.25)
0z

The SVEA ensures slow variation (on the wavelength scale) of the field ampli-
tude &(r) and its derivatives in the direction of propagation. However, appreciable
changes in the amplitude over long distances are still permitted. Equation (1.25)
admits many beam-like solutions. We look for the one which manifests cylin-
drical symmetry about the direction of propagation. This may be the simplest,
but not the only interesting beam-like solution the wave equation possesses. For
the present, it suffices to solve the equation

10 ( ds(r de(r
T3 (0600 4o d2) g, (1.26)
p op op 0z

where p = (x> + y*)!/2. A possible solution to this equation may have the form
e(p,7) = A ellP@+3 kp?)/(a@)] (1.27)

where A is a constant. For real p(z) and ¢(z), the beam intensity is independent
of p and z. This is not the kind of solution we are seeking. Hence, we expect
either one or both of these functions to be complex. Substituting Eq. (1.27) into
Eq. (1.26) gives

i d K p? (d
2k< S p(z)>+ p <Q(Z)—1)=0. (1.28)
g(z)  dz ¢*(z) \ dz
This equation is satisfied if

d
9@ _ (1.292)
dz
q .
P _ i (1.29b)

dz  q2)
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The solution of Eq. (1.29a) is
q(z) = z—1iz. (1.30)

For convenience, the constant of integration has been taken as —iz,. Integration
of Eq. (1.29b) yields

p(z) =1 In(1+iz/z,), (1.31)

where the constant of integration has been chosen to make p(0) = 0. With this
choice, this beam-like solution has exactly the phase (but not the amplitude)
of the plane wave at z = 0. In other words, the wavefront at z = 0 is planar.
Equation (1.31) can be expressed as

-1
e’ = (1 —i—ii)
<0

0 (1.32)

where ¢(z) =tan™! z/z,. Equation (1.30) can be written in an equivalent form

L @ 4 &
q(z)  2+z 2+73
1 21 1
= + — , 1.33
RO Tk w0) (139
where
Z2
R(z)=z+ ;“ (1.34a)
w’(z) = wy (1+2°/2) s (1.34b)
2
wS:%. (1.34¢)

Combining these results, the beam-like solution of the wave equation possessing
cylindrical symmetry about the direction of propagation can be written as

E(F, 1) = A0 p @) ke 2R gilke—d(@)-0n) (1.352)
w(z)
—A Wy e—pz/wz(z) eik(z+(p2/2R(Z))) e—i(/)(z)e—iwt' (135b)

w(z)
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The two equivalent expressions (1.35a) and (1.35b) have been written to bring
out two complementary features of the beam-like solution. The phase factor
(kz — ¢(z) — wt) in Eq. (1.35a) reminds us of the plane wave solution since
¢(z) is a slowly varying function of z, changing from zero to /4 as z goes
from zero to z,. On the other hand, for visible light, kz varies by nearly 10°
radians over a distance of 1 cm. However, the solution differs from a plane wave
because the amplitude of the wave does not remain constant. The expression
(1.35b), on the other hand, possesses some implicit resemblance to a spherical
wave. The phase factor k(z+ p?/2R(z)) will be shown to approximate the phase
factor kr of a spherical wave in the limit of large r. Furthermore, w(z) varies
linearly with z for large z suggesting an inverse dependence of the amplitude
on distance as for a spherical wave. But for z, not too large, this solution has
much lower divergence as compared to the divergence of a spherical wave. The
amplitude

Eo(7) = AL o~

w(z)

of the beam-like solution varies with x, y, z. For a fixed value of z, it has
a Gaussian profile in the transverse plane. The amplitude falls to 1/e of its
maximum value at a distance p = (x* + y?)'? = w(z) from the axis of symmetry
(Fig. 1.2).

The transverse profile of the beam-like solution changes as the wave propa-
gates. It has minimum spread at z = 0. The width of the transverse profile of the
beam increases non-linearly with z on either side of the point z = 0. However,

10— = - e e — — = = — — —

Q=

-w(z) 0 w(z)
— (x2+y2) 172

Fig. 1.2: Gaussian profile of the amplitude of the beam-like solution.
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hw(2)

L
O P> _5 «—
\

Fig. 1.3: Variation of the transverse profile of the beam-like solution; w, is beam
waist and z, is Rayleigh range.

for |z| > z,, the transverse profile shows a linear dependence on z. This behavior
of the solution is shown in Fig. 1.3.
We next consider the spatial phase of the wave,

d(x,y,2) =k (z + )622R—i;zy)2> : (1.36a)

This phase is obviously not constant for a given value of z. The equiphase
surfaces are curved, but not necessarily spherical (Fig. 1.3). For comparison, we
write the spatial phase of a spherical wave in the limit x, y < z:
q)sph(x’ Vs Z) =kr
_ k[x2+y2—|—z2]1/2
x*+y?
2z

~ k[z+ . (1.36b)
Only the first term in the binomial expansion has been retained. The expressions
(1.36a) and (1.36b) are similar since R(z) ~ z for large z. One may therefore
conclude that for points in the transverse plane, not too far from the axis of
symmetry, the curvature of the equiphase surface of the beam-like solution
approaches sphericity for large values of z. It is tempting to identify the factor
1/R(z) with the curvature of the equiphase surface. The curvature changes
continuously from planar at z = 0 to near-spherical for large z, taking more
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complex forms in the intermediate region. Sections of these surfaces are shown
in Fig. 1.3. The curvature changes sign as the point z = 0 is crossed. The intensity
distribution

1 2
I(x,y,2) = (560(:) A (%) e 20H 07/ (@) (1.37)

of the beam-like solution has Gaussian profile in the transverse plane with 1/¢>
half-width which varies from wj, at z =0 to w = /2w, at z = z,, and increases
approximately linearly for large values of |z|. The beam in any transverse plane
will have the appearance of a bright round spot with spot size (1/¢* beam radius)
w(z). At the beam waist (z = 0), the spot size has the least value (w,). The
distance z, over which the spot size changes from w, to ~/2w, is known as the
Rayleigh range. The beam divergence, defined asymptotically, is

dw(z) w, A

v

6(divergence) = lim = ,
oo dz o  TRW,

where A, is wavelength of light in a vacuum and n is refractive index of the
medium. Typical divergence angle of the beam of a commercial laser is in
milliradians.

As mentioned earlier, we have considered only the lowest order beam-like
solution (TEM,,mode) of the wave equation which has been found to resemble
in some way a plane wave for z — 0 and a spherical wave for z — Foc. Higher
order solutions of the wave equation with beam-like character also exist. They
are described in terms of the Hermite polynomials [1.1, 1.2].

1.4 HOMOGENEOUS AND INHOMOGENEOUS WAVES

A vacuum is a perfectly transparent medium for the entire range of the elec-
tromagnetic spectrum. Other media may approach complete transparency over
limited spectral bandwidths. Perfect transparency exists in an optical medium
when the index of refraction is purely real (k = 0). This need not necessarily
imply a purely real propagation vector (a non-absorbing medium). For perfect
transparency, Eq. (1.20b) requires

k- a=o. (1.38)

This condition can be met in two ways. The attenuation vector may be a null
vector (a= 0), in which case, the plane wave solution takes the form
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Ev :E;) ei(k- r—wt)

L (1.39)
B =B, ¢ -?—wz)’
where k is now a real vector of magnitude
k=n2 (1.40)
c

These fields represent a homogeneous plane wave with coincident surfaces of
constant amplitude (E,= constant, B,= constant) and constant phase (k - r=

constant). These surfaces are planes perpendicular to the real wave vector k.
Equations (1.39) represent a wave with unchanging amplitude propagating with
speed

w C
=— =, 1.41
V== (1.41)

In this case, Egs. (1.17) have clear physical interpretation. The real and

imaginary parts of the £ and B fields are transverse to the direction of
propagation. It should be understood that we have used the complex notation for
the fields only for the sake of convenience. The physical electric and magnetic
fields being real are not only transverse to the direction of propagation, but
are also transverse to each other in the present case. Such a wave is called
a TEM wave, where TEM stands for transverse electric and magnetic fields
(Fig. 1.4). The electric and magnetic fields remain in phase and their amplitudes
are related by

B,=_E,. (1.42)
C

For a perfectly transparent medium (k = 0), the condition (1.38) can also
be met for a non-zero value of the attenuation vector a provided the real and

imaginary parts of the complex wave vector k are orthogonal to each other. In
this case, the plane wave solution takes the form

E(r,tf)=E, e " gllk-r-on, (1.43)

The wave now propagates in the direction of k& with somewhat diminished veloc-
ity as compared to the velocity of the homogeneous wave (a= 0). The surfaces
of constant phase and constant amplitude are no longer coincident. The surfaces
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Fig. 1.4: A homogeneous harmonic plane wave; electric and magnetic fields are
transverse to the direction of propagation and also to each other.

of constant phase remain perpendicular to the direction of propagation k, but the

surfaces of constant amplitude (E, e”“ " = constant) are now planes perpen-
dicular to the direction of the attenuation vector « since a - r remains constant
in a plane normal to a. The amplitude of the wave decreases in the direction
of a. This is the inhomogeneous wave. Figure 1.5 compares a homogeneous
wave with an inhomogeneous wave of this kind. A wave is inhomogeneous if
the surfaces of constant amplitude and constant phase are not coincident. The
field configurations are not easy to visualize for the inhomogeneous waves. For

the TE mode, the real and imaginary parts of the electric field E are perpen-

dicular to the plane containing the propagation vector k and attenuation vector
a. It can be shown (see Problem 1.4) that the magnetic field for the TE mode
is elliptically polarized. For the TM mode, the real and imaginary parts of the

magnetic field B are perpendicular to the plane of k and a. Any field configu-
ration can be expressed as a superposition of TE and TM modes. An example
of an inhomogeneous wave is the evanescent wave to be considered later in this
chapter.

For the more general case of non-zero extinction index k, the attenuation

vector a is not normal to the propagation vector k and the amplitude of the
inhomogeneous wave decreases in the direction of propagation as well. The
surfaces of constant phase and constant amplitude are neither coincident nor
orthogonal. Electromagnetic waves in metals behave in this manner.
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Fig. 1.5: (a) A homogeneous plane wave; planes of constant phase and planes
of constant amplitude are coincident (P). (b) An inhomogeneous plane wave;

planes of constant phase (P,) are perpendicular to propagation vector k and
planes of constant amplitude (P,) are perpendicular to attenuation vector a.

1.5 ENERGY DENSITY AND POYNTING VECTOR

A wave carries energy as it propagates in a medium. The instantaneous energy
density stored in the medium due to the presence of the wave is given by!

1 1
u=—€e(EM)? 4+ —(BM)? (1.44a)
2 21
and the instantaneous energy crossing per unit area per unit time is given by the
Poynting vector
-~ EO « B
S= ——
7!

: (1.44b)

N

where E© and B™ are real time-dependent fields. The more relevant quantities
for light fields are their time averaged values. In the complex notation,

T e
(u)=—-Re|€eE -E*"+—B - B
4 J

"ntroduction to Electrodynamics by David J. Griffiths.
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and

so that
1 - -
() = 5€ E - E'= (E))

and

- 1 - = 1 .
(S) ==—Re(E x B*) = —EE"35,
21 2uv
where the symbol ( ) represents the average over a time needed to make a measure-
ment which is much longer than the period of a light wave and § is a unit vector in

the direction of §. The intensity of a wave, defined as the magnitude of the time
averaged Poynting vector, is given by

1 1
I =(S)=—FEE" = —evEE", (1.45)
2uv 2

where v is the velocity of the wave in the medium. The expression
1 2
1= E”EOC|E| ) (1.406)

commonly used in literature makes the reasonable assumption of u ~ u, for an
optically transparent medium of refractive index n. A useful relation between
the energy density and intensity of a plane wave is

I =v(u). (1.47)

1.6 BOUNDARY CONDITIONS

We have so far been considering wave propagation in a source-free infinite homo-
geneous medium. In practice, one encounters wave propagation in a medium
of finite extent. We need to address ourselves to the question of matching the
solutions of the wave equation at the interface between two media. It is con-
venient to assume a plane boundary separating the two media. This assumption
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may actually be not as restrictive as it appears at first sight. As mentioned
earlier, the macroscopically averaged electric and magnetic fields satisfy Gauss
and Stokes theorems everywhere in the two media including the region sur-
rounding the boundary between them. The restrictions imposed by these the-
orems on the fields on the two sides of the interface are called the boundary
conditions.

1.6.1 Continuity of the Normal Components

Consider a small pillbox around the interface between two media of permittivities
€, and €, (Fig. 1.6a). The height /4 of the pillbox is infinitesimally small bringing
the flat surfaces of the pillbox very close, but on the opposite sides of the
boundary. We apply Gauss’ theorem

ﬁsﬁ -dK://fVV- D dv

to the displacement field D over this pillbox. The integral on the left-hand side
is over the closed surface S bounding the volume V. The volume integral on
the right-hand side vanishes when the volume of the pillbox approaches zero
as h — 0. In the same limit, the contribution to the surface integral from the
curved surface of the pillbox is vanishingly small. The flat surfaces of the pillbox
are taken sufficiently small so that the normal component of the displacement
field contributing to the surface integral in each medium remains constant.
Therefore,

61 El 'I’l/—|—62E2 'n:(),

) € | €, € |€
"= . 1l
—> 7
E | E
1 2 E1 E2
b, | D,
10 Vil
<«
h <>
w
(@) (b)

Fig. 1.6: Plane boundary between two homogeneous media.
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where the unit vectors n' and 7 are normal to the boundary as shown in the
figure. With n’ = —n, the above condition, expressed as

N

61 El ';1262 E2 ';l, (1.48&)

is a statement of the continuity of the normal components of the displacement
fields across the boundary between two homogeneous media. A similar condition

holds for the normal components of the B fields, i.e.,

B, -h =B, -h. (1.48b)

1.6.2 Continuity of the Tangential Components

Next, we apply Stokes’ theorem

yﬁE-d?:/fzvxE-dZ

:—E%//ZE-dZ

to the electric field, where the closed path ¢ encloses the boundary between the
two media as shown in Fig. 1.6b. Here, ) is a surface bounded by the closed
path c. The side 4 of the rectangular path is taken sufficiently small so that
the tangential fields do not change appreciably in each medium over the paths
parallel to the boundary. The surface integral on the right-hand side vanishes as
the width w of the rectangular path approaches zero, leading to the continuity of
the tangential components of the electric fields across the boundary, i.e.,

The continuity of the tangential components of the H fields can be shown in a
similar manner. So that,
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or equivalently

i><f1:&><f1, (1.484)
My Mo

where w, and u, are the permeabilities of the two media. We may make the

reasonable assumption that for the optically transparent media u, ~ w, = W,.

These four relations (Eqs 1.48) constitute the boundary conditions which must

be satisfied across an interface between two homogeneous media.

1.7 REFLECTION AND TRANSMISSION AT A BOUNDARY

The boundary conditions obtained in Section 1.6 can be used to obtain relation-
ships among the amplitudes of the reflected, transmitted and incident waves at
the boundary between two homogeneous media (Fig. 1.7). This exercise can be
quite tedious. Our approach here is to avoid mathematical complications as far
as possible, but at the same time not to miss the essential features of what goes
on at the interface. Following Stone [1.3], we consider light incidence from a
perfectly transparent (k, = 0) and non-absorbing (a,= 0) medium of refractive

index n, to a medium for which the refractive index n and wave vector k may
be complex.

(¢)
n, (n2 N K2)
k; "
b ,
\
0 ! ag ~
- —
00 \K
. ki
k, g

Fig. 1.7: Reflection and transmission of a wave at a plane boundary.
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The incident wave is therefore homogeneous. We can anticipate the reflected
wave to be homogeneous as well, but the transmitted wave in general will be
inhomogeneous. Accordingly, the fields in the two media can be expressed as
Incident wave:

= (R
E, =L e ,

R L (1.49a)
B —B ei(ki?—wr)
mn 1 9
Reflected wave:
. pilke - T—0'D)
re T 9
R o (1.49b)
=B ei(k,?-w’t),
Transmitted wave:
E =E eillktia) - 7 —o/'1]
r 9
(1.49¢)

N N

B, =B, ei[(l?t"_i(’?t)'?_w”[)]
r s

where the amplitude vectors E;, B;, E,, B,, E,, and B, are in general complex.
The boundary conditions (1.48c) and (1.48d) require

[Ei SOR Er ei(’?"’%_“’/”] x = Et ei[(';Jri;t)"%_‘””’]] X 7 (1.50a)
and

[Ei itk 7o) 4 B. ei@"@—w’”] xi= B, ei[@“@'@—w”ﬂ] xn.  (1.50Db)
Here, 7]3 is the position vector of a point in the plane of the boundary with respect
to a suitably chosen origin also lying in this plane. These conditions must be

satisfied at all times and for all points lying on the infinite boundary plane. This
can be ensured if all phase factors associated with the fields are equal. Hence

0= =wo, (1.51a)
a, - rg=0 (1.51b)

and
k- =k, - =k, (151c)
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The boundary conditions therefore require the incident, reflected, and transmitted
waves to have the same frequency. The magnitudes of the wave vectors of the
incident and reflected waves, being in the same medium, are equal, i.e.,

|=k=n,—. (1.51d)

Equation (1.51b) requires the attenuation vector in the second medium to be
directed along the normal to the plane of the boundary, i.e.,

a,= an. (1.51e)

The condition (1.51c) can be re-expressed as,
ki -hix r=k -hxr=k -Axr, (1.51f)

where 7ix 7 is a convenient representation for vector 1% lying in the plane of the
boundary in terms of an arbitrary position vector r (see Fig. 1.7). Manipulation
of the scalar triple product leads to the important result:

k,xn=k, xn=k xn. (1.52)

This is the statement of the coplanarity of the wave vectors k;, k,, k,, and the
normal 7 to the plane of the interface. In addition, Eq. (1.52) requires

0=6 (1.53a)
and
k,sin ¢ = ksin 6, (1.53b)

where 60, 6', and ¢ are the angles of incidence, reflection, and refraction, respec-
tively. These equations ensure the equality of the angles of incidence and reflec-
tion, but leave the angle of refraction ¢ and magnitude &, of the real part of
the propagation vector in the second medium undetermined — only the product
k,sin ¢ is determined. Equations (1.52) and (1.53b) describe the laws of reflec-
tion and refraction of light across an interface. Combining Eqs (1.16), (1.18),
and (1.19), we get

2
w
(k,cos ¢ +ia,)* + (k, sin ¢p)* = = (n, +ik,)%. (1.54)
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Knowing n,, n,, and «,, Eqs (1.53b) and (1.54) suffice to determine ¢, k,,
and a,. With the equality of the phase factors guaranteed by Eqs (1.51), the
restrictions (Egs 1.50a and 1.50b) on the fields go over to the restrictions on the
corresponding field amplitudes. Therefore,

(Ei + Er)boundary X ﬂ = (Et)boundary X ﬁ’ (1553)

(Bi + Br)boundary X ;Z = (Bt)boundary X fl (155b)

Expressing the electric fields in terms of the Cartesian components, we have

|

=E. n+E_mw+E,0, (1.56b)
—E A+ E #+E,0, (1.56¢)

where the unit vectors 7r, &, n constitute a right-handed Cartesian coordinate
system with the unit vectors 7r and ¢ lying in the plane of the boundary and unit
vector n pointing normal to it (Fig. 1.7). We can choose the unit vector 7 to lie

—

in the plane of incidence (plane containing k;, k,, k,, 7). Similarly, decomposing
the propagation vectors of the three waves in the chosen system of coordinates,
we have

k, = (kcos O)n — (ksin 0)7r, (1.57a)
k, = —(kcos 0)n — (ksin 6)7r, (1.57b)
k, = (k,cos p)n— (k,sin ¢p)7r. (1.57¢)
The transversality conditions (1.17a,b) require
E.,=—E,  tan0, (1.58b)
L si
. sing_ (1.58¢)

- k,cos ¢ +iaq,
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Using Eqs (1.17), (1.56), and (1.57), the magnetic field vectors associated with
the incident, reflected, and transmitted waves can be expressed in terms of the
components of the corresponding electric field vectors. So that,

|

k
—[—(E,, sinO)n — (E,, cos )7 + (E,, sin0+ E; . cos ) 7], (1.59a)

_

|
I

Sl—egl=2¢

[—(E,,sinO)n+ (E,,cos0)m+ (E,, sin—E,_cosf)o],  (1.59b)

-

|

[—(E,k sin )i — (E,k cos p +iE, a,)m
+ (E, k ,cosp+ E, k sinp+iE, .a)T]. (1.59¢)

The field components of the incident wave are determined by its state of
polarization and are therefore known. The boundary conditions (1.55a,b) impose
the following restrictions on the components of the reflected and transmitted
fields:

(Eir + Em')boundary = (Em')boundary’ (1.60a)
(Eio' + Ercr)boundary = (Eto')boundary’ (1-60b)
(B + Brﬂ')boundary = (Btﬂ')boundary’ (1.60c)
(Bizr + Bra‘)boundary = (Bw')boundary' (1-60d)

Equations (1.60c,d) involving the tangential components of the magnetic fields
can be expressed in terms of the tangential components of the electric fields:

k(E,, — E,,)cos 6 = (k,cos ¢ +ia,)E,,, (1.61a)
k +ia)’
(EiTr - Erﬂ-) = M tare (161b)
cos 6 k,cos ¢ +1ia,

Equations (1.58), (1.60a,b), and (1.61) can now be solved to obtain the amplitude
reflection and transmission coefficients:

E kcos—k —i
ro= < m> _ kecos (COS ¢ ?at, (1.622)
io / boundary k cos 9 + kt Cos d) + 1a;
- <&) _ ni(kt cosq.')—i-%at) — (I’lz+%K2)2kCOS9, (1.62b)
Ei7T boundary ny (kt cos ¢ + la[) + (I’l2 + 1K2)2k cos b

E
r, = ( r") =—r, (1.62¢)
Ein boundary
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E 2kcos 6

ty = (i> = — —, (1.62d)

io ) boundary kK €OS 0+ k cos ¢ +ia,

;= (&) o 2ni (ki cos ¢ +ia,) . . (1.620)
Eiﬂ' boundary n (kt cos d) + lat) + (n2 + 1K2) kcos
E kcos @

;= ( m) Y, (1.62f)
Ein boundary kt COs d) + 14,

We note that the reflection and transmission coefficients are complex, implying
that the reflected and transmitted fields are in general not in phase with the
incident field. Some care needs to be exercised to distinguish between the n-
and 7r-polarizations — both lying in the plane of incidence. Their reflection
coefficients have equal magnitudes but are 180° out of phase at all angles of
incidence whereas the transmission coefficients for these polarizations differ in
phase as well as in magnitude at all angles of incidence.

In the present example, the reflection and transmission coefficients were
obtained from the continuity of the tangential components of the fields
(Egs 1.48c.d) at the interface and some intuition concerning the incident and
reflected fields in the first medium. In other situations, it may be necessary to
use the continuity of the normal components (Eqs 1.48a,b) also.

1.7.1 External Reflections

We first consider the case when light crosses an interface from an optically rare
medium to an optically dense medium (n, < n,). Reflections under these con-
ditions are known as external reflections. If the second medium is also perfectly
transparent (k, = 0), then Eq. (1.54) when combined with Eq. (1.53b) gives

k, cos ¢ +ia, = 2(n%—nf sin” 6)'/2. (1.63)
c

For n, > n,, the right-hand side of Eq. (1.63) remains real for all angles of
incidence. Therefore, the attenuation vector must vanish, i.e.,

a, =0
and
kcosqb—g( 222 12
’ = —(n5—njsin” )/~
c
In this case the transmitted wave in the second medium is also homogeneous with

k=m—, (1.64a)
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and Eq. (1.53b) takes the more familiar form
n,sin ¢ = n, sin 6. (1.64b)

This is the well-known Snell’s law which holds at the interface between two
perfectly transparent media under conditions of external reflections (n, > n,). It
is not obvious at this stage whether Snell’s law in its present form will hold when
light is incident from an optically more dense medium to an optically less dense
medium. Equations (1.53b) and (1.54) may be taken together to represent the
more general form of Snell’s law. For external reflections, Eqs (1.62) simplify to

. :nlcose—nzcoscb, (1.652)
n, cos 4 n, cos ¢

L nlcos¢—nzcos67 (1.65b)
n, cos ¢+ n, cos 6

r,=—r., (1.65¢)
2 0
‘= meosy (1.65d)
n, cos 0+ n, cos ¢
2
[ o meose (1.65¢)
n, cos ¢ +n, cos 6
0
g = EB07, (1.65f)
n, cos ¢

Equations (1.65) constitute the Fresnel relations. They are applicable when light
enters from a perfectly transparent medium of smaller index of refraction into
another perfectly transparent medium of higher index of refraction. Some of
these relations may differ from the standard form of Fresnel relations given in
many texts. We shall return to these differences shortly.

It will be shown in Section 6.5.1 that if the direction of incidence is reversed,
1.e., if light enters the medium of index of refraction n, from medium of index of
refraction n,, then the new reflection coefficients r/ , r. and the new transmission

o’ T

coefficients 7/, . satisfy the following relationships:

r,=—rg,, (1.65g)
ri=—r,, (1.65h)
t,t =1—r2, (1.65i)
.t =1—r2. (1.65))
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1.7.1.1 Brewster Angle

Fresnel relations reveal an interesting consequence of the boundary conditions.
The reflection coefficient for o-polarized light does not become zero for any
angle of incidence, but the reflection coefficients for 7- and n-polarizations
vanish for angle of incidence 6y, satisfying the condition

n, cos ¢ = n, cos b. (1.66a)
This result when combined with Snell’s law gives
qﬁ:g—QB. (1.66b)

Accordingly, the reflection coefficient of light polarized in the plane of incidence
becomes zero when the angle between the directions of propagation of the
reflected and transmitted light waves becomes 90°. The angle of incidence 6
satisfying this condition is known as Brewster angle. The - and n-polarized
waves at this angle of incidence do not undergo any reflection and are therefore
fully transmitted. The o-polarized light, on the other hand, is partially transmitted
and partially reflected at all angles of incidence including the Brewster angle.
Equations (1.66) give for the Brewster angle, the condition

tan gy = 2 (1.67)

ny

If unpolarized light is incident at this angle, the reflected light appears in
pure o-polarization. However, for n,/n, = 1.5, as for the air—glass interface,
0y = 56.3°, and only 15% of the incident energy appears in the reflected light.
Notwithstanding this rather low polarizing efficiency, the Brewster angle is also
known as the polarizing angle. Lasers make a very effective use of incidence
at Brewster angle for controlling the state of polarization of laser light. This is
shown in Fig. 1.8. Glass or quartz windows are fused to the plasma tube of a laser
at both ends at the Brewster angle. At each of the four interfaces, o-polarized

A

RN W, .
o (- 4 . Plasma tube . \/\\ 92

", / by
o-pol

Fig. 1.8: Brewster windows (W,, W,) of the plasma tube of a laser.
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Fig. 1.9: Variations of reflection coefficients (a) and their squares (b) with angle
of incidence for external reflections (n,/n, = 1.5).

light suffers substantial (15% for glass windows) reflection losses whereas light
polarized in the plane of incidence is transmitted without any reflection loss.
The laser cavity (mirrors M, M, and the active medium filling the plasma tube)
is unable to sustain oscillations for the o-polarized light in the presence of
these losses. Consequently, light coming out of a laser with Brewster windows
is polarized in the plane of incidence. The o-polarized light with electric field
perpendicular to the plane of incidence is eliminated in the process.

Variations of the reflection coefficients and their squares with the angle of
incidence are shown in Fig. 1.9 for the three states of polarization. The reflec-
tion coefficient is rather small at normal incidence (0.2 for n,/n, = 1.5), but
approaches unit value at grazing incidence (6 —> 90°). The three polarization
states behave differently. The o-polarized light suffers 180° phase change on
reflection at all angles of incidence. The m-polarized light, however, undergoes
phase reversal only up to the Brewster angle, and no phase change for incidence
beyond this angle. The n-polarized light has the behavior just opposite to that
of the 7-polarized light (Fig. 1.9a).

The reflection coefficients and their squares vanish at the Brewster angle for
m- and n-polarizations. The reflected light is richer in ¢ polarization, except for
incidence at normal and grazing angles.

1.7.2 Reflectance and Transmittance

It was mentioned that the Fresnel relations in their present form (Eqs 1.62) may
differ somewhat from Fresnel relations given elsewhere. The difference lies in
the fact that we have decomposed the field vectors into three components along
the 7r-, 0-, and n-directions. In most texts, the in-plane (7- and 7-) components



34 Chapter 1: LIGHT WAVES

are not separated. Instead, one deals with only two field components — the
perpendicular or the o-component and the parallel component which is the vector
sum of the 77- and n-components. In this context, we would like the readers to
appreciate that the reflection and transmission amplitude coefficients may not
always be useful quantities since the measurable quantities are the intensities
and not the fields. The reflectance (or the reflectivity) R and transmittance (or
the transmitivity) 7, which refer to the division of the incident irradiance into
the reflected and transmitted irradiances, are of fundamental significance. In the
absence of absorption and scattering losses at the interface between two media,
the relation

R+T=1 (1.68)

must hold for reasons of energy conservation. The incident, reflected and trans-
mitted energies crossing per unit time per unit area of the interface are

Il
v

L, . .n=S,cosb,
I, = Er .n=S,cosb,
I, = 5[ .n=S,cos,
respectively. So that
2
R:%:iiﬁ:(%):ﬂ, (1.69a)

I,  Scos¢p  n,cosd (E[>2 _ nycosd
E;

= = = t, 1.69b
I, Sicos@ n, cosf n, cos0 ( )

where S, S,, and S, are the magnitudes of the incident, reflected and trans-
mitted Poynting vectors at the interface, respectively. For perpendicular (o-)
polarization,

R ) n,cosf—n,cosd\’ (1.70a)
=y = N . a
77 n, cos 0 + n, cos ¢

T @cosd)t2 _ nycos ( 2n, cos 6 )2‘ (170b)

n,cosf 7 n, cos@ \ n cosf+n,cosd

It can be seen that the condition

R,+T,=1
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holds. For the in-plane or the so-called parallel polarization, we need to com-
bine the n- and 7-components since they do not represent independent waves.
Therefore,

2 . .
R, = r”(parallel polarization)

E} +E%

n

ElL+E.

mn

rrE2 +riE?

_ "‘n"in T i

El +EZL

n

B (nlcos¢—n2c058>2

n, cos ¢+ n, cos 6

(1.71a)

and

M El 4+ EX\ (cos¢
P ony \EL+E. ) \cosb
_ Anyn,cosdcost

~ (n,cosp+n,cosh)?

(1.71b)

Once again, it can be seen that R, + T, = 1. Figure 1.10 shows the variations
in the reflectance and transmittance with the angle of incidence for external
reflections (n,/n, = 1.5).

1 1
T T
0.8 p i 0.8 ©
0.6 : 0.6
0.4 1 0.4
0.2 R \ 0.2 Rs
0.04 ’ 0.04
0 0
0 45 56.3 90 0 45 90
—> § (degrees) —> ( (degrees)

(a) (b)

Fig. 1.10: Reflectance and transmittance changes with angle of incidence for
external reflections (n,/n, = 1.5); (a) parallel or in-plane polarization, (b) per-
pendicular polarization.
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1.7.3 Internal Reflections

When the refractive index n, of the second medium is lower than the refractive
index n, of the first medium, the right-hand side of Eq. (1.63) cannot remain
real for all angles of incidence. Beyond a certain angle of incidence, called the
critical angle 6, defined by

n, =n,sinf,, (1.72)

the right-hand side becomes purely imaginary. For incident angles smaller than
the critical angle, the attenuation vector c?t vanishes as the right-hand side is
real, and the transmitted wave in the second medium is homogeneous with the
magnitude of the wave vector k, = n,w/c, just as for the external reflections.
Except for the fact that the angle of refraction exceeds the angle of incidence,
there is no qualitative difference in external and internal reflections as long as
the angle of incidence remains smaller than the critical angle. In fact, the -
and n-polarizations go through zero reflectivity at the corresponding Brewster
angle in this case as well. Brewster angle is always smaller than the critical
angle (for n,/n, = 1.5, 03 = 33.7° and 6, = 41.8°). However, the situation
changes non-trivially as the critical angle is approached. At the critical angle,
the right-hand side of Eq. (1.63) vanishes, forcing k,cos ¢ and q, to take zero
values. This happens when the angle of refraction ¢ becomes 90° and wave
propagation in the second medium takes place along the interface only (Fig. 1.11).
Equations (1.65) give reflection coefficient of unit magnitude at this angle of
incidence, irrespective of the state of polarization. Light is therefore totally
reflected back into the first medium; hence the use of the term total internal
reflection to describe wave propagation from an optically dense to an optically
rare medium for angles of incidence at and beyond the critical angle. It may

1 1T
ag
P n
| k¢

Fig. 1.11: Geometry for internal reflections. Wave in second medium is
inhomogeneous for angles of incidence exceeding the critical angle.
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appear confusing that the wave is totally reflected back into the first medium
despite wave propagation taking place along the interface (¢ = 90°). We shall
return to this point shortly. The wave propagating along the interface is called
the evanescent (tending to vanish) wave.

As the angle of incidence exceeds the critical angle, the right-hand side of
Eq. (1.63) becomes purely imaginary and the transmitted wave continues to

propagate along the interface with propagation vector k, of magnitude (Eq. 1.53b)

k= n, 2 siné, (1.73)
C

but now with an attenuation vector c?t of magnitude
W 5.0 06— n2)1/2
a, = —(nysin” 6 —n;) (1.74)
c

directed normal (Eq. 1.51e) to the plane of the boundary (Fig. 1.11). Equa-
tion (1.49c¢) for the transmitted wave now takes the form

E,=E, oil(kitia). T —wi] (1.75)

Substituting k, and a, from Eqs (1.73) and (1.74) gives

nyw

- = _e2an2 g /2, o
Etr:Ete 2 (n{ sin~ 0—n3) Nel( —xsinf wt). (176)

The transmitted wave (evanescent wave) propagates in the x direction. The
amplitude of the wave in the second medium decreases exponentially with z,
falling to 1/e of its value at the interface at a distance

1 A
§=— = - (1.77)
a,  2m(nisin® 0 —n3)'/2

away from the interface. The beam attenuation increases with increasing angle of
incidence beyond the critical angle. For the glass—air interface, § =2.3 x 107> cm
for 6 = 45° and A, = 500nm. The penetration depth 6 in the second medium
is only a fraction of the wavelength of light. The surfaces of constant phase

(normal to k,) are normal to the plane of the interface and the surfaces of
constant amplitude (normal to (;[) are parallel to the plane of the interface.The
evanescent wave in the second medium is therefore an inhomogeneous wave
with the phase velocity (w/k, = c¢/(n,sin6)) exceeding the velocity of light
(¢/n;) in the medium. Total internal reflection makes it possible for light to
propagate in optical fibers and optical wave guides.
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The reflection and transmission coefficients for internal reflections for 6 < 6,
are still given by Eqgs (1.65), just as for the external reflections. But now n, being
smaller than n,, the signs of the reflection coefficients are opposite to those for
the external reflections. For 6 > 6., Eqs (1.62) give the following expressions
for the reflection coefficients:

n, cos 0 —i(n?sin® 6 — n)'/2 4y

o ’ 1.78a

ny cos § +i(n sin® § — n3)1/2 o

2 . 2 2 23\1/2

L _m cos 0 +in, (n?sin” 0 —n3)"/ — iU+ (1.78b)
" njcosO+in,(nisin® 0 —n3)!? ’

where
2 2 2\1/2
(n?sin” 6 —n3)"
n, cos

22 29_ 2\1/2
tan i, = (ﬂ) (n7 sin n3) _ (1.79b)
n, n, cos 6

tan ¢, = (1.79a)

The reflection coefficients are now complex with unit magnitude for any
state of polarization for all angles exceeding the critical angle. The reflection is
therefore total. For internal reflections, the variations of the reflection coefficients
and reflectances with the angle of incidence are shown in Fig. 1.12. The phase
changes for the reflected fields are different for the - and o-polarizations.
Accordingly, linearly polarized light, polarized along directions other than 7r-
and o -directions, becomes elliptically polarized after an internal reflection. The
phase for o-polarization changes from 2¢, =0 at = 6, to 2¢p, = 7 at 6 = 90°.
The 7r-polarization, on the other hand, undergoes a 180° phase change (change

b
0.8 ®)
0.6
I
0.4 |
I
0.2 R /|
Ry,
0
0 O 0, 0
— ¢ (degrees) —> () (degrees)

Fig. 1.12: Variation of reflection coefficients (a) and reflectances (b) with angle
of incidence for internal reflection (n,/n, = 1.5); 63 =33.7°, 6, = 41.8°.
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Fig. 1.13: Phase changes during internal reflections with angle of incidence
(n,/ny, = 1.5); i, is for m-polarization and ¢, is for o-polarization.

of sign) at the Brewster angle. Additional phase changes take place beyond the
critical angle. The net phase of 7-polarized wave varies from 2, + 7 = 7 at
0 =0, to 2, + m =2 at 6 = 90°. These phase changes are shown in Fig. 1.13.
The same figure also shows the variations of 2is, and 2i, — 2¢,,.

The phase difference 2(i, — ¢,) between - and o-polarizations can be
obtained from

cos® [, n2\'"?
tan(Y, — ¢,) = J sin” 0 — — . (1.80)

Sin2 ny
For n,/n, = 1.5, the maximum value of (2¢, —2¢,) of 45.2° occurs at 6 = 54°.

1.7.3.1 Fresnel Rhomb

This device, first conceived by Fresnel, is used to change the state of polar-
ization of light from linear to circular by introducing a phase difference of 90°
between the 77- and o-polarized light waves through two successive internal
reflections in a rhomb, cut with an apex angle which allows 45° phase change
in each internal reflection (Fig. 1.14). The incident beam, linearly polarized
at 45° with the face edge, enters the rhomb normally. The beam suffers two
internal reflections inside the rhomb and leaves through the opposite face of
the thomb normally, but now circularly polarized. Unlike a quarter-wave plate
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54

D .

Fig. 1.14: Fresnel rthomb to convert linearly polarized light into circularly
polarized light.

(see Section 3.3.2), Fresnel rhomb is much less sensitive to changes in the
wavelength of light.

1.7.4 Frustrated Total Internal Reflection

We have seen that despite the existence of the evanescent wave along the inter-
face, light is fully reflected back into the first medium. Consequently, no energy
can flow into the second medium. This, as a matter of fact, is a correct statement
and can be proved by showing that the time averaged value of the z-component
of the Poynting vector in the semi-infinite second medium is actually zero. This,
however, does not fully clarify the situation. There is a need to further explore
what actually happens in the neighborhood of the interface. It has already been
mentioned that light does penetrate into the second medium, but the depth of
penetration is rather small. This can be verified. Consider a thin slab of lower
refractive index n, sandwiched between thicker slabs of a medium of higher
refractive index n, as shown in Fig. 1.15.

Let the thickness d of the sandwiched slab be comparable to the penetration
depth of the wave. For incidence at the first interface at an angle greater than
the critical angle, the transmitted wave can be detected beyond the second
interface. The amplitude of the transmitted wave depends on the actual thickness
of the sandwiched slab; thinner the sandwiched slab, larger the amplitude of
the transmitted wave. However, to avoid multiple reflections in the sandwiched
medium, its thickness should be somewhat larger than the penetration depth
0. It is therefore clear that notwithstanding what has been said earlier, light is
partially transmitted in an internal reflection. However, if the thickness of the
sandwiched slab is made sufficiently large, the transmitted wave after travelling
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Fig. 1.15: Geometry to frustrate total internal reflection (n, < n,).

a short distance in this medium apparently bends and re-enters the first medium,
somewhat shifted from the position of entry into the second medium (Goos-
Hanchan shift [1.4]). Thus, no net energy flows into the second medium making
internal reflection total, indeed. But the time averaged component of the Poynting
vector along the interface is non-zero (the evanescent wave). It is possible to
frustrate the total internal reflection (make it less than total) by reducing the
thickness of the middle slab. Arrangements of the type shown in Fig. 1.15 can
control the amount of energy being coupled from one medium to the other. For
o-polarized light of amplitude E_ entering the first interface, amplitude of the
wave leaving the second interface (see Eq. 1.651), is

—d/é
E =t,t e °E,
(=),

— (1 o e—i4¢0) e—d/BEU’

where ¢, is as defined in Eq. (1.78a), 6 the penetration depth (Eq. 1.77) and d the
thickness of the sandwiched slab. It must be mentioned that bringing in the second
interface asin Fig. 1.15 changes the original problem altogether. The boundary con-
ditions at the first interface get modified due to the presence of the second interface.

We end this discussion by recalling that the external and internal reflections
have been investigated here under the assumption of perfect transparency of the
media on the two sides of the interface. Real optical materials are not perfectly
transparent. For sufficiently high transparency (k — 0), the results obtained in
this chapter may be used as such or with slight modification. For example,
complete absence of m-polarized light on reflection at Brewster angle may not
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happen in real optical materials. Instead, the reflection coefficient for 7-polarized
light goes through a sharp minimum at this angle. Similar modifications may be
expected elsewhere.

1.7.5 Reflection from a Metallic Surface

The formalism developed in the preceding sections can describe reflection from
a metallic surface. However, the wave equation applicable to metals is quite
different from the one developed in this chapter because the free charge and free
currents appearing in Maxwell’s equations do not vanish for metals. Nevertheless,
it is possible to gain some insight of wave propagation in metals from Fresnel
relations if allowance is made for absorption to take place in the second medium
[1.4, 1.5]. Metals are generally opaque to visible light unless thin metallic films
no more than a few nanometers (10~7cm) in thickness are employed. Special
care needs to be exercised for the preparation of thin metallic films if they
are to faithfully represent the behavior of bulk metals. Thin metallic films are
partially transparent in some regions of the visible spectrum. For example, gold
and copper with yellow luster are somewhat transparent to blue-green light if
used in the form of thin films. Table 1.2 gives real and imaginary parts of the
index of refraction of some metals in the visible region.
For good conductors, the imaginary part of the refractive index is much larger
than the real part, and an approximate expression
sin ¢ — 1Y (1.81)
K
holds for the angle of refraction ¢, where 6 is the angle of incidence. For
incidence at 60°, the angle of refraction for aluminum is merely 7°. Thus for
good conductors, the transmitted wave propagates essentially along the normal

to the plane of the interface. The propagation vector k, and attenuation vector
a, are nearly coincident. Therefore, the wave in a good conductor is very nearly

Table 1.2. Complex refractive index
n=n+Iik of some metals.

Metal | A (nm) n K
Al 650 1.30 7.11
Pd 550 1.8 4.0
Cu 548 0.76 2.46
Ag 584 0.055 | 3.32
Na 546 0.05 2.20
Au 546 0.4 2.3
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QT209: Classical Optics: Sample numerical questions for practice

1.

Two waves of wavelength 1.53 um and 1.56 um are travelling in a medium of
refractive index 1.50 and 1.49 respectively. Calculate the group velocity of the
waves in the respective medium. Consider velocity of wave in vacuum 3 x 108
m/sec

Calculate the wave number for the light of wavelength 632nm. Calculate the
phase and group velocity of the wave when its angular frequency is twice the
wavenumber.

For calcite the values of n, and n. for the wave of A, = 500nm are 1.6 and 1.5
respectively, and corresponding to the wave of A, = 1000nm, the no = 1.58 and ne
= 1.48. The calcite works as a quarter wave plate for the wave Ao = 500nm. If a left
circularly polarized beam of A, = 1000nm falls on this plate, then calculate the
phase and the state of polarization of the emergent beam.

A Michelson interferometer is illuminated by a light source of spectral width
Av=6x10"°Hz. Calculate the maximum path difference for which interference
fringes are still visible.

Explain how spatial coherence depends on the size of the source and the aperture
used in the experiment.

Calculate the numerial aperture of a step index fiber having refractive index
n1=1.48 and n2=1.46. What is the maximum launching angle for this fiber if the
outer medium is air?

A certain optical fiber has an attenuation of 0.6dB/km at 1300nm and 0.3dB/km at
1550 nm. Suppose these two optical signals are launched simultaneously into the
fiber: an optical power of 150uW at 1300 nm and optical power of 100uW at 1550
nm. What are the power level in uW of these two signals at a) 5 km b)25km.



Practice questions:

1.

Unpolarized light passes through a linear polarizer with its transmission axis along the y-
axis. The output intensity of the light is I,. This light then passes through a second
polarizer with its transmission axis at an angle of 60° to the y-axis. Find the final intensity
of the light after passing through both polarizers.

Consider an electromagnetic wave incident on a boundary between air and a dielectric
material with a refractive index n= 2. If the incident angle 8;=45° and the wavelength in
air Ap=600 nm, calculate the penetration depth of the inhomogeneous wave inside the air
medium.

Determine the core radius required for a fiber with wavelength A=1.31 ym to ensure
single-mode operation, given that core refractive index n;=1.52 and An=0.02

If an optical pulse of width 0.5 ps experiences a dispersion of 10 ps/(nm km) over 200 km,
what is the new width of the pulse?

A laser with a wavelength of 600 nm and spectral width of 0.2 nm has coherence time of
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